Index: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Note: in the PDF (electronic) version of this
book, the page numbers are hyperlinks.
Click on any page number to view that page.
Examples. Index, p. 387, Tableof Contents, p. 3.

TLIB Version Control

*** PRELIMINARY ***

Reference Manual

Copyright © 1986-2003 by Burton Systems Software.
All Rights Reserved.

Printed in the U.S.A.

Version 5.53, printing 1

Table of Contents

(070] o)/ 1o | |0 A o =1 o = S 6.
Limited Warranty..........ooeeueiiiiies e e s 7.
=0 [T =0 0= o S 9
INEFOAUCTION....ceiiiiiiiiii e 10
Converting to TLIB from other products........ccccccoeevvvviviiiiinnneeen, 10
TLIB Version CoNntrol FEAtUIES...........c.iviiccccceeeiiiiiiiiie e 11
TLIB Library Files........coiiiiiiieeee e 14
Getting started: the TLIB Configuration Wizard................cccvvvvvvnnenenn. 15
ComMmMANd STIUCIUNE.......oii i mmeeeme e 17
TLIB Command SUMMEIY..........uuuuiiiieeeeeescmmeeeeeennnnaanaaannnnnnnnnnnennnnnnes 20
N Command: create New library..........cccccveme, 24
NF command: Fast New library create.........ccceeeeiiiiiiiiinn, 31
U command: Update a library...........c.ouuiiini s 32
E command: extract latest VErsion..........ccceececuiuiiiiiiiiiiiiiiiiiiieiiieeeeeeeen 35
ES command: extract Specified (0ld) Version. ..cccc..cceoiveeiiennnnn. 37
Command Line Parameters and Batch Files................ovviiiiiiiiiiininnee. 39
UF command: Fast Update...............ciiiiiieiiiiiiiiieeeeeeeee
L command: LiSt VEISIONS........iiiiuiiiiiisscmmmmm et e e e eeiis e e e e e e eeeearianna e e
CP command: override library Path
TeXt File FOIMALS........uuiiiiiiiiie et s et e e e e e e e e e e 44
TADS. e e —————————————————————————— 44
ENd-of-file Markers.........c.ueiiiiiiiiiic e 47
Managing Multiple SoUrce Files.............co e eeeeeveeiiiiiine e 48
Wild-cards and File LiStS.........cooooiiiiieeeeeeeeee et 50
Comma-Delimited Lists Of Files............ooo i 53
Integration With Other Products............uceeeeeeeeie e 55
“Native” Project File SUPPOIt............oiiimmmmeeennneeeeeeeeeeaeiinenenenennnnes 55
APIs for Integration with Windows Programs....ee....coeeeeeereeenn....57
Add-In for Visual BasSiC...........ccouviiiiiiiimmm s 57
Borland Delphi and C++ BUilder..........coovvieeeieiiiiiiieeeeeen 58
WALCOM C/CHt.. ittt sttt 58
Microfocus COBOL Workbench.............cuouiiiiiieiiiiiiiiieee 58
Programmers’ EAIitOrS...........uuiiiiieieisceceeemeieiieeeveeecvee e 58
Six Different Wild-card Search Algorithms.....cccceecceiiiieiiiiiciieeee, 59
F - Filter File NamMeS..........oiiiiiiiii e a e e eeeaaes 64
Tree-structured dir€CIONES.oiiii it 66
Branching: Version TreesS...........c oot 68
US - Add SpeCified VEISION...........c.etmmmeeeeeiiiiee e e e e ee e 69
UB - Make new branch..............ooiiiiceeecn e 70
Version NUMDEIS.uuiiiiii e sceemn et e e e e e e earenas 3.7
Long File NamMES......coooiiiiiiii et eeeeme e 17.
Environment variables, SET, and the Autoset fil€u..........coovvvviiiinnns 80

Lots of ways to set your TLIB USer ID.........cceeiiiiiiiiiiiiiiiieeeeeceeeiieee 89

S command: Snapshot version labeling... TP RRRTRRRRRRRIRE 124
Check-In/Out locking: concurrent access control 97
Weak Locking and Branch/Level Locking... - cerrrreeeenen 98
CW command: Configure Who you are (set User ID) 100
E and U commands revisited...........oooe i ccceeeeiiiiie s 100
EB command: Extract for BrOWSE...........ccuuuieieiiiiiiiiiiiiiieeee e 100
UK command: Update and Keep locked..........cccocueieiiiiiiniiinnnnn. 101
UD (discard changes) and ER (reserve) commands.................. 101
T command: Test I0CK Status............uuuiiieeeeeeiiiiiiieee e, 102
S T=To U 1T RRRRTRRRPRIR 105
Version tracking & Named Project Levels......cccceeuciiiiiieiiiiinneenenn. 106
Tracking File Terminology.......ccooveeiiiviiiceemme e 111
What Are Tracking Files and Named Project Levelea@GBor?....... 113
Supported Development Environments for Version Kirag.......... 116
Where the Files and Directories Belong......cccceeevvveeeeeeeeeenennnnnnnn, 119
Handling Semi-Custom Software With Basic Versioacking....... 120
Tracking file format.............ooiiiiii i 122
Advanced Version Tracking & Named Project Levels................ 127
Setting Up Your Project Level Tracking FileS. oe..cccvvvvennnnn....... 129
How TLIB Uses the Tracking Files...........cooemeeiieeeieiiicccnens 136
Configuration Parameters for Version Tracking...cce.eeooevvvvevennnn... 138
Configuring Your Project LevVels............eeeeiieiiiiiviiiiiieee e 141
Administering Multiple Project Levels.........c i, 155
EBF command: Fast-Extract (extract only changes$fil..................... 163
ReferenCe dIr@CIOMES. .. .u e e eii ettt e 46
A (add/alter project level) and AP (promote) coma&n..................... 168
M command: Migrate Changes.............uuuut s ceieiii e 178
JOUINAI FIlE...uen i 190
U (update) with @ file liSt.............uueie e 49
Whereis - file fINder.........oooiii i a5l
L@ 1 1T= 0 o o [T SRR 196
Poketrak & COPYIrak.........coiiiiiiiiiiiiiit et 198
SaviNg DiSK SPaCE......ooi i a9
TeMPOTAry FIlES........uuu it 002
Network Bug WOorkarounds............cooveeeeiecccccceesiessseescennenneeeees 201
Listbld — file list builder..........ccoo e Q22
File Lists and SNapShotS............uuueun i eeeeeiiveeieeerveeeeeeeeeeeeeeeeeeeeees 209
(AT (o SRR 212
Keyword-based version number checking.......ccceceeeeiiiiivinninnnnnn. 218
THDSCAN. ...ttt 221
(REAVIET (o] o I 1153 (o] V2 o o o 11 o AR 222
CMpPr delta geNEerator.........cuueiiii e eceemre et e e e e e e e e e e e e e e 225
TImerge / Diff3. . oo 233

NS Command — split @ library............ooo o ceeceeiie s 239

Retrieving by Date/Time.........cooiiiiiiiii i 241
CoMMENT FlES.....i e e 4L
CONFIQUIATION. ...ttt ettt e e e eeeeeas 246
Alphabetical listing of parameters. ..o, 246
Configuration OVEIVIEW...........cciuiiiiiiiiaeeeeiiii i e e e 250
Where is the Configuration File?............ooceeeriiiiiii 250
C command: Overriding Configuration Parameters.................... 252
Detailed configuration parameter descriptionS..........ccooeeeeeeveennnns 254
Operators and expressions for LET and.JFE............ccccvvveenn. 270
Version tracking & named project levels.............cccoceeeeiinn. 297
Conditional configuration parameters.........cccceeeeevvvviiieeeeeeeeeeeenn, 321
Cmpr and Tlmerge/Diff3 parameters...........occeemmeeeeeeeeveveeeiininnnnnns 338
PCOM & PCOMS parallel port file transfer.........ccccvevvvvicciniieeeenennnn, 341
D q o = g T |1 P
TESHOCK. ... e
TOUCKH. L.t
MBKE. ... e
How Make utilites work
Easier Keyboard INPUL..........ocoiiiioiiiieeieeeeeee e
FIlE DALES. .. ettt e
(04 o] T 5PN
Appendix A: Changes from TLIB 4..........uoeiiiiieiiiieiiiieiieeeiees 368
Appendix B: Library File FOrmat.............cooe oo 371
APPENTIX C: MESSAGES. ...uvuuuniiieeeiieieeetmmmm s e s e e inebbeeebbaeenes 374
Appendix D: Configuration File Syntax.........ccccceeiiiiniieiii, 378
Appendix E: TLIB Version Number SyntaxX.........cceueeveieaneeeeieeeennnnn. 381
Simplified BNF Version Number Syntax..........cccceeeeieieiiciinnnnnns 381
Version numMber eXamples...........oooiiiiiiiceeceee e, 382
100 [TP TP PPN 387

Copyright / License

This software is protected under United States Copyright &ad Interna-
tional Treaty provisions. The law for Copyrighted Softwasesimilar to
the law for Copyrighted books, with one exception: you artharized to
make archival copies of the software for the sole purposeacking-up
your software and protecting your investment frossl

This means that only one person (or computer) may use or laess to
the software (or, for multi-user licenses, the licensed Ip@inof users or
computers). The software may be freely moved from one lonatib an-
other so long as it is accessible from only one computer (oordy one

user) at a time (or, for multi-user licenses, the licensetmer of comput-
ers or users). If two or more computers (or users) connecgtedrietwork
have access to the software at the same time, then each canjputiser)
must have its own separately purchased copy (or a multilicsgrse must
be purchased from Burton Systems Software). This applies #évhe dif-

ferent computers (or users) are using different programs fthe TLIB

package.

The license restricts the number of computers (or users)vave access
to the software, rather than just the number who happen toshg it at
any given instant in time. Thus, you may not use a license gema re-
strict simultaneous access for the purpose of reducing timaber of
licenses required.

However, for the purpose of determining compliance witls tliense, you
may count either computers or users. Thus, if someone witheauser li-
cense uses two computers, it is not a violation of this lieefogs him to

install his copy of the software on both computers, as longrdg he will

use it.

This software can be bought and sold (or even given awaypragds all
archival copies are transferred along with the originalgpam diskette
and manual.

The manual for this software may not be copied by any meanarfprea-
son without the prior written consent of the coghtiholder.

Limited Warranty

Burton Systems Software warrants for a period of ninety @&ys from
the date of delivery that, under normal use antiouit unauthorized modi-
fication, the programs perform substantially in accoradamnwith the
specifications published in the documentation and thoséostn in Bur-
ton-authorized advertising material; that, under nornsa, the magnetic
media upon which the programs are recorded is not defeaivthat the
user documentation is substantially complete and contamformation
which Burton deems necessary to use the program. If, duhaginety
day period, a demonstrable defect in the programs shouldaaippou may
return the software to Burton for repair or replacement, @tdh's option.
If Burton cannot repair the defect or replace the softwaté winctionally
equivalent software within thirty (30) days of Burton'segat of the defec-
tive software, then customer shall be entitled to a full nefuof the
purchase price.

Burton excludes any warranty coverage for incidental orseguential
damages except for the express warranties above, and theiesnd-user's
remedy to return of the software with manual to the dealeo @urton for
replacement.

This statement shall be construed, interpreted and goddmé¢he laws of
the State of North Carolina.

Note: Even after the expiration of the warranty, please do nottagesto
contact us about any problems, questions, or suggestioith wbu may
have. We pride ourselves on the quality of the support whiehpvovide
to our customers, and we want you to be satisfied.

Copyright © 1986-2003, by Burton Systems Software.

P. O. Box 4157, Cary, NC 27519-4157 USA
Telephone: (919) 481-0149 FAX: (919) 481-3787
email:support @urt onsys. com

web siteht t p: / / www. bur t onsys. conl

TLIB

A Version Control System

What is TLIB?

TLIB ™ (pronounced tee-lib€) is what is sometimes called a “version
control system,” “configuration management system,” osaufce code li-
brarian.” It stores all versions of any of your sources fited single,
compact, annotated library file. Your source file is mokely a text file
containing program source code or documentation; howewen-text
“source” files (like object module libraries or spreadsheerk files) are
also supported.

TLIB is especially useful if you are a programmer, sincet$ gou quickly
and easily go back to an old version in the event that thetlatgsion has
a new bug. It can also manage many of the most vexing choresiat=d
with the software development process, such as coordg#tamodifica-
tion of source code by several programmers, maintainingrandnciling
parallel development paths, migrating/merging changés austomized
versions, and providing an “audit trail” of revisidiistory information.

TLIB is very fast. For example, on a 100 MHz Pentium, it will diie a li-
brary file, storing the 200th version of a 750K source filkigtreference
manual, as it happens) in about 4 seconds. Sluggish toolgeaim the
way of your productivity. TLIB doesn't!

TLIB is easy to use. It includes both a user-friendly GUI Wimgs inter-
face, and command-line versions for several opegatystems..

TLIB grows with your business. It works fine for small proje®n stand-
alone PCs, but it also supports shared libraries over a Larcélide-Area
Network, and multi-stage “promote” hierarchies, iy projects.

Requirements

TLIB™ Version Control includes executables to run on Miathswin-

dows™ 95/98/Me/NT/2K/XP (32-hit), Windows 3.1x (16-biflS-DOS™

and PC-DOS™ versions 3.0 and above, and IBM™ OS/2 versionarel
Warp. For MS-DOS and PC-DOS, both real-mode and DOS-extenele

sions are included. The 32-bit command-line version als®s under the
WINE Windows Emulator on Linux (Intel-architecture CPUs In

though it currently assumes case-insensitive fimes.

The real-mode TLIB executablelLIBDOS.EXE, requires at least 500K of
available “conventional” (non-extended) RAM memory. Th@®-extend-
ed TLIB executable,TLIBX.EXE , requires less conventional memory, but
also needs at least 1 MB of extended memory and a DPMI, VCPIM$ X
memory manager, such as WindowsEMMm386.EXE, or HIMEM.SYS.

An 80286 or better CPU is also required for DOS versions ofBf ldther

versions of TLIB require an 80386 or better CPU and a hard diisle. A

CD-ROM drive is required for installation (or TLIB can be phased on
1.44MB 3.5" diskettes, by special order).

There is almost no limit on the size of source and librarysfilelowever,
performance degrades for source files larger thi@manegabytes.

For networked development, in which two or more users wilrshaccess
to the files, either multiple copies of TLIB or a multi-usecdnse is re-
quired. TLIB uses only basic network file support, such &sdnd record-
locking, so it works with almost all networks. (You can use thcluded

TESTLOCK tool to test your network's file/regionastmg/locking.)

TLIB™ is a trademark of Burton Systems Software.

Delta™ is a trademark of OPENetwork.

IBM™ & PC-DOSM™ & OS/2™ are trademarks of International Business MachGmp.
MS-DOS™ and Window3&" are trademarks of Microsoft, Inc.

Panvalet™ and Librariafi™ are both trademarks of Computer Associates International,
Inc. (and formerly ofPansophic Systems and Applied Data Research, tashgc

PVCS™ is a trademark of Merant, Inc. (formerly Inters@orp.)

Unix™ is a trademark ofhe Open Grougand formerly of AT&T Bell Labs.)

Introduction

If you purchased the TLIB Version Control on CD-ROM, thentaiksit by
inserting the CD and (ifSETUP does not run automatically) rurseT-
UP.EXE under Windows. (If you received TLIB Version Control via
electronic delivery, and you are reading this, then youuyresbly have al-
ready installed TLIB, by downloading the files into a temgigrdirectory
and running SETUP.EXE) The Windows-based installation program will
install a TLIB Version Control folder shortcut containingastcuts for
tlib_doc.pdf (the electronic version of this Reference Manual) and other
documentation files, as well as for TLIB Version Control ahe TLIB
Configuration Wizard.

Converting to TLIB from other products

TLIB comes with tools to automate conversion of librariestfaves/log-
files from many other products to TLIB. At this writing, we Veutilities
to automatically convert from SourceSafe, PVCS, MS Delwrc&rer's
Apprentice, MKS RCS, GNU RCS, and Unix RCS.

The conversion utilities are stored @oNvERT.zIP. Unpack them by

running theconv_uNnP.BATscript. SeeCONVERT.TXTfor more instruc-
tions.

10

TLIB Version Control Features

New Features in TLIB Version Control 5.xx:

o Easy to use Graphical User Interface, with button bar, merigist-but-
ton functionality, helpful status-bar guidance, MRUSs, .eteloned to
smooth ease-of-use through a long beta test cycle.

o Flexible file pick-list, with multiple selectiorsorting, etc..

o Full compatibility with command-line versions of TLIB andIfupward-
compatibility with all past versions of TLIB.

o Direct support for the compiler-native “project files” feeveral popular
software development tools, including Visual Basic 3.0;6Watcom
C/C++ 10.x, Borland Delphi and C++ Builder, Symantec VisGafe, and
Help Magician Pro. That means you can simply “open” a conngibgive
project in TLIB, rather than specifying files with wild-cds and file-lists.
(We will also be adding support for other compilers

o Fully restartable multiple-file operations. TLIB optidhyadeselects each
file in the pick-list when done processing that file, so yanaancel the
operation (or skip individual files) and later @$tthe command to resume
where you left off or process the skipped files.

o A very nice, colorful, side-by-side visual compdirély integrated.

o Easy to use Windows-based installation under Windows 3.ihd@ws-
9x/Me, Win-0S/2, and Windows-NT/2K/XP. Includes an unailgr, too,
but we doubt you'll ever use it.

o TLIB Add-Ins for Visual Basic 4.0-6.0, and for MS Developetu8io
(VC++etal) 5.0.

o Three public APIs, for integrating TLIB with yoapplication.

o Includes command-line versions of TLIB with support for dpfile-
names on operating systems which support them, as well &snoeke
DOS and DOS-extended versions.

o Unrivaled configurability. TLIB now supports over 100 difent config-
uration parameters. TLIB's configuration file supportsf/emdif,”
“include,” conditional loading, environment variable eeénces, and full
expression evaluation, including parentheses ardif@8ent operators.

o TLIB Configuration Wizard helps you quickly configure TLIBie way
you need it.

o Very flexible wild-card specifications, including suppdor file-lists,
multiple asterisks in wild-card specs (even under DOS orddims 3.1x),
six different wild-card search modes (most of which can bmluoed),
and optional automatic spanning of subdirectories.

11

o Automatic translation of DOS, Unix, and Macintosh ASCII ttddes;
that is, text files with all three common kinds of end-ofdidelimiters: LF,
CR, and CR+LF. Configurable control over which text fornsagenerated
by TLIB when extracting (“checking out”) text files. (Of caae, for binary
files no translation is ever done.)

Plus all the advantages of TLIB 5.00:

o TLIB Version Control supports all languages

o TLIB runs very, very fast. Most magazine reviewers have tbtimat
TLIB is noticeably faster than any other versiomtcol system

o A single library file stores all versions of a source filethvdate/time,
user id, and comments for each version

o Coordinates access by multiple programmers

o N-way Branching and named project-level support, for perdevelop-
ment

o Branch/level-local locking option

o TLIB's unique append-in-place forward delta system presitigher re-
liability and recoverability than any reverse-dgitaduct

o Open architecture: there are no secrets about TLIB's fitenéts, nor
about where your source code is stored

o Unigue Whole-Level Change Migration, eases merging of gharinto
customized variants of your software, or from bug-fix/eee levels into
development levels, etc.. If you have to manage lots of coigied ver-
sions of one program, this feature is absolutely indispelesa and (as far
as we know) only TLIB has it

o Full, delta-based binary file support, with trudaptive deltas

o Very flexible embedded-keyword support

o Simple snapshot-based version labeling

o Automated conversion from SourceSafe, PVCS, MS Delta, Sers
Apprentice, and any of several variants of RCS

o Free tech support by phone and email. TLIB Version Contrithéssole
product of a small company, so there's no wading througlotsdphone
menus and “tech support” people who have no idea what youatkiag

about

o Automatic “delta” generation - only changes are stored frarsion to
version

o Coordinated control of multiple modules: “fixed” snapshetrsion la-
bels, and “floating” tracked versions for each ndrpeoject level

o Supports trees of subdirectories

o Can merge (reconcile) simultaneous changes, and flagictsnibr undo
intermediate revisions without losing later changes

o “Promote” between project levels, for ISO 9001-style sthgevelop-
ment on large projects

o Optional reference directories for each level

12

o Revision history documents changes, and central actistynjal for “au-
dit trail” of development activity, including revision caments, for entire
project

o Create file-lists by scanning source code for includes @3cBl, MASM,
QuickBasic, COBOL “copy”, many others)

o Highly flexible user-formatted keyword support

o Keyword-based version number verification, warns if yoaretan obso-
lete version, even if you disable check-in/out lagk

o Efficient support of local and wide area networks, remoteeas nodes,
WORM optical drives

o Generate mainframe-compatible deltas in any of foumats

o Integrated with Opus Make and most good prograrsneelitors

o DOS-extended version included (more efficientfery large files)

o Automated conversion of archives from other vargiontrol systems

o ISO 9001-style “promote” structures

o Supports multiple, named project levels, includingtomization levels
o Both sparse and fully-populated project levels, and casigarbetween
them

o Automatic reference directory refresh, per projecel

o The “EBF” fast-extract command, refreshes browselenfiles

o N-way branching

o Automatic version tracking and automatic branching

o Branch/level locking and weak (warning-only) lowgi

o Support for trees of subdirectories

o Comma-delimited in-line file lists

o Improved command structure, with command synonyms

o Keyword-based version number verification

o Environment variable substitutionsTniB.CFG

o Autoset file, for “local” environment variables

o Over 100 configuration options, for customizing/tur taste

13

TLIB Library Files

TLIB creates a library file for each of your source files. Tlitaary file
can contain every version of the source file which ever exrisso you'l
never again need to worry about whether you can safely enaselca
source file. However, only the changes from one version éortbxt are
actually stored in the library file, so it remains modestizresven when it
contains dozens or hundreds of versions.

The name of a library file is normally the same as that of theespond-
ing source file, except for the extension. The wWeat TLIB determines the
extension is user-configurable, but with the most commadtings a li-
brary file has the same extension as the corresponding esdilecexcept
for the second character, for which a dollar sign is sulistituThus, for
example, the library file forxxx.PAs is named XXX.P$s” (probably in a
different directory). This is the convention we'll use foosh of the exam-
ples in this manual. However, other conventions can alsosee;usee p.
262.

Whenever you update a library file from a source file, thediy file is ap-
pended with aleltaor “version definition' of ‘edit commands.’ These edit
commands record what changes were made to the source filetbia pre-
vious version: the lines (or binary data) which were addesdetéd, and
moved. The library file contains one delta for each versibyonr source
file. Since most of the source file is usually unchanged,lithrary grows

in size only a little for each update. Yet you can still retgeany version
from the library in just seconds.

14

Getting started: the TLIB Configuration Wizard

Here's a hint for using the TLIB Reference Manualhen in doubt, con-
sult the index.

After you have installed TLIB by runningetup.exe , you need to create
a simple TLIB configuration file.

A TLIB configuration file is just a small ASCII text file, uslly called
tib.cfg , which TLIB reads when it starts up. It contains “configuoat
parameters” to customize TLIB's behavior to yowedse

There are over one hundred different configuration pararaethich you
can specify. However, most users need only a few of them,aat lshen
getting started.

To help you configure many of the most commonly needed paemsie
TLIB now comes with a configuration set-up program we cadl tEonfig-
uration Wizard” (which replaces an older program calledBCONF.EXE).
Both the Configuration Wizard and TLIBCONF work by askinguysome
guestions and then building an appropriate TLIBfigpmation file.

Even if you need to do strange and unique things, you stilukhbegin
the process of configuring TLIB by running the ConfiguratigVizard.
Then edit the resultingb.cfg file to add your customizations.

TLIB cannot be used without a configuration file. The Counfigtion Wiz-
ard (or TLIBCONF) will create a starting configuration fil€or simple
development environments, that might be all you need to dmtdigure
TLIB. However, for complex dvelopment environments, thi®.cfg

file created by the configuration wizard is only a startirarm. You'll still
probably need to make some manual additions to it.

Note: the rest of this chapter is out-of-date. It describes the obsolete
TLIBCONF program, which has been replaced by the TLIB configura-
tion Wizard.

Here are some examples of the kinds of questiatsihBCONF asks:

1. LOCKING: Which best describes you?

15

A) A single programmer working alone on a project. You do neea
check-in/out locking.

(locking N, loguser N)

B) One of a group of programmers working on the same projecth®
System Librarian for a group of programmers) using a netwbAN) and
multiple copies of TLIB. You need check-in/out locking. $hghoice also
causes “browse-mode” source files to be set to read-onlgassio distin-
guish them from source files which are checkedfoumodification.
(lockingY ,readonlybY , replrobr Y ,loguserY)

etc...

2. FILETYPE & TABS: Which best describes the source filest thau
need to manage?

A) Plain ASCII text files, with no tab charactergentabu Y)

B) Plain ASCII text files, but with tabs... (TLIB must not datamatic
tab/blank conversions.gr{tabu N)

C) Non-ASCIlI files, files containing binary datdfiletype binary)
etc...

3. BRANCHING: Do you often have more than one “tdteversion...

4. SOURCE FILE NAMES: Might you ever need to have TLIB manage
two or more files with the same names but diffeeténsions...

5. COMMAND & PROMPT STYLES: Do you want TLIB 5.50 to mimic
earlier versions of TLIB; would you like a verbgz®mpt or a terse one...

6. TREEDIRS: Do you keep all of your source files in a singlekvdirec-
tory, or do you use a “tree” of subdirectories,ugrimg your source files by
purpose into the various subdirectories...

Note: TLIBCONF and the Configuration Wizard configure ratheripla
prompt and help screens for the command-line versions oBTIflyou'd
like a prettier prompt/menu and help screen, geesiFy.AwK, p. 333 (or,
better yet, use the Windows version of TLIB).

16

Command structure

Command-line versions of TLIB use commands which consist single

command character, with optional suffix characters to riyotlie com-

mand's behavior or scope. (You can also use this form of TldBmand

in the GUITLIB for Windows via “Run Manual Command” on the “File”
menu, or via the “Run” button. However, it is generally mooseenient

to use the menus and/or buttons.)

For example, wherdpdating libraries, you can choose betweeast or
regular update, betweeN inor-version-number-incremented or regular
(major) number incremented, either checking-in (unlogkior Keeping
checked-out, etc. Thus, “UFM” (or, equivalently, “UMF”) rmesUpdate
with Fast mode, and increment tiinor version number instead of the
main integer version number.

For more information on the TLIB 5.5x command structure, gee59 and
330.

GUI (Graphical User Interface) versions of TLIB support seme com-
mands and options, but they are specified by buttons, memices$
and/or check-boxes. This is what the main TLIB GliHdow looks like:

2 TLIB for Windows [2 of 9 files selected] o |E||L|
File Command Select Search Mode Help
B[IR [[&]S = = Joo]q [e [
. a .
.List New | Updiate] Estract| Migiate]| Sna Test|| Add-alt) B -share]| Config @% Delta ?H elp l Exit
EurrentDir:Ic:\wmk\Acme\ j | Mode | [~ EBF ¥ Include SubDirs
-V wark |~ Checked out [~ This level Wwhork D cohworkMcme’
Search: . ¥
I Library [~ Owned v &lllevels ProjLew: DEV
Wideard: [*.c."h." exe | Eswpandwidcad | Add | Cear | Viewlog |
Seleet [Fiename | size | attib | Datesime | stetus | Path | File Typ «
All [R nfs 1950-00-00,00:00:00 - File
Maone $&-holdopen.c 1586 R 1997-08-191204:45 - File
Tt Gy _DELAY H 10 R 2002-03-290311:46 - i H File
- 30621 R 1997-01-19,04:03:52 0O File
G605 R - 2002-02-2814:21:35 0 i H File
ars W - 1999-08-0612:44:42 0 File:
- DELAY EXE 15328 W 1993-01-19,01:00:00 - EXE File
TLIB WY T A 4530wy ON-NAN? 50T 5R - f CFie T
@ [I
| Click to zelect, double-click for file version histony, or right click for popup men. |

17

The most prominent feature is a big window listing your seufies.
They may be all in one main work directory, or they may be inra€t of
directories, with the subdirectory names shown in the “patiumn. In
the pictured example, most of the files are in the main workalory, but
three of them are in the ™ subdirectory:

Filename [size [attrio [Datermime [status [path [File Ty«
@denywrn.c - nia 1950-00-00,00:00:00 - i File
holdapen.c 1586 R- 1997-08-19120445 - C File
MY _DELAY H B0 R- 2002-03-20031145 - i H File
30621 R- 1997-01-19040352 0O C File
B0S R- 2002-02-2614:21:38 0 i H File
975 W. 1999-08-0612:44:42 0 C File
DEL & EXE 15328 Wi- 1993-01-19,01:00:00 - EXE File
(:'TMV MFL &% (7 4550 iy 000-N3-N2 130256 - 1 (-iFiIE. hd

In the Win32 TLIB GUI, each source file listed has a small idmside the
file name, which tells you something about it:

%= A tiny TLIB icon is shown for source files that are under versi
control (i.e., for which a corresponding TLIB lilbydile exists).

%% A red check-mark is superimposed for files that you have kibeéc
out for modification.

@ A red backslash is superimposed for files that someone else h
checked out for modification (locked), so that if you were tty to
Extract/check-out for modification it would fail. (A bluealbkslash is sim-
ilar, but you can still check-out the file for modificationhis is only
possible if “weak” or “branch/project-level” locking is lmg used instead
of “full” locking -- see the "LOCKING" configuratio parameter.)

& A black circle and slash means that the source file is missomy
your work directory.

These icons may be combined in various ways, too. For examagpick
circle and slash superimposed over a TLIB icon means thaddhece file
is missing from your work directory, but the correspondingH library
file exists (so you can extract the missing filenfr TLIB if you need it).

The “Filename” column shows your source file names (incigdbinary
“source” files). You can click on the “Filename” header tplabetize the
list, or click it twice for reverse-alphabeticalder.

The “Size” column shows the size in bytes for each source(dite’-" if
the source file is missing from your work direcfory

18

The “Attrib” column shows the DOS/Windows file attribute®R({ for
Read-only, “W” for Writable, “A” for Archive (modified), or'n/a” if the
source file is missing from your work directory. If checkent locking is
enabled (with the usual TLIB configuration settings), tlilea source files
that you've Extracted/checked-out for modification wikhve the “W”
(writable) attribute but “browse mode” files will be readdg. By clicking
on the “Attrib” column header, you can sort thé eifsource files to group
together those source files with the same attributes (allgthe files that
you have edited, because they have the “A” attejpout

The other columns are self-explanatory, except for “StatuBefore you
attempt to do any TLIB commands, it shows “-” for each file. t&fyou
do a TLIB command, it shows a “completion code” or errorlefcgleach
file that you attempted the command upon. “0” means sucesessany-
thing else (usually “1”) indicates an error.

19

TLIB Command Summary

command page
?or?0 Display “help” screen

A or A0 Add files to the current project level 168
AD with Delete suffix: delete from current project v 169
AF with Fast suffix: populate a sparse project level 117
AP with Promote suffix: add to promotepg™) level 170
AS with Specify-version suffix: specify particular wéon 169
AX with eXclude suffix: mark files as excluded, wittx 169
ADF depopulate project level (make sparse) 172
APX mark eXcluded file as eXcluded in the promote level 170

C orCO0 Change any configuration parameter 252
CP with Path suffix: configure library path 42
CwW with Who-are-you suffix: configure user id 100
E orEO Extract file from library 35
EB with Browse-mode suffix: do not lock 100
EBF with Fast/Freshen suffix, to refresh browse-motsfi 163
ER with Reserve suffix: just lock, don't actually eadt 101
ES with Specify-version suffix: specify particular wswn 37
EBS, EBFS combinations

F orFO Filter file names with wild-card specs 64
L orLO Listversions 41

M or MO Migrate changes 178
MF with Fast suffix, to quietly skip already-migratiigs 178

MS, MSSwith Specify-version suffix(es): specify “to” and/thase” 185
MFS, MFSS with both Fast and Specify-version suffix(es)

N orNO New library create 24
NF with Fast suffix, to quietly skip existing librase 31
NK with Keep-checked-out/check-out suffix, to keepkledt 101
NS with Specify-version suffix: specify starting veogi 239
NFK, NFS, NFKS combinations

QorQ0 Quit

R Reclassify/share-file

SorS0 Create a “snapshot” version label 92
SS with Specify-version suffix: specify particular wéon 92

T orTO Test check-in/out lock status 102
U orU0 Update library with new version, check-in/unlock 32
UB with create-Branch suffix: make a “.1” version 70
ub with Discard-change suffix: just break lock, no af 101
UF with Fast/Freshen suffix: only update newer files 40

20

command

page
UK with Keep-checked-out suffix: update and keep locke 101
UM with Minor suffix: update & increment minor version 74
us with Specify-version suffix: specify particular wn 69

UBK, UBF, UBFK, UKM, UKS, UFK, UFM, UFKM combina-
tions

21

Alphabetical Command & Suffix Summary

Command Suffixesallowed Purpose Page
A D,F,P,S,UX, WCA/T] Add/Alter project level 168
C P.W Configure 252
E B,F,R,S, wdL] Extract source file 35
F Filter files 64
L wdL] List versions 41
M F.S, wdl] Migrate changes 178
N F.K,S, wdw] New library 24
Q Quit
S S, wdL] Snapshot version label 92
T wdC] Test lock status 102
u D,F.K,M,S, wdw] Update library 32
? Help

Note #1: The order in which suffix characters are specified does radt m
ter (except in thecoMmMANDSONfiguration parameter). Thus, for example,
“EBS’ and “ESB’ are equivalent (both meaBxtract Specified version in
Browse mode).

Note #2: “wdx] " means wild-card search-mode suffixes are allowed,
and that the default wild-card search-mode suffix x8. " The possible
wild-card search modes are;, C, L, O, T, W alsol (include subdirecto-
ries), andN (no wild-card expansion). (Wild-card search modes affeet t
way that TLIB interprets wild-card file specificafis; see p. 59)

22

Alphabetical Suffix Summary

Suffix Type Commands

0 null all
wildcard At,E,L,N,S,T,U,M
regular E
wildcard A,E,L,N,S,Tt,U,M
regular A
regular U
regular AE,N,U
wildcard A,E,L,N,S,T,UM
regular N,U

wildcard A,Et,L1,N,St,T,U,Mt

A

B

C

D

D

F

|

K

L

M regular U

N wildcard A,E,L,N,S,T,U,M
O wildcard AE,L,N,S, T, UM
P regular A

P regular C

R regular E

S regular AE,N,UM

T wildcard At,E,LN,S,T,UM
U regular A

W regular C

W wildcard A,E,L,Nt,S,T,Ut,M
X regular A

Meaning
does nothing

searchAll levels

Browse mode (don't lock)
search alChecked-out files
Delete from project level
Discard changes (unlock)
Fast/freshen

Include subdirectories
Keep checked-out/locked
search_ibrary files

Minor version no. increment
No wild-card expansion
searchOwn checked-out files
Promote

Path of library/lock files
Reserve (just lock, no extract)
Specify version number
searchr his project level
Undo (unimplemented)
Who are you (ID)

search regulawork files
eXclude from project level

t indicates that this wild-card search mode suffix is the diffor the

indicated command.

t indicates that whether or not this wild-card search modéxsisf the
default for the indicated command depends upon which regulixes

are used.

23

N Command: create New library

The command-line version of the main TLIB progranmisB.EXE . It is
actually a copy of one of several command-line versionss32C.EXE
(for Win32), TLIBDOS.EXE (for real-mode DOS)TLIBX.EXE (for DOS-ex-
tended protected-mode, otiB2.EXE (for OS/2). To run it in interactive
mode, type the program name, e.g.:

TLIB

The GUI versions of TLIB are callednTLIB32.EXE (Win32) and
WTLIB16.EXE (16-bit Windows, a/k/a Win 3.1x & Win-OS/2), but you
don't need to remember that because they are usually staat&dart Pro-
grams menu shortcuts.

Note: The examples in this reference manual all show the 2ViridB
GUI, but the 16-bit GUI is similar.

In the TLIB Windows GUI, commands are performed by firstitigtand
selecting the files to be operated upon, then picking thencand and op-
tions. Command-line versions of TLIB require the oppositedeo of
events: first you specify the command, then you specify illes {typically
via wild-cards and/or file lists).

For both GUI and command-line versions of TLIB, finst thing you must
do to run it (after installing and configuring it) is to sefebe correct “cur-
rent” work directory. In command-line TLIBs, this is donethvithe “cd”
(change directory) DOS command.

In the TLIB GUI, select the current directory vieet‘Current Dir” frame:

EunentDir:lc:\wnlk\.#.cme\ j_l Mu:u:lel

You can click on the “...” button to browse for the desiredediory, or se-
lect a recently used directory by clicking on tlj MRU-dropdown
button, or simply enter the desired directory ia tbxt entry box.

24

(Or, if you click the “Mode” button to switch TLIB into “natie project
mode,” the current directory will be implied by the locatiohthe “native”
compiler or editor project file which you select.)

In the TLIB GUI, the next step is to identify your source filesTLIB. In
native project mode, TLIB deduces them by reading a “profiéet that
was created by your compiler or editor (or a file list or HTMidex file).
In “regular” (file-oriented) mode, you specify yosource files to TLIB via
one or more wildcards and/o@file.lis " filelists:

widcsrd: [*.c.”.h." exe ~| Evpandwidead | Add |

Simply enter the wildcard specifications, separated byrmas) and then
press Enter or click “Expand Wcard.” (The “Add” button is similar to
“Expand Wildcard” except that it adds more files to the existing li$t o
foles.)

Next, select the files to be stored into TLIB, using your n@asd/or the
“Select” buttons on the left side of the screen:

Filename [size | atrin [DatedTime | status [Path | File Typ=
etry 30621 WA 1987-01-19040%52 - File
QMY _DELAY C 4530 WW- 2000-03-021302856 - fl File
@ delay C 975 W- 1990-08-05124442 - File
DELAY EXE 15328 W~ 1993-01-1901.0000 - EXE File
! BODS WW- 2002-02-2814:21:38 - fl H File
@ holdopen o 1586 R 1997-08-19,12.0448 - File
@& Ny _DELAY H 80 R 2002-03-29 03 11:46 - fl H File
ﬁdﬁnvwrﬂ r - nfa A9AEN-NN-0N A0ATNn - T FiIP.. hd

The title bar at the top of the window will change to indicateshmany
files you have selected:

55 TLIE for Windows [2 of 9 files sele 10| =l |

Finally, you are ready to pick the “New libraries” commanal place your
selected source files under version control, storing tst viersion of each
file into a TLIB library file. You can find the eomand two ways:

1) The “New” menu button| =l
Mew

2) “Create_New Library” in the command menu, which you can view ei-
ther by clicking “Command” in the top menu bar, or by typing@| or by
right-clicking anywhere in the main file list:

25

2 TLIB for Windows [2 of 9 files selected] ;IEIEI

File | Command Seleck Search Mode Help

Edit
& openwith... Q [qp == @F’l‘ JQ | |
E _Ellﬁl Add-alt] B-share| Confi @!u Delta ?Help l E xit
Wisual Compare {delta)
Cume List wersion history vl | Mode | [~ EBF ¥ Include SubDis
S Test check-infout lock status This level Wwhork, Dir c:Swork SAcmes
=S - ey e— Al levels ProjLew: DEY
Create Mew Libr ck-in mew)
Wik Update ; checkein v| Espandwideard | Add | Clear | Viewlog |
Extract | check-out
Se | attrib [Daterime | Status | path | File Ty~ |
Spepsiintt @y = i et 01 wa 1997-0119040352 - C File
y Addialer Project Level 0 - 2000-03-02130256 - ft C File
T Migrate (merge) 5 w. 1999.08-051244:42 - CFile
|2 ey oy (fom) shred be V. 1993-01-19,01:00:00 - EXE Fil
= . .
Expand Widcard P f5 w- 2002-022814:21:38 - fl H File
M mun Manual Command 6 R- 1997-05-19,1204:48 - CFile
|G _DECET T R- 2002-03-290311:46 - i H File
TLIB é?denvwrn I - nféa AAANON-NN NENNNN . - ti File T
%: A »

When you pick the “New” command, you'll then see an optiongesa,
like this:

[Create Mew Library File(s) x|

[~ "K" - Heep Checked Out

[~ "S" - Specify Starting Yer#: I _—

Cancel

Note: Hover the mouse cursor over any check-box to see a flatee
scription of its purpose.

Then click “OK” to start storing your source files into TLIB, and TLIB
will give you an opportunity to enter comments abeach source file:

26

= Enter Comment for File: sharetry.c {1 of 2} il

1 sharetry .o 19-Jan-97 04:03:52 "DAVE'
Enter comments:

i |

Histary:

In=spect

Log

(do one file st a time)) Skip Cancel

W Alveays confirm |

The “OK” button is disabled (greyed-out) until you endgecomment.

To store multiple files with the same comment, uncheck thevéys con-
firm” checkbox.

After you've completed the “New libraries” command, andretbyour
source files into TLIB, the main file list will change to shouwpdated
icons, “Attrib” and “Status” for each file:

Fileriame | size | attrio | DaterTime | status | pat
&= sharetry 0621 K- 1997-01-19,040552 0

Command-line TLIB

When you run a command-line version of TLIB in interactivedadi.e.,
without parameters), you will be presented with a prompt @nm The
appearance depends on how TLIB is configured, but one pbigsiboks
something like this:

27

TLIB Version Control

U=Update library
E=Extract source UM=increment Minor#
EB=for Browse US=Specify branch#
ES=Specify version# UK=Keep locked
ER=Reserveljust-lock UD=Discard/no-update
EBS=Browse+Specify# UKM,UKS=combinations
N,NF=New library L=List T=Test Q=quit
A=Add-to/Alter projlev AP=Promote ?=help
C=Configure CW=Who CP=Path of library W=J

Note that this prompt migiot give a complete list of TLIB's commands.
Instead, it shows those commands which you are likely to neased on
your answers to the questions asked by the Configuratiomi¥iar TLIB-
CONF. Another possible prompt is simply:

TLIB command (? for help):

Note: If you don't like the prompt which the Configuration Wizard o
TLIBCONF configured for your use, you can easily customize prompt
(and other aspects of command-line TLIB's user interfa@9e the
PROMPT HELP, BANNERand COMMANDSeonNfiguration parameters, pp. 329
& 330.

To create a new library file for an existing source file, typé, for “new
library.” You will be prompted for the name of teeurce file:

Create library from what source file?

You should type the name of the source file which you want dan® a
TLIB library file, then pres€ENTER(or RETURNON some keyboards). Multi-
ple files can be specified with wild-cards or fis; see p. 50.

If you entered xxx.PAs (for a Pascal program namexxX), TLIB will at-
tempt to read the file and then create a library file calleérifpps)
XXX.P$S. If XXX.PAS does not exist, or ifxxX.P$s already exists, then
TLIB will display an error message and return to the main mediher-
wise, TLIB will prompt you for a comment:

Comment line?
The comment line is your description of the sodilee which you will use

to identify this version if you ever need to retrieve it frohetlibrary file.
For example, you might enter a comment like this:

28

A program to count widgets

If you presseNTERwithout typing a comment line, TLIB will return to the
main menu without creating the library file. If you want totena blank

comment line (not good practice!), you can type a space bgiogssing
ENTER

If your comment will not fit on a single line, end the first &rwith a back-

slash () character, and TLIB will prompt you for another commentlin
You can repeat this with successive comment lines to entamemnts of

any length. (Note: If you frequently enter multi-line commt® you may

wish to configure TLIB with the SlashCont M " parameter, so that you
will not have to enter backslashes when typing multi-linenozents; see p.
285.)

If, after entering one or more comment lines, you change yoind, you
can abort TLIB by pressing Ctrl-Break.

After you enter your comment line(s), the library file (¢.gxx.P$S) will
be created with your comments and wixx.PAS's creation date associat-
ed with the first version. (Note: other information, suchtlas date/time,
user ID, etc., is also usually stored in the library file; sleguser , p.
266.)

MS-DOS usersWe recommend that you use CED, RETRIEVE, DOSED-
IT, or a similar utility to enhance DOS's line editing. Theserk better
than DOS's inferior DOSKEY utility, since DOSKEY doesn'ekea sepa-
rate command history for applications (though DOSKEY istdrethan
nothing). It will be helpful for both TLIB comment lines and@% com-
mand lines. (However, CED has compatibility problems wité DOS box
under some versions of Windows.) See p. 365.

Note: you needn't use the N command at all if you configureDATENEW
Y, since TLIB will then create a missing library file autonzatly, when

you try to to store the first version of your source file witietU (update)
command.

Avoiding the prompt

Important note:To avoid being prompted for a comment for each of your
files, you can run TLIB with command-line parametdike this:

29

TLIB N *.C,*.H short comment
This example creates new libraries for all your and .H files, each with

the comment, short comment ”, and it won't prompt you for comments
for each file (unlesSLASHCONT Nis configured, see p. 285).

30

NF command:
Fast New library create

TLIB also supports the F (fast/freshen) suffix on the N comthal'he on-
ly difference between the NF command and the regular N cordrisathat
the NF command will not complain about already-existingdity files; it
just silently skips them.

In the TLIB GUI, you can select F (fast/fresherg gicheckbox:

&g Create New Library File{s) x|

[~ "S" - Specify Starting Yer#: I _—

Cancel

The NF command makes it more convenient to use wild-cardsetate li-
brary files for new source files (especially when you dordnfitgure
UPDATENEW)Y For example, a dBase programmer who had created some
new source files could type one of the followingrenands:

TLIB NF *.PRG
TLIB NF *.PRG Modules added in rel2

Both commands will create the TLIB library files for all .PRiites for
which the library files did not already exist. The first exalm will cause
TLIB to prompt for the comment for each file. The second ex&mvaill

just use “Modules added in rel2” as the comment, and woninptgqun-
leSSSLASHCONT Nis configured, see p. 285).

31

U command: Update a library

After you make a change to your source file, you can updat&'thB li-
brary and store (“check-in") the new version by selectingptidte” in the
TLIB GUI, or by running command-line TLIB and pressing U (for
Update).

If using the TLIB GUI, first select the file(s) that you ward store, then
pick the “Update / check-in” command. You can find the comthamo
ways:

1) The “Update” menu buttor]_lﬁ;EI tI
= |

2) “Update / check-in” in the command menu, which you can vieweeith
by clicking “Command” in the top menu bar, or by typing alt-@, by
right-clicking anywhere in the main file list:

Edit
Cpen With. ..

Wisual Compare {delta)
List wersion history
Test check-infout lock stakus

Create Mew Library (check-in new)

Update § check-in

Extract f check-out

Snapshot o file list creation
Addfalker Project Level
Migrate {merge)

Reclassify as {or from) shared

Expand ‘Wildzard FS
Fun Manwal Command

After you pick the Update command, TLIB displaysagtions screen:
x|

[~ "D" - Discard Lock: [dont store] Help |

[~ "F" - FastFreshen

[~ "K"- Keep Checked Out

[~ “M" - Increment Minor Yersion

[~ "s"_ Specify Yersion & I—
[~ "B"- Store &= newv Branch Cancel |

32

Note: Hover the mouse cursor over any check-box to see a lahge
scription of its purpose.

Then click “OK” to start storing your source files into TLIB, and TLIB
will give you an opportunity to enter comments ab@ach source file:

When doing an U (update) command with a command-line version
TLIB, as with the N command you will be prompted for the filenma, but
this time TLIB expects both the source file and the TLIB lityréile to al-
ready exist (or you can configure TLIB to automatically deeanissing
library files, see theuUpdateNew parameter, p. 276). TLIB will prompt
you:

Update library for what source file?

You should enter the name of the source file.

TLIB will then read both library and source files. If the lateversion in
the library file is identical to the source filel.IB will normally display:

No changes.

(However, TLIB can be configured to add a new version everhéfre
were no changes; see theceU configuration parameter, p. 275.)

Otherwise, you will be prompted for a comment to be assodiafi¢h the
new version:

Comment line?
You might enter, for example:
Faster version -- do 1/O in big blocks.
or perhaps:
Fix bug so it'll handle >32767 widgets

If you presseENTERwithout typing a comment line, TLIB will return to the
main menu (or skip this file and go on to the next one) withgudating

33

the library. (Note: in general, pressiBNTERat any TLIB prompt will
abort the operation.)

If your comment will not fit on a single line, end the first &rwith a back-
slash (\) character, and TLIB will prompt you for another coemt line.
You can repeat this with successive comment lines to ent@nemts of
any length.

If, after entering one or more comment lines, you change yond, you
can abort TLIB by pressing Ctrl-Break; TLIB will exit leawgthe library
file unchanged. Or (unless you've configurgthshCont M Or SlashCont
N) you can abort the update by entering a O-lengthreent line.

Otherwise, TLIB will add the new version to the library filescording the
date and your comments.

Delta Review

If you want to see the “delta” (changes) before entering yymmments in
command-line TLIB, enter?” and TLIB will display the changes on your
screen. This can help remind you of why you modified the medsb that
you can enter meaningful comments. We call thitufealelta review

After displaying the delta, TLIB returns to thecinment line? " prompt.
The delta format is described on pages 228 and 371.

Note: The Windows version of TLIB has a vastly better Visuain@pare,
instead of Delta Review.

Safety

The U command (and the various multi-character commandtsnsfavith
U) are the only TLIB commands which modify an existing lilyrdile.
They merely append the delta to the end of the library fildhaiit chang-
ing any of the information which is already there. Thus yoe @anlikely to
lose any data, even if the electricity fails while you arendpan update.
Nevertheless, we recommend that you back up your libragg fitequent-
ly, “justin case.”

34

E command: extract latest version

To retrieve a copy of the latest version of your source fitaxfra library
file, use the E (extract) command. You will be prompted fag ttame of
the file which you wish to retrieve:

Extract what source file from library?

If you want to extractxxx.PAs from its TLIB library (which is most often
named XXX.P$S), enter XXX.PAS. If xXX.p$s does not exist, TLIB dis-
plays an error message. ¥xx.PAs already exists in the current directory,
you will be asked whether to replace it with the version frdrae tibrary.
(However, TLIB can also be configured to silently replaceatly-existing
files, or to abort without operator confirmation; see tREPLACEparame-
ter, p. 268.)

You can do the same thing non-interactively, by putting tbemand and
file name on the DOS command line. For example:

TLIB E XXX.PAS (extractsxxx.pas into the current directory)

TLIB E SUBD\XXX.PAS (extractsxxx.pas into subdirectory\subd)

TLIB lets you specify as little or as much as you wish at eaelp s8o, for
example, you could run TLIB like this:

TLIBE
and TLIB would prompt you for the file name to exdt.
Or, if you run TLIB in interactive mode:

TLIB

then when TLIB asks you for a command, you could tygeXXxX.PAS’ to
avoid being prompted for the file name.

By default, TLIB libraries are in “text format,” which mearisat they are
designed for storage of ASCII text files, not arbitrary “aig files.” An
ASCII source file extracted from a text-format (normal) BLlibrary is
identical to the latest version which was saveth@library except that:

35

1) All lines, including the last one, will end in carriagetwe/line-feed.
For input files, TLIB allows lines to end in either carriaggurn/line-feed
or just a carriage-return alone (except for the last linehia file, which
needn't have either). That is, the line-feeds are optidAalvever, when
TLIB reconstructs the filegll lines will end in carriage-return/line-feed.

2) TLIB will not put a Ctrl-Z at the end of the file unless yourdgure
AddCtrizY (see p. 276).

In addition, if you enable TLIB's automatic tab/blank andrik/tab con-
versions (seentabU anddetabE , p. 256), then:

3) Tabs will have been converted to blanks.

4) Any lines with trailing blanks (blanks immediately prelieg the car-
riage-return) will have the trailing blanks removed

5) Lines of more than 254 characters long may be truncateglior ELIB
cannot do blank/tab conversions in files with extedy long lines.

It is also possible to store “binary” source files in TLIB fidyies. With bi-

nary format libraries, TLIB will never makany changes to your files. Use
the FileType Binary configuration parameter if you need to store non-
text files in TLIB libraries; see p. 294.

36

ES command: extract Specified (old) version

To retrieve an old version of your source file frarfibrary file, use the ES
(extract specified version) command. This is an example“cbanposite”
TLIB command; that is, a basic command (“E”) with one or moudfis
characters appended (“S”, for “specify version”).

After typing the ES command, you will be prompted for the naoshé¢he
file you wish to retrieve, just as with the plain E commandydii want to
extract XXX.PAS from XxX.P$S, you would enterxxX.pAs. (However, if
you wished to avoid a name conflict with the current versibnxaX.PAS,
you could specify another extension, likexx.p2s, so long as the exten-
sion you specify still “maps to” the right librafife name xxx.pss).

If XXX.PAS already exists, or ifxxX.p$s does not exist, TLIB will display
an error message. Otherwise, TLIB will list the dates and roemt lines
for all the versions afxx.PAs which are in the library, so that you can se-
lect the one you want. Each version's date and comment litlebei
displayed preceded by a version number (the first is usuadtgion 1),
and you will be asked to choose a version:

What version number do you wish to extract ([Enter] for none
)?

Type a version number and pre=sTER TLIB will re-create the specified
version of xxx.PAs from the library. As a convenience, you can usé “
(asterisk) to refer to the most recent “trunk” (normal deyshent path)
version, or *-1 ” to refer to the next-most-recent.

If you change your mind and decide not to extract a sourcejtik press
ENTERalone, without a version number, and TLIB will return to thaim
menu without creating the source file.

(Note: Trunk version numbers are the usual, integem(@jor:minor pair)

version numbers. However, TLIB also allows more complexsigar num-
bers. For details, see p. 73, and the discussitnaofching on p. 68)

Examples:

37

TLIB ES XXX.PAS 3 (extract versiorB of xxx.pas to current directory)
TLIB ES XXX.PAS * (‘extract latest trunkxx.pas into current directory)

TLIB ES SUB\XXX.PAS * (extract latest trunkxx.pas into directory.\sub)

If you have a “version label” file (a.k.a., “snapshot”) thgou can specify
the version number asdilenamé, and TLIB will read filenameto deter-
mine the version number. (If this makes no sense, don't wabgut it
now; version-label/snapshot files will be explairatr.)

Example:

TLIB ES XXX.PAS @beta.lis (extract recorded version ofxx.pa 9

You can also retrieve by date & time, instead of version nunabe&ersion
label file. Simply specify the date and/or time (in TLIB'sua$ date/time
syntax) instead of specifying the version number, and TLIB mtrieve

the version which was current at the specified time. Foridesee p. 241.
(Note: TLIB assumes - but does not check! - that the versioas@red in
the library in chronological order).

If you already know what version you want, and you don't wardee the
list of versions, you can specify the version on the samevihen you en-
ter the file name (just separate them with a blank, as you dvoul the
DOS command line).

38

Command Line Parameters and
Batch Files

TLIB is easiest to run interactively, using the GUI intea¢iowever, you
can also run command-line versions of TLIB with DOS command pa-
rameters. Almost anything which you can do interactively gan also do
using command line parameters. This allows you to build D&% files
(or OS/2.cmd files) containing TLIB commands.

The rule is that the commands and additional arguments neuspécified
on the DOS command line in the order that you would have editidrem,
had you run the command-line version of TLIB interactivefyyou speci-
fy only some of the required commands and arguments, theB Till
“lead you through” the rest, with prompts. For exdan if you entered:

TLIB N MYFILE.PAS This is my program

then a new library file would be created, probably calledrFILE.P$s , and
the first version would be headed by the commértijs'is my program”.
However, if you had entered:

TLIB N MYFILE.PAS

then MYFILE.P$S would be created as before, but you would be prompted
to enter the comment line from the keyboard. If you want to ddNeor U
command without a meaningful comment (not recommended), gan
specify a one-character comment line, like this:

TLIB N MYFILE x

To retrieve an old version without being prompted for thesier number,
simply specify it on the command line. For example:

TLIB ES CALC.C 23

Note that you can put as many commands on the command lindldg,wi
except that no additional commands can appear after a cothmhith
creates or modifies the library (N or U), since the additloc@mmands
would be misinterpreted as the new revision's contrie.

39

UF command: Fast Update

The UF command (the U command with the “F” fast/freshen slfi
similar to the U command except that it will nodaype a library file unless
the library file is older than the source file. This amoumtstimited built-
in MAKE facility. It is especially useful when you are updagi a large
number of source files through the use of wild-savdfile lists.

Note: the UF command is intended for use when check-in/out locksng
disabled; that is, for a single programmer working alone. &eimilar fa-
cility that is more appropriate for group projects, use th@ (Lpdate
owned files) command.

For example, if you had modified several of theAs” (Pascal language)
source files in the current directory, you could quickly azasily add all
the changes to the corresponding TLIB libraries titis:

TLIB UF *.PAS
Note that the UF command, like MAKE, depends upon accurate alad
time stamps. If your computer does not have a reliable red tilock, you

must either set the date and time religiously every time yart gour com-
puter, or else not use the UF command.

40

L command: List versions

If you wish to see a list of the source file versions contaiired library
file, you can use the L (list) command. The list is displayedhie same
format as for the ES (extract specified version) commandgcideed on
page 37.

The list output can be thought of as an audit trail for the ttgwment pro-
cess, since it documents every change made to the sourceatodg with
when the change was made, and (optionally) who madédte TLIB's
appending journal provides another kind of audil fiacility; see p. 190.)

After you enter the L command, you will be prompted for the eawhthe
source file for which you wish to list the versions

List versions of what source file?

If the library file does not exist, TLIB will dispy an error message and re-
turn to the main menu. Otherwise, it will display the file randate, and
comments for each version in the library. If there are too ynasrsions to
fit on the screen at the same time, TLIB will pause after eacben full to
give you time to read it (but only in interactive mode, not dfuyspecified
“L filenamé& on the DOS command line).

To print the list of versions (revision history), or saverita file, you can
use command line parameters and DOS file redinecliice this:

TLIB L XXX >PRN
TLIB L XXX >XXX.LST

You can use wild-cards and file lists to easily print a moelwyemodule
report of the revision history for several modules or evea #ntire
project; see p. 50.

41

CP command: override library Path

You can, if you wish, keep your library files in the same distedtory as
your source files. More often, however, library files arerstl in a differ-
ent hard disk directory, or perhaps on a network file servemoa diskette
in a different drive.

TLIB provides the PATH configuration parameter for this situation: it al-
lows you to specify the path (drive and/or subdirectory, SUNC” path)
in which your library files reside. See p. 257 d@tails.

Sometimes, however, you may wish to override theTH configuration
parameter and force TLIB to look in a different place for thuedry file(s).
For this, TLIB provides the CP (configure librargth) command.

For example, if your source file is in the current directory p:, and your
library files are on a diskette in drive: , you could give the CP command
and enter B:\ " when TLIB asks you for the library file's path.

Like all TLIB commands, the CP command can also be specifiethe
DOS command line. For example, to update the library fileBarwith the
latest verson ab:MYFILE.TXT , you could type:

TLIB CP B:\ U D:MYFILE.TXT

This makes it simple to prepare a tiny batch file to do the CRmand
each time you run TLIB. For instance, you might use a bateh ddlled
BLIB when your TLIB libraries are on tige drive:

REM blib.bat: batch file to run TLIB

REM with libraries on the B: drive
TLIB CP B:\ %1 %2 %3 %4 %5 %6 %7 %8 %9

Then to update the library file orB: with the latest verson ofD:MY-
FILE.TXT , you could type:

BLIB U D:MYFILE.TXT

The CP command can also be used to specify the completeyifilar
name, rather than allowing the library file name to be deteeah by the
name of the source file. The file name must contain (or befedid by) a

42

." (period), since this is how TLIB distinguishes the fileame from the
name of a directory.

This form of the CP command is seldom used, since it requirasytou
use a separate CP command for each library file. You will gahefind it

easier to let TLIB determine the library file name from theus® file

name, instead of using this form of the CP command. Nevartiselhere
are a couple of examples:

TLIB CP MYLIB.XYZ
(The library file ismYLIB.XYZ , in the same directory as the source file.)
TLIB CP C:\LIBS\MYLIB.

(The library file ismYLIB (with no extension), in directogs\LIBS .)

The CP command accepts exactly the same path ispdicifs as theATH
configuration parameter, including several rather obseariants. For in-
stance, you can specify a list of directories for TLIB to skaror you can
force TLIB to store “lock files” (when check-infout locking enabled) in
a different place from its library files. For an in-depthamment, refer to
thePATH configuration parameter, p. 257.

43

Text File Formats

Tabs

If you use the default configuration parameters, TLIB carrecognize the
equivalence of tabs and blanks. That is, tab and blank arsidenmred to be
two different distinct characters.

However, if you configureDETABE Mand ENTABU Y then tab characters
are equivalent to the appropriate humber of blanks (withstaps as-

sumed at columns 9, 17, 25, 33, etc.). This allthedibrary file to be kept
as small as possible by converting multiple blanks to tabiseiVa source
file is extracted from its library file, the tabs are coneettback to blanks.

For details, see below and p. 255.

If you wish to convert sequences of multiple blanks into fadrsexpand
tabs into multiple blanks, you can use the TABS utility. TABSncluded
with TLIB. Like TLIB, it was carefully written to be very fastHowever,
at this writing it only supports “8.3” (short) filekames.

To shrink a file by replacing multiple blanks witkbs, do:
TABS IN oldfile newfile

To reverse the process, that is, replace tabshlaiks, do:
TABS OUT oldfile newfile

You can also convert 4-space tabs to blanks (bixine-versa):
TABS OUT4 oldfile newfile

Do not try to run TABS with the same file as batpuit and output.

Note that you can use wild-cards (asterisks) in both inpdt @umput file-
names. For example:

TABS IN *.c *.new

44

Configuring blank/tab treatment

Some TLIB users need to configure TLIB for automatic tabiklaonver-
sions, but most do not.

TLIB's tab/blank conversion algorithms are the same asetlused by the
DOS TYPE and PRINT commands (i.e., tab stops at columns 9, 17, 25,
etc.). So, one way to decide whether you need tab/blank ecsioves is to
use the DOSYPE orPRINT command to display a few of your files.

In general, if your files look right when displayed with thevPE and
PRINT commands, then you can probably enable tab/blank convessio
but if:

the indentation is wrong,

or if the lines are broken in the wrong places,

or if columns don't line up correctly,

then you probably shoulabt enable TLIB's tab/blank conversions.
More specifically:

1) If you use an editor (like IBM's oldPersonal Editor [) which silently
converts between blanks and tabs, y&hould enable TLIB's tab/blank
conversions. Otherwise, if your editor changes lkdan tabs or vice-versa,
then when you add the new version to your TLIB library file, IBLwill
think that almost every line has changed (so the “delta” dddeyour li-
brary file will be huge).

2) If you use an editor which lets you choose the positionshenline at
which your tab stops will fall, and does not convert the tabdblanks
when you save the file, and you use non-standard tab stogs 8eor 4
spaces per tab), then you musit enable TLIB's tab/blank conversions.
The popularMultiEdit editor from American Cybernetics can be config-
ured like this; so can most word processors. HowehleiritiEdit can also
be configured to convert tabs into spaces; if you MaétiEdit like this,
then youcanenable TLIB's tab/blank conversions.

3) If you use TLIB to manage files containing more than 254rabgers
per line, then you mushot enable TLIB's tab/blank conversions. TLIB
cannot properly convert between tabs and blanks in file<hvisbntain
lines of more than 254 characters.

45

Lines that long most commonly occur in word processing dasnisy such
as “Rich Text” files, and files produced byyWrite IlI+. XyWrite (and

some other word processors) use Carriage Return / Line Feddlimit

paragraphs instead of lines; this results in “lines” (neglaragraphs)
which often exceed 254 characters.

Note: Many word processors, such #ordPerfectand Microsoft Word
use speciabinary formats to store documents. To handle these files with
TLIB, you must configure EileType Runlen ” Or “FileType Binary "

(or “FileType Auto), and TLIB will ignore the ENTABUand DETABE
settings.

Note: The StarOfficeand OpenOfficeword processors are special cases.
Their document files .§¢xw , etc.) are actually compressed (“zipped”)
archives. To store one of these files under TLIB, we recomthrtbat you
first rebuild the.sxw archive with decompressed (“stored”) xml compo-
nents. Please contact support@burtonsys.com if you neatth cript to
simplify this.

4) If you are using TLIB to manage files whighustcontain tab charac-
ters, then daot enable TLIB's tab/blank conversions. For example, a few
MAKE utilities require that certain lines in your “makefildegin with a
tab character. (Note: Opus Make does not havedhisirement.)

To enable tab/blank conversions, add the following to thd ehyour
TLIB configuration file (probably TLIB.CFG), or change theENTABUpa-
rameter configured by TLIBCONF or the TLIB Configtion Wizard:

ENTABU Y
DETABE M

To configure varying tab treatments for different sourdesfi or to indi-
cate that some source files need to be stored in binary foyroatcan use
TLIB's IF andeENDIF parameters, as in the following example:

DETABE M

ENTABU N

IF * ASM
REM - Do tab/blank conversions only on assemble r files
ENTABU Y

ENDIF

IF * WK**.LIB
REM - Spreadsheets and .lib files are not ASCII text
FILETYPE BINARY

ENDIF

46

End-of-file markers

DOS had two ways of marking the end of a text file. The first moek
simply set the file's length to be the total number of chamacin the file.
The second way was similar, except that there was one exaracter ap-
pended to the end: a Ctrl-Z (ASCII code 26).

The us of a CtrlZ as an end-of-file indicator is largely olege| but TLIB
will accept either format as input. However, all text filegated by TLIB
use the first format: there will not be a Ctrl-Z at the end és3l you con-
figure ADDCTRLZ Y, see p. 276).

a7

Managing Multiple Source Files

Most programs are built from a large number of source codss filThis
leads to several common questions.

The first question for developers using many source fileshisw can |
conveniently do an operation on a whole set of source fil&8®1 ver-
sions of TLIB let you do this by selecting thee§ilin a “pick list” window.
Plus, both GUI and command-line versions of TLIB supporidvwdbrds
and file lists.

Wild-cards and file lists can be used in any command wherespmgify
the name of a source file, e.g., the U (update), E (extractheW library),
and L (list) commands.

An example of the use of wild-cards in a U (updatanmand is:

TLIB U *AWK*.C

TLIB would do a U (update) command on every file in the current di-
rectory whose names containWg, for example, MYAWKS.C AWKFILE.C,
etc..

File lists are used similarly:
TLIB U @myfiles.lis

TLIB would do a U (update) command for every file with a nanmsdd
(one file name per line) in the text filayfiles.lis

Another question to consider is, “how can | be sure that I'pdated all
the relevant library files” after revising a group of sourides? If you
work alone (and so you do not need to use check-in/out logkiray can
just use wild-cards with the U (update) commarid this:

TLIB U *.c,*.h

LIB will say “no changes ” for each unchanged source file, and prompt

you for a comment line for each modified source file. If yountveo skip a

48

file, without doing the Update, just preEsiITERwithout typing a comment
line.

You can speed up this process by telling TLIB to skip sourtes fihat are
older than the corresponding libraries, by using the F fffasthen) suffix,
like this:

TLIB UF *.C,*.H

This is a very fast and simple way to add all of your latest ¢jesnto the
library files; see also p. 40.

In a networked development environment, with check-inlogking en-
abled, LOCKING Y(to coordinate multiple programmers), you can do much
the same thing, but you would use tlhe (UpdateOwned files) command
instead of the UF command. (The “O” in “UO” is the letter O, for
“owned,” not the numeral 0.) The O (owned) suffix limits theope of the
update command to just those files that you have checketboked. O
(owned) is a wild-card search mode suffix; for more aboutlvweiards and
search modes see pp. 50 and 59.

A third problem for developers is, “How can | easily retriexparticular
versionof each of a set of related source files?” This is known as Wee-*
sion labeling” problem. TLIB solves it with the S (“snapshatommand,
for labeling the set of modules and versions in a particuidtgase; see p.
92. (Note: the S command replaces the BIABSNAP program which
was included with TLIB 4.12.)

Additionally, if you need to manage multiple actively-clgarg versions of
a single program, you can use TLIB&&med Project Level$-or example,
you may be supporting one or more old releases of a softwaupt as
you develop the next release. Or, you may be managing “sestom”
software, in which you have one standard version and manypcized
variants of it, all of which must be continually maintainddersion track-
ing and named project levels are described stasting. .

49

Wild-cards and File Lists

Wild-cards can be used in any command where you specify tirerd a
source file, e.g., the U (update), E (extract), N (new ligyaand L (list)
commands.

An example of wild-cards in an E (extract) command
TLIB E *AWK*.C

TLIB would extract the current version from eactttod libraries.

Note that you can use as many asterisks and/or question raarksu
wish. Additionally, TLIB supports six different wild-cartsearch modes”
to select files in various ways; see p. 59.

Or, you can use a file list. File lists are very simple. Theg asually just
ASCII text files containing file names, one per line. Filstdi are used sim-
ilarly to wild-cards. For example, if you had a file calledYSTUFF.LIS
containing the lines:

MYFILE.C
MYJUNK.C

then this command would update the library filestoth files:

TLIB U @MYSTUFF.LIS

You could also do:
TLIB E @MYSTUFF.LIS

to extractMYFILE.C andMYJUNK.C.

The GUI versions of TLIB can create file lists for you if youeuthe “Plain
File List” option of the Snapshot command. Additionally, IBls LIST-
BLD utility can build file lists automatically by scanning your source

50

code for “include” references to other modules, and by caoinigiand ma-
nipulating other file lists; see p. 203.

LISTBLD can build file lists for many languages, but not fd@ase. How-
ever, dBFind a dBase syntax checker from Sigma Six (formerly The
Software Development Factory) has this capability. dBFéad automati-
cally generate TLIB-compatible file lists, by analyzing ad® or Clipper
source code. Sigma Six is at P.O. Box 1106-B, Hunt Valley, MID3D,
Tel: 410-666-8129, http:/www.sigmasix.com/. (Tell Stéadnson we said
hello.)

For compatibility withCrossRef(Qa C cross-referencer tool) from Sigma
Six, we allow an optional trailing “+” after each file name, the end of
each line in a file list; however, it is not recpdr

You can also put version number specifications in your figgs| if you
wish. Such file lists can be used as “version labels” to réashich ver-
sions of each of a collection of files go together. Howeversion label
files are rarely created manually. Instead, you'll propalde TLIB's S
(snapshot) command to create version labels; s@2.p.

You can put comments in your file lists. Simply precede eaaimment
line with an exclamation point and blank or two exclamatiamps (1 ”
or “I' ") in the leftmost two columns.

If you have files with names that begin with “I'”, you can ltfiem in your
file lists with an explicit directory specifictiofike this:

YOURJUNK.C
MIMYJUNK.C

Restrictions

There are several restrictions on the use of wild-cards dedidts with
TLIB. They are:

o You cannot use wild-cards to specify multiple file lists.aflis, you can-
not use specifications like*.lis

51

o File lists can be nested, but only up to 3 levels deep. Thétadjsts can
contain specifications lik@ name.ext .

o When used in most contexts, file lists can contain wild-cspécifica-
tions. That is, file lists can contain specifications like and *.asm .
(Exception: you can't do this with branch version speciftss. If this
makes no sense, don't worry. Branch versions wiltdvered later.)

o Some versions of TLIB have limited support for maintaininglg li-
brary files within PKZIP-archives. However, TLIB does ndiba the use
of wild-cards with archived (PKZIPed) library files. Yourcase file lists
with archived library files, if the file list does not contawild-card speci-
fications.

DOS errorlevels

When processing a single file, command line versions of TteBirn a
DOS errorlevel of zero for success or non-zero for failunecept that
there are special rules for the T (test lock sjatosamand.

When processing multiple files (via wild-cards and/or fikts), command
line versions of TLIB return an errorlevel which is the maxim of the er-
rorlevels which would have been reported for any of the iidiial files,

had such a file been processed by itself (without wild-cartikis has the
effect of ensuring that if an error occurred for any of thegassed files
(and the error was severe enough to have caused a non-zerdexel),

then the errorlevel will be non-zero.

TLIB for Windows shows the errorlevel result for each filethe status
column in the main window.

52

Comma-Delimited Lists of Files

TLIB also supports “in-line” comma-delimited file lists.hat is, you can
do commands like:

TLIB uf *.c,*.h Fix PTR no. 8/159

Important: donotinclude any blanks in the list of file specifications. The
following will notwork:

TLIB uf *.c, *.h This won't work!

the comment is*h This won't work! “ The problem is that *h " is
part of the comment.

You can even includegfile.lis references within an in-line file list, and
vice-versa:

TLIB uf @filel.lis,@file2.lis This is a comment

Even if you specify a file multiple times, it will only be pressed once.
When processing multiple files, TLIB first expands the wddrd specifi-

cations and file lists into a single internal list of filesnda eliminates
duplicates, to avoid processing any file twice. This me@ranworks

when using both wild-cards and file lists (both kinds: filmmntaining file

names, and in-line comma-delimited lists).

This is convenient when using file lists that contain wikkds, which
might otherwise specify the same files multiple times infetént ways.
For example, the filemyprog.c is specified twice in the following com-
mand, but will only be processed once:

TLIB u *.c,*.h,myprog.* Fix PTR no. 8/159

This also avoids idiosyncratic behavior when extractihesfonto a Novell
Netware drive using wild-cards with a search mode that netche ex-
tracted files: earlier versions of TLIB would extract eadte ftwice
because Novell's “find-first/find-next” search implent&tion (unlike

53

DOS's) does not always consider an extracted file to be tine s the file
it replaced, and so it finds the file name twice. (We don'tkvehy it was
only twice, however.)

54

Integration With Other Products

TLIB has a variety of integration features, to make it eastetuse with
other products.

“Native” Project File Support

TLIB has built-in support for the compiler-native projedétes of many
programming languages and other development tools.

To access this feature from within TLIB for Windows, clicketiMode”
toggle button. You can then directly “open” a native-forratoject file”
used by any of ten popular development tools (plus HTML ahtimbweb
site files), instead of using wild-cards and fiktd to specify source files.

To access this feature from the command-line versions oBTtdference
the compiler's project file as if it were a TLIB file list, egpt that you
should specify @@(two @s) before the name of the project file. For ex-
ample, you could store all the source files in a VB 5.0 progreatted
myproj With this command:

tlib nf @ @myproj.vbp

Currently we support Microsoft Visual Basic 3.@mak and VB
4.0/5.0/6.0*vbp projects, Microsoft Developer Studio / VC++ 5.0-6.0
projects and workspaces.ifsP & *Dsw), Borland Delphi projects
(*.dpr), Borland C++ Builder projects*epr), Watcom C/C++ 10.5
project ¢.wpj) and target files*tgt), Symantec Visual Cafe projects
(*prj), and Help Magician Pro*gmp). Also, we support the project
files of three popular programmers' editors: MultiEditPRJ), Visual
SlickEdit ¢.vPJ), and CodeWright *(PJT). Also, we support using a
“main” web site file (typically hdex.html , index.htm , Or index.shtml)
as the project file for a web site (TLIB parses the file andoiak the links
to find the rest of the web site's files).

55

You can also specify a bit-sensitive options value, witlgnare brackets
at the end of the project file name. The bit values supportag by
project file type, but the two most common ones are: Bit 0 @ét'tmeans
that certain kinds of binary files found in the project aréjsgt to version
control; bit 1 set to ‘1’ means that TLIB should scan fginclude direc-
tives so that the list of files deduced includestieader files.

For example, to store the initial version of a Watcom C/C+ejgxt into
TLIB, scanning fortinclude , you could type:

tlib nf @ @myproj.wpj[2]

This feature is not perfect. Some tools have idiosyncrabigsare difficult
to manage, such as “adjustable” include file search algmst and Wat-
com C/C++ include file scanning is necessarilytsshiggish.

For the most part, TLIB's include file searching algorithor f#Vatcom
C/C++ projects mimics that of the Watcom compiéept that:

o TLIB ignores system header files (files referenced with#iude — di-
rective that usesangle brackets> to quote the header file name. (This
is because it is rarely useful to store the sydteader files under TLIB.)

o TLIB honors the-i include directory list(s) that are stored in each target
(tgt) file, except that TLIB ignores any include directoriesttheference
Make macros, such ag®watcom) " or "$[: ".

o TLIB ignores the %{os} INCLUDE% and %INCLUDE%environment vari-
ables.

o Watcom's description of their include search algorithmcejes that the
first place looked is the "current” directory, followed khetdirectory con-
taining the "parent” file (that is, the including file, thélef with the
#include directive), followed by the parent file's parent file's aditory,
etc.. TLIB follows this algorithm exactly, but note that theurrent” direc-
tory in this context is assumed by TLIB to be the directoryt tbentains
the target (gt) file.

We plan to add support for other languages, as well. If youofiite lan-
guage uses project files that are not supported by TLIB,gglefve us a
call (better: send us email teupport@burtonsys.com), and perhaps we
can add support for it.

Using native project files is very convenient in the TLIB favindows
GUI: just click the “Mode” button, and use the “open” dialeguand all

56

the complexity of wild-cards search modes, etc., disagdarcommand-
line versions of TLIB, the lack of a pick-list for selectinghang the files
in a project makes compiler-native project file popt less powerful.

APIs for Integration with Windows Programs

TLIB for Windows is constructed in two parts: with a GUI “froand” us-
er interface, and a DLL “back end” version control engine.e TAPI
(Application Program Interface) with which the GUI frontckecommuni-
cates to the DLL is also available for use by other progranher@ are
both 16-bit and 32-bit versions; the interface specifaatis in TLIBDL-
LH.

The 32-bit GUI version of TLIB for Windows also supports a ‘itakot-
based” interface, which allows other Windows applicatitmeasily inte-
grate with TLIB for Windows via simple mailslot reads and tgs. This is
usually a simpler alternative than calling the baokl DLL API

Additionally, we are in the process of implementing a MiafisSource
Code Control interface DLL,; at this writing, it is partialyorking, but un-
released. Please contact us if you need it.

Add-In for Visual Basic

TLIB for Windows (included in the TLIB Combo Edition) has adts for

Visual Basic 4.0 (32-bit version), 5.0, and (beta) 6.0, tolhmto the VB

IDEs. The Add-In for Visual Basic 5.0, works with the Profiessl, En-

terprise, and Learning Editions of VB 5.0, but nath the control-creation
edition. We also have a beta Add-In for Microsoft Developardi® 6.0

(VC++, etc.)

Plus, TLIB can directly “open” VB 3.0, 4.0, 5.0, and 6.0 prdjdiles, as

described below. (VB.NET project groups will be supportedrs call or
email us if you need this feature.)

57

Borland Delphi and C++ Builder

TLIB can directly “open” Borland Delphi and C++ Builder pedt files, as
described above.

Watcom C/C++

All editions of TLIB include batch scriptssEN_CIL.* and GEN_co.*, for
hooking TLIB into the Watcom IDE. See the flssTcOM.TXTfor details.

Plus, TLIB can directly “open” Watcom C/C++ 10.5 project ataulget
files, as described below.
Microfocus COBOL Workbench

SeeMFCOBOL.ZIP.

Programmers' Editors

The “big three” programmers' editors, MultiEdit, CodeWnrigand

SlickEdit, are all integrated with TLIB. So is Brief. Othefsuch as ED
and The Semware Editor) may also have integration with TlyBhe time

you read this. See the editor's documentationalbBairton tech support if
you need help.

58

Six Different Wild-card Search
Algorithms

TLIB's wild-card searching has been significantly enhand&/ith TLIB
5.50, youalwaysspecify the file names (or wild-card specifications) for
the sourcefiles (instead of for the library files). However, you carsiruct
TLIB to use any of six different wild-card search algorithrbg appending
any of six suffix letters to those TLIB commands which accspirce file
names: N, U, E, L, T, S, A M.

The first six suffixes below are called “search mode suffikén addition,
TLIB supports two special suffixes, N and I

Suffix Meaning
w “Work files” searches the existing normal source filekelthe

DOS “dir ” command would do with the same
wild-card specification.

L “Library” searches for the corresponding librangéil

C “Checked-out” searches for the corresponding lock fileki¢h
normally exist only for files which someone has
checked-out/locked).

0 “Owned files” like “c’, but only those files which you have
checked-out/locked.

T “This project lev” searches for names defined in the arggoject
level (if any). The current project level is selected
via thePROJLEV configuration parameter.

A “All levels” searches for names defined in the current pcoj
level and/or its predecessor level(s), as determined
by the LEVEL configuration parameter for the cur-
rent project level.

N “No search mode” a special suffix used only with explicibQ-wild-
card) specifications, to disable directory look-ups
even ifFINDIFILE Y is configured.

I “Include subdirs” add this suffix to make TLIB scan subdiaies
(if TREEDIRS Y is configured).

59

Note #1: as is probably obvious, the C and O suffixes only wibgou
have locking enabled OCKING Y LOCKING B etc.), and the T and A suf-
fixes only work if you have tracking enabled with named pcojevels
(TRACK Y, PROJLEV hameLEVEL n= name..).

Note #2: the wild-card search mode is of consequence onlnwwhba use
wild-cards to specify your source files, or whenND1FILE Y is config-
ured (sinceFINDIFILE Y causes all file specifications to be interpreted as
if they were wild-cards).

Most of the wild-card search modes can be combined, as wédieryou
specify more than one search mode, TLIB expands the listes for each
search mode, and combines the lists, removing duplicates.| Tinclude
subdirs) suffix can be specified in combination with any lué six search
modes. The N (ho search) suffix can only be spetifiy itself.

In TLIB for Windows, the search mode options are provided bgak
boxes on the main screen.

The search mode suffixes can be specified in combinatioh thi¢ other
command suffixes:

Suffix Meaning Applicable commands
B Browse mode E
D Discard lock U
F Fast/freshen EN,UA
K Keep checked-out N,U
M Minor version number increment U
R Reserve lock E
S Specify version number EN,USM

The order in which suffix characters are specified is ineguential. For
example, EBT and ETB are exactly the same command (browske-iex-
tract, with wild-cards matching the file names listed in tharent project
level).

60

The default search mode depends upon the command:

Command Meaning Default search mode
N New library create w (work files)

U Update library w (work files)

L List versions L (library files)

E Extract source L (library files)

S Snapshot L (library files)

M Migrate L (library files)

T Test lock status ¢ (lock files)

A Add/Alter project level A (all project levels)

AP,AD Promote or Delete T (this project level)

Important note #1The L, C and O search modes are dependent upon the
EXTENSIONconfiguration parameter (p. 254).

Note #2:The TREEDIRS parameter determines whether or not you can use
the | (include subdirs) option. If you've configuretREEDIRS Ythen you
can make TLIB search subdirectories by appending the Ixs(dfi check-

ing the Include Subdirs box in TLIB for Windows).

For example:
TLIB ETl *.c extracts allc files listed in current projlev
TLIBET *.c extracts only thec files for current directory

Note #3:The search mode suffixes may not appear in the prompt and help
screens which are generated by TLIBCONF or the TLIB Confgon
Wizard.

Note #4: Disabling search modes in command-line versionF1ldB:
TLIBCONF (for DOS-only versions of TLIB) and the TLIB Configation
Wizard (for the combo version) normally configure TLIB witil com-
mands and all search modes enabled. Because of the verynlangezer of
different possible TLIB commands which can be built by conitg the
various search mode suffixes and regular suffixes with thsidocom-
mands, we do not to require that you list all the combinatiars
commands and search mode suffixes in TLIER®MMANDsoNfiguration
parameter. Instead, if you list a command without any searcte suffix
in the coMMANDsonNfiguration parameter, then all search mode suffixes
will be allowed for that command. If you wish to allow only piaular
search mode suffixes for a command, you may do that, too, dyuthiat

61

command you must list all the combinations that are to benalth includ-
ing the search modes (specify the suffixes in dpliaal order).

TLIB 5.50's handling of wild-cards is enhanced in the follogr ways
from TLIB 5.00:

0 The | suffix controls whether or not subdirectories arercead (when
TREEDIRS Y is configured).

0 With earlier versions of TLIB, only the T and A search modesrevca-
pable of processing subdirectories, and whether they didrseot was
determined by whether or not you specified a specific dingctNeither of
these statements is now true. All TLIB commands operate arstag) sin-
gle directory, regardless of the search mode(s), unlessagauthe the |
(Include subdirectories) option letter to the TLIB commartal make it
process subdirectories (if you've configur@d@EEDIRS V). This behavior
is now consistent regardless of what search mogle(syse.

o TLIB now fully determines the list of files that a commandIwiperate
upon before it processes the first file. (Earlier versioh3ldB processed
the files as the names were determined.) This means thatiihgwe a lot
of files there may sometimes be a noticable pause beforeirgtefife is
processed, especially if you use thsuffix to process subdirectories, and
especially if you use several wild-card search rsadeeombination.

0 You can now combine two or more search mode suffixes to make T
find all files that would be found by any of theasgh modes. For example,
if you have work files for abc.c and def.c, and there are TlilBdries for
DEF.C and GHI.C, you can useLwas the wild-card search mode to select
all three files (the "W" makes TLIB find filesabc.c and def.c , the "L"
finds makes TLIB findief.c andghi.c , so "LW" makes if find all three).
When you specify more than one search mode, TLIB simply reneach
search mode in turn and merges the resultingdisiites.

(We mainly added the multiple-search-mode support so thaB Tor

Windows could have a default search mode that would be redteome-
gardless of which command was to be used. This was neededdeettze
GUI front end of TLIB for Windows uses a paradigm in which theeu
first selects the files to be processed, then selects theatipe to be
done.)

0 You can now ask TLIB to tell you what files it would operateoup

without actually doing the operation. Simply preceed thenemnd in
guestion with G1". Thus, TLIB G1EBFL *.C will list the files that would

62

be extracted by theTLiB EBFL *C command (Extract Browse-mode
Freshen with the "L" search mode).

63

F - Filter File Names

In TLIB's GUI Windows user interface, you can select whichirse files
TLIB will operate upon before issuing the TLIB command. Hawe in
command-line versions of TLIB, you don't have that flextlil Instead,
you must specify the source files to operate upon by using-eards
and/or file-lists.

The F (Filter file names) command help improve the flexipilbf com-
mand-line versions of TLIB, for specifying source files te processed by
TLIB. The F command lets you specify a wild-card specificat{or sever-
al of them, separated by commas) which TLIB will use to “filtéhe file
names found when processing subsequent commands.

The F (filter) command is mainly useful in command-line vens of
TLIB. In the TLIB for Windows GUI, the main file pick list offies a simi-
lar (but more flexible) capability, so F (filter) is not nest (though it is
accessible via “Run Manual Command”).

The F (filter) command is mainly intended for selecting maar files
from file lists, though you can also use it as an “AND-clausdien speci-
fying files with wild-cards.

For example, this command would list the versions of all tbeand .H
files named in the file lisiLLFILES.LIS

TLIB F *.c,*.h L @allfiles.lis

The filter's wild-card specifications are of the same sarttteose which
you can use inlF clauses (p. 321) in your TLIB configuration file: they
can contain one or more wild-card file specifications safet by com-
mas. The wild-card specifications can have multiple, legdand/or
embedded asterisks and/or question marks in them, if yol. wiewever,
you cannot include directory specifications or @feelist.ext format.

Examples:

64

TLIB F myfile.* E @all.lis this is okay

TLIB F *my*.* E @all.lis this is okay

TLIB F make*.*,*.c E @all.lis this is okay

TLIB F *.c,@xyz.lis E @all.lis illegal (“@xyz.lis " prohibited)
TLIB F mydir*.c E @all.lis illegal (“mydir\ " prohibited)

Once you have specified a filter, it remains in effect urdiliyeither quit
TLIB, or until you explicitly change or disable tfiker.

You can specify a period as the filter to disable file namiefihg. For ex-
ample, in the following TLIB command line, thec filter would apply to
file names found inALL.LIS , but no filter would be used when taking file
names fronBATS.LIS :

TLIB F *.c E @all.lis F . E @bats.lis

Note #1: If you upgraded to TLIB 5 from TLIB 4, then your exigji
TLIB.CFG file may define “F” as a shorthand for “UF” (fast-updatefie
en), via the COMMANDS. F=UF, ..."” configuration parameter. (TLIBCONF
can optionally configure TLIB this way if you say that you war.IB 5 to
use TLIB 4's single-character commands.) If this is the ctmn you can
either remove E=" from the COMMANDBarameter, or else you can specify
Fo (“F zero”) instead of when you want to use a filter.

Note #2: Because TLIB for Windows lets you expand wild-caadd then
select files from the expanded list, the F (filter) commasdairely needed,
so we did not include it on the main screen. To use the Filterrnand in
the TLIB for Windows GUI, select “Run” and enter a manual coama of
“F wildcard-specs The filter will persist until you reset the current direc-
tory or exit TLIB for Windows.

65

Tree-structured directories

TLIB supports keeping your TLIB library files (and/or lockds) in a
“tree” directory structure which mimics that of yasource files.

To use this feature, you must do three things:
i) ConfigureTREEDIRS Y .

i) Change your PATH configuration parameter (or CP command), adding
“# " at the end. TLIB will substitute the “relative path” of thewrce file
(relative towORKDIR your main work directory) for the\"” in the path.

iii) Enable “version tracking” for your source files (veosi tracking is ex-
plained later).

For example, consider the following TLIB configucet file excerpt:

TREEDIRS Y
LIBEXT ??X
LOKEXT ??Z
PATH F:ATLIBS\!\
IF *.c,*.h

TRACKY
ENDIF

Then if your main work directory isC:\WORK\, and you have a source
files named CAWORKIOSTUFFWMYFILE.C and C:\WORKWMAIN.C, you
could create TLIB libraries for them like this:

cd \work
tlib n iostufimyfile.c This is a comment
tlib n main.c This is a comment

TLIB will create these library files:

FATLIBSIOSTUFF\MYFILE.C_X
FA\TLIBS\WWORK.C_X

66

Note that the FATLIBSMIOSTUFF and FATLIBS directories should al-
ready exist; TLIB will not create them for you (unless you figare
MAKEDIRS Y, see p. 315).

67

Branching: Version Trees

With branching, your version numbers can contain up to 9rdatpoints,
so that, for instance, if your library contains versions fotigh 15, you
can later go back and add version 9.1. Version 9.1 is callechachver-
sion; versions 1 through 15 are caltaghk versions.

You might add version 9.1 if, for instance, version 9 was pédn earlier
release of your program and you needed to make a minor bu@ fikx t
Version 9.1 is not considered the “newest” version in thealip, even
though it may have been added after version 15.

Note well: Version 9.1 isnotin any sense “between” versions 9 and 10!
Do not think of the dot in “9.1" as a decimal point. Rather, titd is just a
separator character. Version 9.1 is “beside” or “in pafailgh” version
10. Version 9.1 may be either newer or older than version withs not
an ancestor of version 10. Instead, both version 9.1 andoved® have
version 9 as their immediate ancestor.

Most TLIB version numbers are simply consecutive integéngse are the
“trunk” versions. The trunk version after version “5” (iféixists) is usually
called version “6” (or, perhaps, theajor:minorpair “5:1"). Version num-
bers containing decimal points are called “branch” versioversion 5.1
would be the first version in a branch from version

If you never have to create “maintenance releases” (bug figeobsolete
versions), nor maintain parallel lines of developmentntiieu will proba-
bly always/only work on the latest versions of your sourdesfi so you
will probably never need to use branching.

The “trunk” vs. “branch” terminology derives from the picia hierarchy
of version numbers. Consider a library file containing sewersions,
numbered one through seven, like this:

oldest new est
1 —>2 —>3 —>4 —>5 —>6 ——>7

The arrows represent a development time line. Version 7 waset from
version 6, which was derived from version 5, etc.. The versiare in a

68

straight sequence, like the trunk of a tree, growing from tefright (ver-
sion 1 could be called the “root”).

Usually, the next version would be called version 8, and itilddoe creat-
ed by editing a copy of version 7 to incorporatmsmew improvement.

Suppose, however, you need to make a minor revision to veBioather
than version 7. You would retrieve version 3 from the libréiky with the
ES command, make your changes, and add it to the libraryHibevever,
it really shouldn't be added as version 8, since it is notvaerifrom ver-
sion 7. Instead, you would like to add it as version “3.1”,cairt (like
version 4) is derived from version 3.

If version tracking is enabled'RACK Y, then TLIB will create the branch
automaticallybecause it knows that you started with version 3 rather than
version 7. Otherwise, you can use B (update branch)or US (update
specified version)command to do this. US is very similar to U (update li-
brary), except that it allows you to specify the version nemivhich you
wish to create.

For example, if the program was calledYyPROG.PASthen you could let
TLIB automatically determine the new version numilies this:

TLIB U MYPROG.PAS this is my comment line

Or, you could add (branch) version 3.1 like this:

TLIB US MYPROG.PAS 3.1 this is my comment line.

Alternately, you can use an asterisk instead of the “1” irl"3and TLIB
will figure out the actual version number, likeghi

TLIB US MYPROG.PAS 3.* this is my comment line.

Both of these forms are equivalent unless version “3.1"aglyeexists, in
which case the first form would result in an error messagethmisecond
form would create version “3.2”.

69

Our library file could now be depicted graphicdike this:

oldest (1-7 are trunk versions) newes t
1 —2 —-838 —4 —>5 —>6 —>7
(root)

—> 3.1 (branch version)

If version 3.1 of your program didn't work correctly, you wduneed to re-
vise it again, and you could create version 3.2, and theriores3.3, 3.4,
3.5, ..., 3.9, 3.10, 3.11, etc.. You could even go back andtereersions
3.1.1, 3.1.2, etc..

You can also create additional branches from version 3, dirajel with”

version 3.1, 3.2, etc.. The second branch from version 3 &esion num-
bers which contain a parenthetical “branch number” of “Ble(humber of
the branch, as opposed to the number within the branch). if$tesfich
version, in the second branch from version 3, would be nurgl@j1, and
the library file could be depicted like this:

oldest (1-7 are trunk versions) newes t
1 —2 —>3 —>4 —>5 —>6 —>17
(root)

—> 3.1 (branch version in 1st branch)

—> 3.(2)1 (branch version in 2nd branch)

If you go overboard with branching, the structure of yourdiy file can
become very confusing, resembling a sideways lileethis:

oldest newe st
1 —-2 —-3 —>4 —>5 —>6 —>7
(root) l_
—>31 —>3.2 —> 6.1
—>3.1.1 —>3.1.2
—>3.(2)1 L_> 3.1.1.1

We don't recommend creating library files that Idi&k this!

The uB (create a new Branch) command tells TLIB that you want toestor
the new version as a new “something.1” branch, but let TLIBzdwgine
the particular branch number. Like the US command, the UBrocand
can be used to create a new branch regardless of whether pomnstart-

70

ed with the latest trunk version. However, when trackingnstded the
UB command will always create a new version that is a successihe
version that you started with (unlike the US command, which ereate
whatever new version number you tell it to create).

Note: you cannot combine the U (update) command's "B" syffieate
branch) with either the "S" suffix (specify new version) bet"M" suffix
(increment minor trunk version).

The TLIB E (extract) command (and the EB command, extracbfowse)

will generally retrieve the “current” version of a file. Iihhé simplest case,
this is the latest “trunk” version. However, if you use TL$Bhamed

project levels, then it may be some other version, since hvki@rsion is

current depends upon which project level is your currengggtdevel (the

current version numbers for each file are recorded in theeatilevel's

tracking file -- but that is explained later).

(There is one exception to this rule. If you use a file list magshot file to
specify the extracted source files, the version numbenyf ahich is list-
ed in the file list or snapshot file will override the “curt&rversion
number.)

To retrieve something other than the current version, useEth (extract
specified version) command. For example, to retrieve wvers3.1 of
MYPROG.PAS

TLIB ES MYPROG.PAS 3.1

You can use an asterisk in place of the last part of the vensionber to
mean “most recent.” In the overly complex tree abov

TLIB ES MYPROG.PAS 3.* (retrieves version 3.2)

TLIB ES MYPROG.PAS 3.1.* (retrieves version 3.1.2)

Note that “2.0” is the same as “2”, so if theradsversion 2.1:

TLIB ES MYPROG.PAS 2.* (retrieves version 2)

The “S” in the “ES” command is an example oEammand suffixMost of
TLIB's basic commands support one or more command suffixégch

modify the bahavior of the basic command. (In TLIB for Windawption
check-boxes are used in place of the command esflix

71

The S suffix, as it happens, modifies the behavior of the Emand to
make it accept an explicit version specification. Othefiga$ modify it in
other ways. Suffixes that you can specify with the E commarel B
(browse), F (fast/freshen), and R (reserve). Plus, thexasewen other suf-
fixes that can be used to alter the way TLIB interprets wedec
specifications; these are called “search modexadfi(p. 59).

Most of the suffixes can be combined with one another, tdmwagh a few

combinations are prohibited. Thus, for example, the “EB&", €quiva-
lently, “ESB”) command means Extract-a-Specifiedsi@n-for-Browse.

72

Version Numbers

Both major:minor “trunk” version numbers and N-way branches are sup-
ported by TLIB 5.xx. The new, extended syntax for version bars
(which supports these features) is upwardly-compatibté tie old TLIB
4.12 version numbers.

Minor version numbers

Some of our users who are used to other version control ptedave
asked us to support “major:minor” version number pairs fonk ver-

sions, rather than just integers. Thus, rather than havisgcuence of
“trunk” versions like “1, 2, 3, 4, 5, 6, 77, you could have aissrlike “1,

1:1,1:2,1:3,2,3, 3:1".

The numbers after the colons are called “minor version nusyband the
“regular” numbers (before the colons) are calle@jon version numbers.”
Note that “1:0” and “1” are synonymous, so the second seqehwer-

sion numbers could also have been written, “1:0, 1:1, 1:2, 2:0 3:0,

3:1"

There isn't really any functional difference between thgutar integer-on-
ly trunk version numbering scheme and the major:minor nuinbe
scheme. Both are simply ways of designating a series of oressieach
version derived from the one before.

Some programmers prefer to designate “minor” changes bgiinenting
the minor number, and “major” revisions by incrementing thaor num-
ber. How -- or whether -- you use minor version numbers isrelytup to
you. However, there are a few things to be aware of

* Older versions of TLIB (e.g., TLIB 4.12) and Opus Make (prto Opus
Make 6.0), do not support major:minor version number pairgLIB li-
braries. If you use them, your TLIB libraries will be incontiide with the
old releases of these programs.

73

* The use of major:minor version numbers does not affectenedit of the
“latest” trunk version. Versions “*” and “**” are synonymus; both mean
“latest trunk version”.

* The U and N commands work as in previous versions of TLIBytbie-
ate “regular” integer version numbers (that is, they inaatithe major
version number and set the minor version number for the newioreto
zero). Thus, if you use the U command to add a new version adision
5:3, the new version will be version 6.

* You can use the US or UM command to force a new version to incre
ment the minor number. With the US command, you can speciéy th
specific version (e.g., “5:4"), or you can use an asterigk*(). More con-
veniently, however, you can use the M (“minor”) suffix, whisimply
causes the U command to increment the minor version numbtzad of
the major version number.

The M or S suffix can be combined with other suffixes (but ndthveach
other). So, for example, to increment the minor version nem@nd still
keep the file checked-out/locked, use the UKM (or, equivije UMK)

command. (The K suffix, to “Keep checked out,” ¥pkained on p. 101.)

* You cannot normally “skip” version numbers. That is, versb:3 can be
followed by either “5:4” or 6, but not by “5:5”. However, thigstriction
can be circumvented via tRELAXVERSparameter, p. 307.

* You cannot normally have a version humbered zero. Howetvis, re-
striction, too, can be circumvented via #® AXVERSparameter, p. 307.
N-way branching

What this means is that you can have as many branch versiogsuas
wish, all of which call the same version “Momma.”

For example, suppose you have a standard version of moxiutePRG
and it is currently at version level 5. You could make a custoodifica-
tion of Xyz.PRG for one customer and call the new version “5.1".

But what happens when you make another customizatioryafPRG, for

another customer? What do you call it? Version 6 is what yaum pd call
the next generic release, so you don't want tdhege

74

You needanotherversion 5.1! In fact, if you make a lot of customized
versions of XYZ.PRG, you might needdozensof different 5.1 versions,
each of which begins a branch of its own in theétrof version humbers.

Of course, you need a way to differentiate the “first 5.1 nfrthe “second
5.1” and “5.1 number three.” So, we've expanded the versionber syn-
tax by adding an optional parenthesized “branchberth like this:

511 - read aloud as “the first 5.1” or “5 dot branchuimber 1”
5021 - read aloud as “the second 5.1” or “5 dot branclu@ber 1”
5(3)1 - read aloud as “the third 5.1” or “5 dot branchu®nber 1”

Note that the old syntax is still allowed; “5.1” is just a stesrway of say-
ing “5.(1)1", or “5.1 number 1™

5.1 - the same as “5.(1)1", “the first 5.1”

Also note that you can have branches from trunk versions #tka trunk
versions are numbered with the new major:minor number paasexam-

ple:

5:2.(4)1 - read aloud as “5 colon 2 dot branch 4 numberi”, o
maybe “the 1st version in the 4th branch from br@”.

Plus, you can have branches off of branches, off of bran@&tes,as much
as ten levels deep -- way more than you will exssch

Complex version numbers can be kind of hard to read. Forélyat you

don't need them, you don't have to use them. That's the behthis syn-
tax: nearly everything is optional, and many users will neneed anything
except plain, integer version numbers.

Note that you can substitute an asterisk for the last bramghian, to
mean “latest.” For instance:

5:2.(4)* - read aloud as “the latest version in the 4th drdram
version 5 colon 2,” or something like that.

Note: Older versions of TLIB (e.g., TLIB 4.12) and Opus Make (prior
Opus Make 6.0) do not support N-way branch version numbetsranor
version numbers in TLIB libraries. If you use N-way branchegsur TLIB
libraries will be incompatible with the old releasef these programs.

75

See Appendix E for a more detailed description of TLIB 5.50sien
number syntax, including a formal (BNF) grammar.

Specifying versions by version label

TLIB 5.50 supports several kinds of version label files. Yige them in-
terchangeably with version numbers to select versionsh vitie
@filenamesyntax. For instance, if you had created the dmatpgersion la-
bel file sSNAPSHOT.X12and wanted to use it to specify the version numbers
of your .c and .h files, then the following command would extract adl

and .h files for which there are TLIB libraries, selecting the viers
recorded irBNAPSHOT.X12:

TLIB ES *.C,*H @SNAPSHOT.X12

Specifying versions by date/time

As with earlier versions of TLIB, with TLIB 5.50 you can spBcversions
to be extracted by date and time, rather than by version nuorbesrsion
label.

However, TLIB 5 adds a restriction: If you specify a timeddy in lieu of
a version number to select a particular version with the “E&hmand,
you now must specify the time in hh:mm:ss format (not hh:mmmifat).
That is, you cannot specify only hours and minutes; you mpsti§y the
seconds, as well.

This restriction was added to enable the TLIB “ES” commanddwoectly
distinguish between the major:minor version number syataxa time-of-
day used to select a version. Thus, “1:12” is interpreted am@r:minor
version number specification, and “1:12:00” is tiofeday.

76

Long File Names

The 32-bit versions of TLIB have full support for Windows tprile
names.

The real-mode DOS version of TLIB,LIBDOS.EXE, does not support
long file names.

Protected mode 16-bit versions of TLIB, suchTdd4B2.EXE (for OS/2)
have limited support for long file names: Paths and namestérémited
to 80 characters total length, rather than 259, blanks atepeonitted
within file names, and you can't enclose filenaimeguote marks.

However, a few of the minor auxiliary programs that come WithiB do
not support long file names.

Note: you can configure theFNAMECASHEparameter to force mixed-case
filenames to upper-case; see p. 309. Similarly, tla&lGNAMESsonNfigura-
tion parameter can be used to prevent TLIB frondliag long file names:

LONGNAMES<Y/ N M>

The three possible settings are:

LONGNAMES Yes Enables use of long file names. This is the
default for most versions of TLIB.

LONGNAMES No Disables use of long file names by TLIB.
This is the default for all versions of TLIB when running under
DOS 6.xx and Windows 3.1 or 3.11.

LONGNAMES Maybe Enables use of long file names. For the
DOS-extended command-line version of TL,IBX.EXE , and
for the 16-bit GUI version of TLIB, this setting also enables
automatic fallback to old-style (8.3) file access if long file name
access fails. This is the default setting for those versions of TLIB
when running under Windows-9x. For other versions of TLIB,

77

LONGNAMES Ns equivalent taONGNAMES Y.

The LONGNAME®arameter is permitted but ignored by TLIB for DOS
(TLIBDOS.EXE).

Here is a table summarizing long file name support by 16-bisns of
TLIB under various operating systems:

MS- | 0OS/2 0S/2's | Win 3.1x, Win-9x, | Win-NT,)
longnames DOS native | DosBox| Win-OS2 Win-Me | Win-2K Win-XP

default = n/a nla n/a 8.3 long 8.3 8.3

TLIB for
Windows nfa | nla n/a 8.3 8.3 8.3 8.3
(AGFSIS& M n/a | nla n/a 8.3* long 8.3* 8.3*
Y* na nla n/a n/a long* n/a n/a
* * * * *
TLIB2 default | 8.3* long 8.3 8.3 8.3 long 8.3
(TLIB for N 8.3* 83 8.3 8.3* 8.3* 8.3 8.3*
0S/2) MorY | 83* long 8.3* 8.3* 8.3* long 8.3*
default | 8.3 n/a 8.3 8.3 long 8.3 8.3
TLIBX N 83 nla 83 8.3 8.3 8.3 8.3*
(DOS-
extended) M 8.3* nla 8.3* 8.3* long 8.3* 8.3*
Y* na nla n/a n/a long* n/a n/a

TLIBDOS (any) 83 nla 83 8.3 83 83* 83

Legend:

8.3 supports short file names only
8.3* supports short file names, but this is not the best versf TLIB

to run in this operating environment, or it is not the
recommended setting forLONGNAMES in this operating

environment
long supports long file names (80 chars maximunspaxres)

long* supports long file names, but we do not recommend goiniing
LONGNAMES under normal circumstances.

n/a not supported

Note that you can useFF/ELSE/ENDIF directives with the %TLIBNAME%
symbol to set configuration parameters which apply only éctain ver-

78

sions of TLIB. For example, the following would disable soppby
TLIBX and TLIB for Windows for Win-95 long file names, withawis-
abling OS/2 and NT long file name supportring2.EXE

iff (% TLIBNAME%' eqi 'TLIBX') or (% TLIBNAME%' eqi ‘TLIBDLL")
REM Disable Win-95 long file names:
longnames n

endif

iff ' %TLIBNAMEY%' eqi 'TLIB2'
REM This is not needed, because it's the defau It:
longnames y

endif

See also:FNAMECASEp. 309), which determines whether file names are
translated to upper-case (or lower-case).

79

Environment variables, SET,
and the Autoset file

Referencing environment variables in your TLIB confguration file

You can reference DOS/Windows environment variables inr ybuB
configuration file. Use the same syntax that you would use DOS .bat
file or an OS/2 .cmd file: if you want TLIB to look up an environment
variable calledNAME and insert the value oNAMEat some point in your
TLIB configuration file, you simply embed the stringgNAME36 the con-
figuration file at the point(s) where you wish tedue to be inserted.

In other words, an environment variable (or other “set” naasedescribed
below) can be used as a sort of macro to be inserted in your TaiBigu-
ration file.

In accordance with the usual DOS conventionNikMEis undefined, then
%NAMEY¥s considered to be of zero length.

If you would prefer that an error message be generated foefuret
names, then use the syntax/NAME%instead. The " indicates to TLIB
that it should display an error message if the nesnoadefined.

If having the name undefined would be catastrophic, thenmay prefer
to use the syntax%!!NAME% instead. The !t ” indicates to TLIB that it
should display an error message and halt if theeniamandefined.

Thus, you can chose to have an undefined name be considara@legt
to a O-length value (no error), or it can generate a warningsage, or it
can generate a “fatal” error (which prevents TLiBnh running).

Also, you can now optionally use parenthesis to encloserghaot of the
set variable name.

The ! or ' prefix determines what happens if the variable name is unde-
fined. If the variable name is defined, theor!! prefix has no effect.

80

%NAME% or %(NAME)% - if NAMES undefined, it's okay (0-length)
%INAME% or %!(NAME)% - if NAMES undefined, it causes a warning
%!INAME% or %!(NAME)% - if NAMES undefined, TLIB will not run

To use an actual, literal percent sign in the configuratide Where it
would otherwise appear to be part of something of the faamAMEX®OU
can double the percent sign.

For example, if yoURUTOEXEC.BAT or STARTUP.CMDcontained the line
SET TMP=F:\

you could add to your TLIB configuration file theé
help 1,"TLIB -- %%=percent sign, "% TMP%"=temp dir ectory"

and then the help screen in command-line versiéis @ would display

TLIB -- %=percent sign, F:\=temp directory

Note Referencing environment variables in your configuratide cur-
rently worksonly with TLIB itself (both command-line and GUI versions).
It does not work with the other programs in the TLIB packagecihead
the TLIB configuration file ¢(MPRaNdTLMERGE

Parenthesis

The parenthesized forms allow you to dereference more tmenlevel
deep. For instance, suppose you had the followtip &riables:

set X=BBB
set BBBMSG=Hello

Then you could configure

help 1,'X=%X%, and BBBMSG contains %(%X%MSG)%'

and the first line of the command-line TLIB helpesen would be

X=BBB, and BBBMSG contains Hello

Obviously, that example is a bit contrived. However, webafent that
someone, somewhere will find a use for this sothipfg.

81

Choosing defaults to be overridden by environmentariables

We've subtly changed the way TLIB parses its configuratite o that
you can now configure TLIB to let an environment variable ¢trer “set”
name) override almost any configuration parameter.

The change is simply to stop parsing the line at the firstlblantab after
the configuration parameter argument (except for a fewigardtion pa-
rameters, mostly those which allow embedded white-spacethi
argument).

This allows you to configure, for example:

DEFEXT %newdefext% PAS

If NEWDEFEXTis not defined, then the line is equivalent to
DEFEXT PAS
(Note that the extra space befora8’ doesn't matter.)
However, if you definSET NEWDEFEXT=Cthen the line is equivalent to
DEFEXT C PAS
which would have been an error in TLIB 4.12, but@sv equivalent to
DEFEXT C

Thus, you've effectively configured TLIB is such a way thaEFEXTis
PAS except when you define an environment variable (or othenaste)
calledNEWDEFEXTO override it.

Here's another example:
LOCKING %LOCKS% Y

This configures LOCKING to the value of environment variableocks
(which should be eithety, N, Weak or Branch), but if LOCKSis not de-
fined thenLOCKING is configured tor .

Note that this technique doesn't work for the following dguafation pa-
rameters:

ARCCMD COMMANDS EXTENSION HELP IF KEYFLAG LOGFLAG LOGPREFI

82

LOGSUFFIX PATH PROMPT SET UNARCCMD

“SET” parameters in your configuration file

You can usesET configuration parameters to define pseudo-environment
variabfles, which you can reference via th&NAMEYOr %!NAMEY©Or %!!
NAMEYsyntax, just like real environment variables. The syntajust like

the DOS or OS/2 “set” command:

SET NAME= st ri ng

The SET configuration parameter overrides any normal environmanit
able setting for the same name.

The autoset file

You can create a file in the current directory calledTOSET.BAT(under
DOS or 0S/2's DOS box), orUTOSET.CcMD(in OS/2 protected mode),
which contains more pseudo-environment variable defingi This file is
called the “autoset file.”

The first time TLIB encounters asNAME%eference in a configuration pa-
rameter, it will look for the autoset file, and if one is foumdIB will read

it. The autoset file should contairsET NAMEanquoted-strinjcommands
(in the usual DOS & OS/2 format). These commands overridenamsnal
environment variable settings.

This gives you a way to have something resembling “local”iemment
variables: names for which the definition depends upon gouarent direc-
tory. By referencing such names in your TLIB configuratide,fyou can
make TLIB's behavior depend upon your current directorgnef’ you use
a single TLIB configuration file regardless of which dirent you are
working in (perhaps by setting yotrIBCFG environment variable).

Note that the autoset file does not actually cause changgsutoDOS or
0OS/2 environment settings (unless you run it as a batch fileg autoset
file only affects %NAME¥eferences embedded in TLIB configuration files
(and in configuration lines specified via the C commandpadnticular, the
autoset file does not affect the use of theBCFG environment variable to
specify the location of the configuration file.

83

Note: to make TLIB2.EXE read AUTOSET.BATinstead of AUTOSET.CMD
see the\UTOSET configuration parameter, p. 292.

Precedence of different kinds of SET names

The SET configuration parameter works like an environment vagatn a
“set” command in the autoset file. The syntax &s$ame, too:

SET nane=sonet hi ng

Like set commands in the autoset file, tI8ET configuration parameter
does not really alter DOS (or OS/2) environment variables,tbat dis-
tinction is mostly academic, since set hames can be usedhetike
environment variables in TLIB.

There are three ways to define set names:

- With a DOS or OS/2 environment variable

- With a “set” parameter in the TLIB configuratiite

- With a “set” command in the autoset file

If the same name is defined in more than one way, the follovprere-
dence rules are used:

o Environment variables have the lowest precedence. Thepeaverrid-
den by SETcommands in either the TLIB configuration file or the autose
file.

o SET parameters at the beginning of the TLIB configuration fiefore
the first %NAMEveference in the configuration file) have lower precedence
thansSET commands in the autoset file.

o SET parameters at the end of the TLIB configuration file (after first %

NAMEweference) have higher precedence thgsT commands in the au-
toset file.

In other words, the autoset file'sET commands are effectively inserted
into the configuration file just before the fissnAME%eference.

84

Predefined pseudo-environment variables

TLIB 5.50 has over 50 predefined specigET variables of the form
“TLIBCFG: namé.

Most of the TLIB configuration parameter values can be wieed in this
way. For instance %TLIBCFG:projlev% is the value of thePROJLEVCcON-
figuration parameter (hname of the current project levelmirly, %
TLIBCFG:id% is the current user ID.

One use of this feature is to allow you to display configunatparameters
in the prompt, help or banner.

Restrictions:

A) The following configuration parameters do not haw@LIBCFG:names
variables defined for them:

AATTR, BANNER, D3COLLIDE, D3FLAG2, D3FLAG3, ENDIF, HELP, I F,
INCLUDE, JOPTIONS, KEYFLAG, LOGFLAG, LOGPREFIX, LOGSUFFK,
PROMPT, REM, SET

B) You should not referencesTLIBCFG:namexif configuration parameter
“name” is defined in aniF /ENDIF block. Doing so will not cause an error,
but the behavior may change in future editionsldBTVersion Control.

You can also get the path\name of the TLIB configuration($ljeas if they
were environment variables, from within the configuratide(s), via the
%tlibcfg: ...% syntax. Two forms are allowed%tlibcfg:cfgfile% and
%tlibcfg:curfile%

For example, to display the path\name of the mairfiguration file when-
ever TLIB starts, you could configure:

numbanner 1
banner 1,"config file="%TLIBCFG:CFGFILE%"

Even if you are using include directive$TLIBCFG:CFGFILE%iS the name
of the first/main configuration file, not the included canfration file. To
get the name of the current configuration file, usaLIBCFG:CURFILE%
For example, in a "mastertlib.cfg intended to be included from other
tlib.cfg files, you might configure this:

85

numbanner 2

banner 1,"main/first config file="%TLIBCFG:CFGFIL E%"
set masterfile=%TLIBCFG:curfile%

banner 2,"master config file="%MASTERFILE%"

Note the use of a temporanseT variable to store a copy of%
tlibcfg:curfile% . It is needed because by the time that TLIB displays
the BANNERIt is no longer reading configuration files, so there is oar*
rent" configuration file.

Additionally, the following predefined pseudo-environmerariables can
be referenced within TLIB configuration files:

%TLIBOS% (may be: DOS, 0S2, or WINDOWS)

%TLIBMODE% (may be: REAL or PROT)

%TLIBNAME% (may be: TLIB, TLIBX, TLIB2, or TLIBDLL)

%TLIBPROG% (may be: EXE or DLL)
%TLIBWORDSIZE% (may be: 16 or 32)

Example (try adding these 2 lines to your tlib fifig):

Say %TLIBNAME%.%TLIBPROG% is running
Say in %TLIBMODE% mode (% TLIBWORDSIZE%-bit).

Example:

SupposqaLIB.CFG contains:
PROJLEV %CurlLevel%
LEVEL n=test d=D:\TEST\ p=release
LEVEL n=release d=D:\RELEASE\

prompt 1,'Hi, %TLIBCFG:id%! Current level = %
TLIBCFG:projlev%'

And AUTOSET.BAT(Or AUTOSET.cMOfor TLIB2.EXE under OS/2 or NT)
contains:

set curlevel=test
set tlibid=Dave

then the first TLIB prompt line would be:

Hi, Dave! Current level = TEST

86

Note: %NAME%Nd %TLIBCFG:names references in the prompt, help and
banner screens are evaluated “late,” so that they alwalectehe current
values (rather than the values in effect when the configpmaiile was
read). In all other contexts, however, such references\aa&ed imme-
diately, as the TLIB configuration file is read.

TLIB also supports an extension to this syntax for refenegd¢he current
work directory path, which allows you to use pieces of yourkwdirecto-
ry path at other places in your TLIB configuration file, inhet
configuration parameters.

Thus, for example, if you have a large number of projects, garu config-
ure TLIB with a “generic” project level that is named the same
whatever your current work directory is.

The syntax is an extension of th&TLIBCFG:WORKDIR%ONSstruct which
lets you specify one or two numbers to select which parts efpidith you
want.

Suppose that%TLIBCFG:WORKDIR%S “C:\WORK\ABOMBV'. This path is
considered to have three parts: part #0 is the drive/rant (), part #1 is
the top subdirectory (#ORR), and part #2 is the lower subdirectory
(“ABOMB).

The syntax to specify specific parts of the path is%
TLIBCFG:WORKDIR:nn: mmneg wherenn is the number of the left-most part,
and mmis the number of the right-most part. (Also, imenn, that is if
you only want one part of the path, you can leawetioe * mnf.)

For example, il TLIBCFG:WORKDIR%S “C:\WORK\ABOMBY' then:

%TLIBCFG:WORKDIR:0:0% = "C:\"

%TLIBCFG:WORKDIR:0% ="C:\"
%TLIBCFG:WORKDIR:1% = "WORK"
%TLIBCFG:WORKDIR:2% ="ABOMB"

%TLIBCFG:WORKDIR:1:2% = "WORK\ABOMB"
%TLIBCFG:WORKDIR:0:1% = "C:\WORK"
%TLIBCFG:WORKDIR:0:2% = "C:\WORK\ABOMB"
%TLIBCFG:WORKDIR% = "C:\WORK\ABOMB\"

You can also count the parts from the right-most, by speuifyiegative
numbers. The right-most (lowest level) directory is part This is useful
when you want the current directory name, but don't know hdeep” it
is.

87

So for the example above, partan also be specified as part, and part
1 as part2:

%TLIBCFG:WORKDIR:-2%
%TLIBCFG:WORKDIR:-1%

"WORK"
"ABOMB"

To experiment with this feature, usgAy or BANNEROr PROMPTO display
the results, like this:

set xxx=%tlibcfg:workdir:2:-1%
set yyy=%tlibcfg:workdir:-1%
say Note: xxx="%xxx%’ yyy='%yyy%’

Then run TLIB to see what valuesxx and yyy get. (In TLIB for Win-
dows, click Run or View Log to see messages irsthtus log.)

Warning: Be sure that if you configure eitheTREEDIRS Yor WORKDIR
you do sobefore referencing %tlibcfg:workdir% , to ensure that TLIB
deduces the correct work directory!

Here's an example of how you might use this feature to set ugnarie
project level, whose name was deduced from the name of youerdu
work directory:

set dir=%tlibcfg:workdir:-1%

level n=%dir% d=\\server\sys\levels\%dir% a=Y
projlev %dir%

| createtf y <-- this is optional

Here's a similar, but fancier configuration, which defiregeneric 1SO-
9001-style 3-level “promote” structure:

set dr=%tlibcfg:workdir:-1%

level n=%dr%_DEV d=x:\levs\%dr%\dev\ a=y f=y p=%dr%_TST i=%dr%_REL
level n=%dr%_TST d=x:\levs\%dr%!\tst\ w=n f=y p=%dr%_REL

level n=%dr%_REL d=x:\levs\%dr%\rel\ w=n

! Developers set projlev like this:

projlev %dr%_DEV

| Testers should configure:

! projlev %dr%_TST

88

Lots of ways to set
your TLIB User ID

TLIB supports several different ways of setting the TLIB U$B. You
can set thelD configuration parameter in your TLIB configuration file;, o
you can use the CW (“configure who”) command on the TLIB comtha
line with command-line versions of TLIB, or in TLIB for Windes you
can set a User ID override which will be storedhiaTLiB.INI file.

The ID configuration parameter defaults 6TLIBID%, so that theTLIBID
environment variable can also be used to set your user ID (B.gour au-
toexec.bat file, SET TLIBID=DAVE"). In the event that you use more than
one method to sent your user ID, the order of mlecee is:

[1] In TLIB for Windows, the TLIB.INI override, set viaFile -> Con-
figuration Options -> Set User ID. (highest priority)

[2] The CW (“configure who”) command in commanddimLIBs

[3] Thelb configuration parameter

[4] TheTLIBID environment variable (lowest priority)

Note:In TLIB 4.12 and earlier, the order of precedewes different:
[1] The W (*who”) command (highest priority)

[2] TheTLIBID environment variable
[3] Thelb configuration parameter (lowest priority)

Network name look-up

Under Windows-NT, you can configur®® %USERNAMEte set TLIB's us-
er ID to the usual environment variable.

For DOS, Windows, and OS/2, TLIB may be able to interrogater yeet-
work software to find your network login ID, depémgl upon what kind of
network you have. (We are very grateful to Mr. Mark Evans fxteasive
help implementing this feature.)

89

There are several “special” TLIB user ID's which you can seich of
which will be translated in a different way by looking up thetal name
which you are using on your network. The speciahesare:

Looks up the NETBIOS login ID (under MS-DOS
NETNAME and Windows), or the LAN Manager login ID
(under 0S/2).

NOVELL Looks up the Novell login ID.
NOVELL2 Looks up the Novell login ID (alternate method).
MACHINE Looks up the “machine name.”

Looks up the Artisoft Lantastic login ID, but only
under DOS and Windows. One caveat: if you are

LANTASTIC |ogged into two different servers with two different
user names, there currently is no way to predict
which user name will be returned.

%USERNAME% Use the Windows-NT/2K/XP USERNAME

environment variable.

To make TLIB look up your network user ID, just use the configura-
tion parameter (or theTLIBID environment variable, or thecW
command) to specify one of the speciabme* names as your TLIB user
ID.

Because of the great variety of networking software in uskaypthere is
no guarantee that any of these special user IDs will nedgsaanrk with
your network. However, trying them out is easy. Just run themand-
line version of TLIB interactively, select the “CW” (confige who) com-
mand, and enter each of the four special nhames, in turn, amdvbhat
happens. In TLIB for Windows, just add an experimentalconfiguration
parameter to the end ofLIB.CFG , or you can use Run manual command.
Note that if you are using OS/2, you should do this test fromCEbox as
well as at the regular OS/2 command prompt. Example

TLIB CW *LANTASTIC*

Or configure:

90

ID *LANTASTIC*

Also, note that we currently use two different approachasfgementing
the DOS real modeloVELL* name look-up.

Additionally, TLIB can store a user ID override in its\TLIB.INI file.

To use this feature, in TLIB for Windows chooggle -> Change User
ID and the Aiways ” override button; see p. 251.

91

S command:
Snapshot version labeling

An important problem for developers using many source fédeordinat-
ing them all. Consider what happens when you need to recaristn old
version of a program. If it is made with just omeice file, you simply run
TLIB and retrieve the desired file. But if there are 20 diffiet source files,
you are faced with the prospect of manually selecting thepgraersion
from each of 20 different library files -- a ted®and error-prone process.

To solve this problem, TLIB provides the S command (whichaees the
old TLIBSNAP utility). The S command takes a “snapshot” of tturrent
state of each of the library files for a set of related souraéecfiles, so
that later you can easily reconstruct the version. You waytically use
the S command whenever you release a new version of yourgmogrhe
S command will create a “snapshot file” (sometimes calledexsion la-
bel file” or “class”), which is a kind of file list that contas version
numbers as well as file names.

Command line syntax:

TLIBS shapshot-filewild-cards-or-@ilelist
TLBSS snapshot-filewild-cards-or-dilelist version-spec

Using the snapshot to retrieve old versions

A snapshot created by the S command is simply a file whichro=sca
“snapshot” of what source files you are using and what theirent ver-
sion numbers are at a particular time. It is a text file canitag file names
and version numbers.

If you ever need to reconstruct that version of your prograimply re-
trieve the snapshot file and use it as a file list, as inputh® TLIB E
(extract) command. TLIB can use a snapshot as a special fofite dist

which specifies both file names and version numbers. All pheper
source files will be automatically retrieved. For exampgfeyou have a

92

snapshot namedeta.snp , then the following command would retrieve
the recorded versions of all the files listed witfti

TLIB E @beta.snp

Alternately, you can use a snapshot to specify just versionbers, select-
ing the files in which you are interested in some other way.ifkstance, if
you had a snapshot callepkta.snp , for the “beta test” release of your
program, the following command would extragl/file.c ~ and myfile.h
from their TLIB library files, taking the versiorumbers frombeta.snp

TLIB ES myfile.c,myfile.h @beta.snp

The TLIB ES command requires two parameters: (1) the file emthat
you want to retrieve, and (2) the version numbers. In theWthg exam-
ple, both are specified @beta.snp .

TLIB ES @beta.snp @beta.snp

Thus, these two commands do the same thing:

TLIB E @beta.snp this is the fast way
TLIB ES @beta.snp @beta.snp this way is slower

What version numbers are recorded

The S (snapshot) command records the “current” version eusror your
source files. That is, the S command records the version atsnihich
the E command would extract.

In the simplest case, wheprojlev is not configured, the current version
numbers are simply the latest (highest) “trunk’siem numbers.

If you are using named project levels (p. 139), the currergiva numbers
are those that are currently listed in the project levellirag: file for the
current project level (or perhaps in a “parent”jpcd level).

A special case is whenpfojlev = " (or, equivalently, ‘rojlev

equals ") is configured. This is used occasionally for special psgs, but
isn't recommended for most users. With this configuratiettirsg, there is

93

no named project level, and the current version numbershasetrecord-
ed in the work directory tracking file.

In summary, the S command records the latest trunk versioiessiPRO-

JLEV is configured to a named project level (in which case theivass
which are current in that project level are recorded), oes®IPROJLEV =
is configured (in which case the version nubers for traclied aire taken
from the work directory'sibwork.trk file).

Creating a snapshot

Note: If you are using project level tracking (pp. 299 , 139 & 143}twi
fully-populated project levels (also explained later)uymay have little
use for the S command. Simply saving a copy of your projeallaack-
ing file will do the trick, since it contains all the module mas and
version numbers that you are using.

However, if you are not using project level tracking, or ifuygroject lev-
els are “sparse” (that is, they contain only those files thifer from a
parent level), then you'll need to use the S (shapshot) cordrta make
version labels.

Example 1 Snapshot the current versions of all files defined in afivac
project levels (the current level and its parenels):

tlib sa snap.xxx *.*

Explanation: The “A” search mode suffix causes TLIB to exaenhe pro-
mote-to and/or inherit-from level(s) as well as the curlemel. The *.*
wild-card spec says that we want to record all of the filemp.xxx is the
output file.

Example 2 Snapshot all library files, recording the latest trunksiens,
without regard to your project levels.

tlib ss snap.xxx *.* *

Explanation: The default search mode (“L”, for library fieis used, since
no wild-card search mode is specified. The * file specification indi-
cates that all library files are to be searched. The “S” guffdicates that
you wish to specify the version numbers, and the version rmurapecifi-
cation given was*” (which means latest trunk versions).

94

Note #1:You can use this form even if you are not using project level
tracking.

Note #2:Like the old TLIBSNAP program, this form requires that TLIB
read all the TLIB library files in order to determine what tla¢est trunk
version is for each file. Thus, it may take several minutegoii have a
large number of TLIB library files.

Example 3 Add additional source files to an existing snayish
tlib s snap.xxx @snap.xxx,myfile.*,@extras.lis

Explanation: In this examplesnap.xxx is presumed to be an existing
snapshot file, to which you wish to add bothyfile* and all the files
listed inextras.lis

TLIB processes your three input file specifications in thdes given, and
it contains logic to ensure that no name will be processecerni@an once,
so if any of the additional files were already recordedsitap.xxx , they
will remain unchanged. (The additional files angfile* and the files
listed inextras.lis J)

To make this case work, TLIB detects the fact that the outpapshot
file, snap.xxx , is also used as an input file. To avoid clobbering it, TLIB
writes the output to a temporary file, and when done proogssll of your
input files, TLIB will copy the temporary file tehap.xxx

Note #1:This ability to list the output snapshot file as an input files
well, obviates the need for the old TLIBSNAP “A’pj@end) command.

Note #2:TLIB looks for your TMP(or, as a 2nd choiceTEMP environ-
ment variable to determine where the temporary file shoddcteated.
The temporary file is usually namedTLIB_TM.2 ", but you'll probably
never see it, since TLIB deletes it when done.

Example 4 Alter an existing snapshot, changing old version numbers,
and/or adding additional files:

tlib s snap.xxx myfile.*,@extras.lis,@snap.xxx

Explanation: This example is just like the last one, excbat @snap.xxx
is given as the last input file specification rather thanftre. This has the

95

effect of using the current version numbers fayfile.* and the files in
extras.lis , rather than the old version numbers that were already given
in snap.xxx

Note #1:You will probably want to put your snapshot files under versi
control, by storing them in a TLIB library file. This will adw you to store
comments with each snapshot to record the purpose of thasegland it
will avoid the necessity to keep inventing new names for ysnspshot
files. The TLIB for Windows GUI interface makes this convemi by of-
fering the “Immediate Store in Library” check-box.

Note #2:In command-line versions of TLIB, the S command normally dis
plays one dot (period) or comma for each source file thatiddj as an
“activity indicator.” If TLIB can determine the version nurer without
reading the TLIB library (e.g., because the version humbdoind in a
project level tracking file), then a dot is displayed. If B_must read the
library file, then a comma is displayed.

If you wish to suppress these periods and commas (as welvasas®ther

“noisy” TLIB messages), you may configurgUIET Y, or run TLIB with
the-q option as the first command-line parameter.

96

Check-In/Out locking:
concurrent access control

This feature is for use when more than one programmer may bkirvgo
on a program. It is disabled unless you specifically enatoie the TLIB
configuration file. So, if yours is a one programmer shopy yeeedn't
bother to read this chapter.

If you enable “locking” in your configuration file, then TBI will create,
modify and and examine “lock” files to control which prograrar cur-
rently “owns” a library, to ensure that two or more progranmsnare not
working on the same file at one time.

The Purpose of Check-in/out Locking

Check-infout concurrency control (“locking”) is designedsolve a prob-
lem faced by developers who share responsibilities for agelar
programming project. The problem is that sometimes twoedifit pro-
grammers may decide to change the same source file at thetsaemdf
neither one knows that the other is working on that file, ttrenresult will
be that each of them has a version which is down-level (outadé)din
some respect. Then, after they each update the libraryil the TLIB

U command), the newest version in the library file will be siigy some
improvements which are present in the second-newest veramd vice-
versa.

At best, the problem will be discovered early, and the progners will
have to reconcile their differing versions (manually, othwDIFF3 or
TLIB's Migrate command). At worst, a “fixed” bug will be “uixed” in
the latest version, with potentially expensive @apsences.

The solution is simple: just make sure that only one programswork-
ing on a module at a time. A manual procedure to ensure thisdvou
involve keeping a notebook for “checking out” eachurce file. Before ex-
tracting a source file from its library file to make modifieans, a
programmer would first “sign it out” in the notebook. If soore else was
in the process of changing the file, the programmer wouldirséiee note-
book that the file was currently “checked-out” to the othergmn, and

97

would know not to change the file until the other person hadkied with
it and “checked it in” again.

TLIB automates this process. Instead of a notebook for fsgout” each
file, TLIB keeps a “lock” file. The lock file contains the naof the pro-
grammer who is currently working on the corresponding setite. When
no one has a module signed out, then the lock file does not, exid the
library is said to be “unlocked”.

The lock file is similar in purpose to a Unix SCG#ffile.”

Weak Locking and Branch/Level Locking

TLIB supports two regular locking modes, plus two specialdes The
regular modes are:

LOCKING N “None” (disabled -- no locking)
LOCKING Y “Yes” (full, whole-library locking)

With LOCKING Nconfigured, TLIB doesn't track who is working on a
module, and doesn't restrict the storage of new versionthisrmode, the
“E” and “EB” commands are equivalent, as are the “U” and “UKdna-
mands.

LOCKING N is intended for use by individual programmers, kirag alone.

With LOCKING Yconfigured, TLIB allows just one programmer to work
on any particular module. If a second programmer tries toaek{check-
out) the module for modification (the “E” command), he wik lgreeted
with an error message which tells him that the first programis already
working on the module.

LOCKING Yis suitable for most multi-programmer development prgect
which do not utilize multiple teams working concurrently different lev-
els of code at the same time.

TLIB's two special locking modes,OCKING Band LOCKING Wallow for
concurrent development on a single module by nialfypogrammers.

The special concurrent-development modes are:

98

LOCKING B “Branch” or “level” locking. Check-out locks only the
current project level, although warnings will be
generated when another programmer checks out the
module from another project level. (Project levels are
explained later.)

LOCKING W “Weak” or “warning-only” locking. Check-out is
allowed by any number of programmers
simultaneously, even on the same project level, but a
warning is displayed if you check-out a module that
someone else is already working on.

In order of “strength” of locking, the four mode®za

LOCKING N (weakest)
LOCKING W

LOCKING B

LOCKING Y (strongest)

If you intend to use the AP command (in TLIB for Windowsid/Alt ->
Promote) to “promote” modules to “higher” assurance levels, them yo
should useLOCKING Binstead of LOCKING Y so that having a module
checked-out at a “lower” level won't interfere with prommiit to the
higher level. (The AP command and “promote levels” are usedstaged
development” on large, multiple-programmer projects; §@@®mote” in
the index.)

Warning: LOCKING B(branch or level locking) should only be used with
named project levels for whichs2New” or “ p=somethinj has been con-
figured in the LEVEL configuration parameter, or for which there is no
“i= somethinglinkage, since only the current project level will be locke
(These fields of theLEVEL configuration parameter are explained under
“Configuring Your Project Levels,” p. 141.)

Note that programmers can mix and match locking levels byging the
LOCKINGconfiguration parameter, either witlF /ENDIF blocks in the con-
figuration file or with TLIB's C (configure) command. If a ggrammer
locks a module withLOCKING Yconfigured, then all other programmers
will be denied modification-access (unless they configw®@CKING N.
However, if the module is locked withOCKING Bor LOCKING wconfig-
ured, other programmers will still be allowed to check-dw tnodule for
modification (though forLOCKING Bit will only be allowed on a different
project level).

99

CW command: Configure Who you are (set User ID)

Before he can check a file in or out, a programmer must givenhise
(“user ID”) to TLIB via the ID configuration parameter or thew(config-
ure who) command; see p. 89.

(Note: the user ID should not contain blanks.)

E and U commands revisited

The locking parameter changes the behavior of the E (extract) and U
(update) commands. Wherocking y is configured, the E command
causes the file to be “checked-out” for modification by therent user; if
the file was already checked-out to someone else, the E cachml fail.
When locking is enabled, the U command will cause the file & b
“checked back in” when the library is updated with the newsiar; the
file must have been already checked-out to the current offegrwise the

U command will fail. Note that even if the U command didn't apelthe
library because there were no changes to the source fildil¢hwill still

be checked-in/unlocked (but see tlRRCEUparameter, p. 275 , if you
want to store a new version even when there ahanges).

If you enable or disable locking, you may also want to use HROMPT
HELP and COMMANDSONfiguration parameters to customize the user inter-
face for command-line versions of TLIB; see p. 329.

When locking is enabledLOCKING Yis configured), TLIB's E (extract)
command is similar to the Unix SCCSét -e ” command, the RCScb

-1 command, and the IBM PDLIget " command; and TLIB's U (up-
date) command is similar to the Unix SCC&fta " command, the RCS
“ci " command, and the IBM PDLgut " command.

EB command: Extract for Browse

Sometimes you may wish to extract a source file from the thipfite with-
out checking it out. If you do not intend to modify the sourde,fthere is

100

no need for the library to be locked. To extract the latessieer without
checking it out, the EB (extract-for-Browse) command is ilabde. It
works just like the E command, except that the fidekis ignored.

Note: The EB (browse mode) commands will never replace a souree fil
which you already have checked-out for modification, retgss of how
you have set theREPLACEconfiguration parameter. It will, however, re-
place a browse-mode copy of a source file, if you've con8guREPLROBR

Y (see p. 282 for details).

When locking is disabled the E and EB command&=aetly equivalent.

UK command: Update and Keep locked

Less often, you may wish to add a version of your source fildagolibrary
file without checking it back in. You might do this if you hathished one
of several changes to a source file, and were ready to stakirgoon the
next change. To do this, you can use the UK (update-but-Kbepked-
out) command. The UK command works just like the U commandepix
that the lock file is not altered (it is still examined to eresthat you have
already checked-out the file).

Similarly, the NK command works just like the N command, teate a
new library file, storing the first version of your sourctefiexcept that the
NK command leaves the source file checked-out/locked sbyiwa can

make additional changes to it.

When locking is disabled the U and UK commandseaetly equivalent.
With locking enabled, TLIB's EB (extract-for-Browse) corand is similar
to the Unix SCCS get ” command and the RCSc6” command, and

TLIB's UK (update-but-Keep locked) command is similar te RCS ‘i
-1 " command.

UD (discard changes) and ER (reserve) commands

If you check-out a source file, intending to modify it, butdachange your
mind, you can use the UD (check-in, discarding changes) camadnto
check it back in (unlock it) without updating the librarydilAs with the U

101

command, if you mistakenly attempt to check-in a file whigtuydo not
have checked-out, TLIB will display an error messag

It is also possible (though rarely necessary) to checklouk] a file with-

out actually extracting it from the library file, with the EReserve)
command. As with the E command, if the file cannot be cheakéidbe-

cause someone else already has it, TLIB will display an emessage
telling who has the file checked-out.

Note that the library file need not exist for you to use the Eiimand to
“reserve” it. Thus, you can use the ER command to resenkeAosource
file name before creating it, to ensure that nobody else ceate a source
file with that name. When you finally get around to creatihg fTLIB li-
brary with the N command, the source file will be checked+imdcked
just like with the U command.

With locking enabled, TLIB's UD (check-in/discard changesmmand is
similar to the RCScs -u " command and the IBM PDLIising (re-
lease " command, and TLIB's ER (check-out/reserve) command islaim
to the RCS fcs -I| " command and the IBM PDLItising (reserve "
command.

Note that the UD and ER commands are seldom used.

If locking is disabled, the E (extract) and EB (extract foowse) com-
mands are equivalent, as are the U and UK commands, and thendD a
ER commands have no function.

T command: Test lock status

The T (test) command can be used to test the check-in/oW)(&atus of
library files. If used interactively, the T command justplays informative
messages indicating who has each file checked-out. If therfintand is
specified using DOS command line parameters (typically iar file),
the DOS errorlevel is set as follows:

0 - checked-out to current user id

1 - not checked-out to anyone
2 - checked-out to someone else

102

As with all TLIB commands, if multiple files are specified it wild-
cards or a file list), then the errorlevel returned is thehkigt of the error-
levels which would have been obtained by testirghdide individually.

To test check-in/out status, the T command examines loegfitot library
files. However, it will display a warning message if the esponding li-
brary file does not exist (except when using PKZIP-compd&schived
library files).

By using wild-cards or file lists to specify a group of soufides or library
files, you can use the T command to produce a simple repdiridishe
check-in/out lock status of each file. To store the repor fiile (or print
it), use DOS output redirection. For example:

tlib t c:\libs*.* >report.Ist

Note: To test in a batch file whetheamnyone(including you) has any files
checked-out, you can use ain éxist " test to check for the existence of
the lock files.

Examples

Example #1: Suppose a programmer named “Dave” has his Tbiarly

files on LAN-shared disk driveG: in subdirectory\TLIB . He needs to
change a source file callestyFILE.C. He can check-out and extraety-

FILE.C from its library file like this:

tlib cw Dave e myfile.c
After he is done making his changes, he could add the neworetsithe
library file, checking it back in like this:

tlib cw Dave u myfile.c
Note that the “CW” command can be omitted if the " parameter is

specified in the TLIB configuration file (or if thesét tibid=Dave "
DOS or OS/2 command has been issued).

Example #2: A programmer named Jane needs a COpyY#iLE.OBJ, to

be linked with some other files. She wishes to extract a cdplgedsource
file, MYFILE.C , which she will compile to produagrFILE.OBJ . Since she

103

does not intend to changRYFILE.C, she should use the EB command to
extract it, to avoid locking it:

tlib eb myfile.c

If she had accidentally extracteshyFILE.C with the E command, like
this...

tlib cw Jane e myfile.c

...then she could check it back in with the UD ¢disl changes) command:

tlib cw Jane ud myfile.c

In other words, the EB command is equivalent to an E commaitaixfed
by a UD command.

Also, the UK (update-and-Keep-locked) command is equivatie U (up-
date) followed by E (check-out). Conversely, the U commanejuivalent
to UK followed by UD.

Related configuration parameters are:

LOCKING, READONLYB, REPLROBR, DELETESRC, LOGUSER, andip.

Novell Netware users should also configure:

DATAPATH Y

104

Security

There is now a semi-secret “patch point” which can be usedrizefTLIB
to look in one and only one place for its configuration filehig is de-
signed to add to the control available to you if you are a ‘&=ystibrarian”
who is administering a project with a large number of progrers. By
using this mechanism, you can prevent users from casuadiggihg their
configuration parameters.

If you wish to use this feature, you may want to:
A) Disable the “C” command via th@dMMANDEOoNfiguration parameter.

B) Use the snamessyntax to enable users to set certain, specific configu-
ration parameters.

C) Call us to find out the patch procedure (natin the manual).

With the configuration file's path “hard-wired” to a netvwodirectory, to

which you can control write-permission, you can preventrsisiom

changing their TLIB configuration files. By using this inmodination with

judicious use of environment variable references in thefigoration file,

you can allow users to change only certain configuratiorapaters, and
not others.

Because TLIB's user interface is configurable, the abitityestrict config-
urability also provides you with the ability to restrict &ss to unwanted
commands.

In addition, you can restrict access to the TLIB library andk files by
distributing them among several directories on the netviitelserver, and
granting users read/write access or read-only access occes® to the
several directories based upon their needs.

See also pp. 244 and 260.

105

Version tracking &
Named Project Levels

“Basic version tracking” is for automatic branching andcamaétic version
labeling on very small projects. It is intended for singlegrammer
projects which do not utilize check-in/out locking.

What makes this form of version tracking “basic” is theROJLEVis not
configured at all (or is configured to one of the special pgenames, #”
or “="). Because there are no named project levels, TLIB has toagmn
only one tracking file (at a time).

For more complex development environments, “advancedoreitsack-
ing” (with named project levels) provides additional feai and greater
flexibility; it is explained later.

If you configure TRACK Ythen TLIB will maintain (in your working direc-
tory) a “version tracking file” callediLIBWORK.TRK. It will contain the full
list of those files in the directory that you have extracteshf or updated
into a TLIB library, the version number for each module, anthsetimes
some additional information about some of the meslul

The information in TLIBWORK.TRKis similar to the “snapshot version label
file” created by the S command (or the old-format snapshetgenerated
under TLIB 4.12 by the TLIBSNAP program), but the file formsidiffer-
ent.

Like a snapshot file,TLIBWORK.TRK contains a full list of module names
and version numbers, so you can use it like you would use ashoaper-
sion label file. To “take a snapshot,” you can use the S (dmaps
command, or you can simply save a copy TfiIBWORK.TRK perhaps by
using TLIB's U (update) command to store the lat&sBWORK.TRKiInN its
own TLIB library:

TLIB U TLIBWORK.TRK This version fixes problem nu mber IR759

Unlike TLIBSNAP, however, in its snapshot files and in the.B-
WORK.TRHKracking file TLIB 5.50:

106

A) Doesnot store the file name or path of the associated TLIB libram.fil
This simplifies things if you need to move your TLIB libraryefs around,
but it means that you are responsible for using consistestH and
LIBEXT configuration settings to ensure that TLIB finds the cortdwzary
files.

B) Doesnot store eREMark line for each module.

C) Doeshave the ability to track a “tree” of subdirectories. To ia#l this,
you must set a the’'REEDIRS configuration parameter (p. 300). Configure
TREEDIRS Y, and optionally configure thevOoRKDIRparameter (p. 304) to
tell TLIB which directory is the “root” of your “tree” of worlng directo-
ries.

If tracking is enabled and you extract a file with the E or EBnroand,
you can optionally configure TLIB so that you will get the s&m of the
file indicated by the entry inTLIBWORK.TRK instead of the latest “trunk”
version). This behavior is selected by configuring:

PROJLEV =

However, by default (withPROJLEVNot configured), the extract will get
the latest trunk version, just as if version tracking wereer@abled (which
is appropriate for most users).

Of course, you can always extract a different version by ifgirg a spe-
cific version number with the ES command, and theBWORK.TRKentry
will be adjusted accordingly, regardless of how thrOJLEVconfiguration
parameter is set.

Automatic branching

TLIBWORK.TRKenables TLIB to “know” what versions of each module you
are working on, so that the U (update) command can autonfigtstare
them as branch versions when that is appropriate.

When would that be appropriate? When storing the new vera®ra
“trunk” version number would effectively “undo” change®iin an earlier
version. In other words, if you started with something ottirean the latest
trunk version.

107

Thus, for example, if the latest trunk version was numbera?i8l you ex-
tracted version 22 and made changes to it, when you storesthev@rsion

it should be as version 22.1 (a branch from version 22), sineeew ver-
sion doesot include the changes that were made to create version 23. It
would be a mistake to store the new version as 24 (the nex trersion),
since that would undo whatever changes were inomegs.

However, if tracking is not enabled, then TLIB will not haveexord of
what version you are working on, so it will stohe new, modified version
as version 24 (unless you use the “US” command and manuattg ibto
store the new version as a different version nujnber

By enabling version tracking (configuringRACK Y, you can avoid this
pitfall.

To control TLIB's automatic branching feature, configune tAUTOBRNCH
parameter; see p. 298.

To disable automatic branching but still have TLIB mainttie TLIB-
WORK.TRKile, you can configure:

PROJLEV *

Extracting to a temporary file

Suggestion: it is advisable to configure TLIB to track only certain files
(your source files). So, you should add something like thieang to the
TLIB configuration file (or let TLIBCONF do it foyou):

TRACK N

IF *.C,*.H,MAKEFILE.*
TRACK'Y

ENDIF

This will allow you to extract a temporary copy of an old versiof a
source file without causing an entry to be addetthéatracking file.

For instance, if you wished to examine the first version ofla ¢alled
FOO.C, you could do TLIB EBS F0O.C1 1" (assuming that yourIBEXT
configuration parameter is chosen such thab.c and FO0.Cc1 both “map
to” the same TLIB library file). (See also p. , for another viayextract to
a temporary file.)

108

Since *.c1 ” files are not tracked,Foo.c1 will not be recorded in the
tracking file.

Note that theTLIBWORK.TRKfile is always kept as read-only, to prevent its
accidental deletion.

Also note that even if you store the various versionsroBWORK.TRKin a
TLIB library, they will not be tracked. That is, TLIB will ngbut a “TLIB-
WORK.TRK entry in theTLIBWORK.TRK file, itself.

Note also that you can explicitly useLIBWORK.TRKas if it were a file list
or snapshot file, extracting all the modules nafngt Use the @& syntax,
like this: “TLIB ES @ TLIBWORK.TRK”.

Semi-custom software

You can you use TLIB's version tracking to help simplify maimance of
multiple, customized versions of your software.sTisi explained later.

Saving disk space

When you are not working on a particular customized versyan, can
save disk space by deleting the source code, keeping onlyatleng file
and the TLIB libraries. See “Saving Disk Space”199.

Merging fixes

The M (“migrate”) command can be used to merge changes franievel
of code into another, all at once. For instance, if you sup{sami-cus-
tom” software, with one “standard” level and many custordilevels, you
can use the M command to migrate fixes from a new “standand| limto
any of your customized levels.

The M (migrate) command uses TLMERGE (or DIFF3) where neugss
to merge fixes into customized modules, and copies thosait@sdvhich
have not been customized, and records the migration higtaspecially-
formatted TLIB comments so that future migrate commandstemwhich
changes have already been migrated, to avoid erroneouspastéo merge
the same changes again.

This is described more fully under “M - Migrate Ciges” (p. 178).

109

Configuration

The following configuration parameters are provided toprpbasic ver-
sion trackingTRACK, TREEDIRS, WORKDIR TRACKEXT, DOTDOTOK

Additionally, the following configuration parameters geovided to sup-
port named project levelSREATETF, LEVEL , PROJLEV, REFSUBDIR.

110

Tracking File Terminology

“Version Tracking File”
(or “Tracking File” for short)

A Tracking File is a simple “flat file” database used by TLI8 track ver-
sion numbers and other information about the source modulhésh you
maintain under version control. Tracking files are usualymed TLIB-
WORK.TRK (but the .TRK extension can be changed via tH®ACKEXT
configuration parameter).

A tracking file resides in either a “work directory” or a “ezence directo-
ry” which may (or may not) also contain copies of the trackedrse files.
By default, the current work directory is usually the cutrdirectory (or
perhaps its parent directory), but you may wish to usewRKDIRCoNfig-

uration parameter to change it.

If TREEDIRS Yis configured, then the “work directory” (and the “refer-
ence directory”) is just the “top” directory in a tree of rd
subdirectories, and the tracking file records not only thedate names,
but also the “relative paths” from the top directory to thédivectories in
which the tracked modules reside.

“Work Directory Tracking File ”

This is a tracking file which resides in the current work digry and is
used to keep track of the current versions of the modulesiwyot have
(or last had) copies of in that directory. IfRACK Yis configured, then
there is always one of these. If the work directory trackigdoesn't ex-
ist, then TLIB will create it.

“Current Project Level Tracking File”
(or “project level file” for short)
(or “PROJLEV File” for even shorter)

This is a tracking file which resides in the “reference diogg” of the cur-
rent “named project level,” if any. If you are using hamedjeco levels,

111

then you must useLEVEL configuration parameters to tell TLIB about
them, and you must also use tlROJLEVconfiguration parameter to se-
lect which of your project levels is the curreneon

One of the things which the.EVEL configuration parameter tells TLIB
about each project level is where its referencectiry is.

Different project level files may be “current” at differetitnes, but at any
one time there is only one current project level fi

Named project levels are used for “advanced version trgéKexplained
below).

“Other Project Level Tracking Files’

If “promote-chains” (multiple assurance levels) or custed version lev-
els are used, then one or more other (non-current) trackieg hay also
be accessed by TLIB (this is explained later). However, dhéy current
project level file (and the work directory tracking file) Wusually be

modified by TLIB. (Exception: whens=0ld ” is configured for the current
level.)

112

What Are Tracking Files and Named Project
Levels Good For?

The short answer to this question is that TLIB uses TrackittesFRo im-
plement several important features, one of which is “Namedjeet
Levels.”

Named project levels are principally used for just one thimgnaging
multiple variants of the same project or program. If them @®ro or more
versions of your project or program which are beintively changed, then
you need to use TLIB's named project levels. But if there iy one ver-
sion (i.e., “the latest version”) that is subject to modifion, then you
probably do not need to use TLIB's named projecite

1) For version labeling.

Version labeling is the process of tying together all thesimrs of all the
modules that make up a product.

A version label (or “snapshot”) is simply a file which recerthe version
number of each module that is part of a release of your produmt is,
the version label file is a file that contains [module namersion number]
pairs.

Creating a version label ensures that (using TLIB) you casilyeeecon-
struct that release of your product at a later.date

Before you release a version of your software, nsake that you have up-
dated TLIB libraries (checked-in all the source module$e use TLIB's
S (shapshot) command to create a version label file. The $nzom con-
sults your project level tracking file(s) to determine tharrect version
numbers.

Alternately, in simple development environments, creptirversion label
can be simply a matter of making a copy of thekiragfile.

Although the snapshot and tracking files have differentriats, they con-
tain similar information, and TLIB can use them interchaafgg. So, if a

113

tracking file exists which already contains the neededisaraumber in-
formation, you can simply copy it instead of using the “S” coand. This
will work...

o if you're using “basic version tracking” (no named projexstdls), so that
a copy of the work directory tracking file is usalals a version label; or,

o if you have just one named project level, so that a copy ofrésking
file is usable as a version label; or,

o if you have several project levels but the current projeeeliés “fully
populated” (fully-populated vs. “sparse” project levets described later),
so that a copy of the current level's tracking file is usaldeaaersion la-
bel.

To save the copy, you can simply use the DOS copy command tpthep
tracking file to another file with a different name. Or yowunaaake it more
compact by using COPYTRAK with thes"” option.

Other users will need to use TLIB's S (snapshot) command tkerttze
version label, rather than simply copying the tracking. fil@is is required
when the needed information is distributed among seveaaking files
(due to “sparse” chained project levels, as explained)laterwhen you
have tracking disabled for some (or all) of youurse: files.

Regardless of how you create you version label files (with8hcommand
or by copying the tracking file), you'll probably find it ceanient to store
them in a TLIB library. With TLIB, you can keep you version &b under
version control! This has the advantage of reducing filétetuand allow-
ing you to associate comments with the versionl lallee

2) For automatic branching.

Simply by setting the correct current project level, you @rsure that
TLIB will utilize the correct branch development paths whepdating
TLIB libraries and extracting source modules. This workihier with or
without check-in/out locking enabled.

3) For keeping multiple assurance levels of codegfomote chains”).
This is the classic “staged” approach to managing largeveoé develop-

ment projects. For example, you could have a developmest,lavtest

114

level, and a release level. The AP (“promote”) command lets Ypro-
mote” the status of a particular version of a module from awell to the
next. Think of “promoting” a source file from the developmésvel to the
test level as “throwing it over the wall” to the Qéam.

4) For change migration.

TLIB 5.50 supports the “M” (migrate changes) command (p.)}, ABhich

can use version tracking files to make it easy for you to ni@changes
from one level of code to another, even for entire libraryelsv For in-
stance:

o If you used a branch project level to do maintenance on ay ezldase
of your software, you could use M (migrate) to apply all theef in all the
modules onto the latest release.

o If you used a branch project level to maintain a customizedioa of

your software, you could use M (migrate) to add the latesaridard”
modifications to the customized version.

115

Supported Development Environments for
Version Tracking

Several different environments are supported, with one,dmmore track-
ing files used, depending upon the environment.

1. Single programmer, single development line, or@urrent code level.

This is the simplest environment. There is only one workaogy (or per-
haps a tree of subdirectories) in which source cadmally resides.

Check-infout Locking is normally disabled in this enviroam (since the
purpose of check-infout locking is to keep track of whichgreonmer is
working on which modules, which is unnecessarhia énvironment).

TLIB maintains just one tracking fileT(IBWORK.TRK, which resides in
the work directory (or the “top” directory of the tree). (Bhis “basic ver-
sion tracking.”)

You need not configureROJLEV or LEVEL at all.
In fact, even the use of version tracking is optional. You rhayperfectly
satisfied to disable trackingrRACK N and simply use the S (snapshot)

command to create version labels when you make a new rel€hieis
(roughly) how TLIB 4.12 did things.

2. Single programmer, several development lines (custored ver-
sions).

This environment is similar to #1 except that there is onedlory (or a
tree of subdirectories) for each customized version

Check-in/out Locking is normally disabled in thisvdonment.
TLIB maintains a tracking file (calledrLiBWORK.TRK) for each of the cus-

tomized versions. Each tracking file resides in the cowagmng work
directory (or the “top” directory of each tree). HoweverJyane tracking

116

file is in use at any given time (the tracking file used is tme dn the cur-
rent work directory, or the top of the tree of digies).

One approach is to configur@ROJLEV 2 and not use hamed project lev-
els at all. This is the “basic version trackingpapach.

However, for more flexibility you'll probably prefer to deé each work
directory as the reference directory for a named projectllebhis allows
you to differentiate between the “standard” level and thestomized lev-
els,” so that customized modules are automatically storedbanch
versions in the TLIB libraries. You would use the1 option on theLEV-
EL configuration parameter for each customized version torcHd
branching when you store modified modules for that versaang with
the c=nn option to select consistent branch numbers for each cussami
version

Note that with this approach it is not necessaryéu to explicitly config-
ure the PROJLEVor WORKDIR parameters, since TLIB will notice that
you are working in the reference directory for one of your figured
project levels, and will automatically setROJLEVand WORKDIRaccord-

ingly.

3. Two or more programmers working together using a network
(LAN) and working on a single line of development.

Check-infout Locking is normally enabled in this envirometo keep
track of which programmer is working on which mae{s).

The TLIB libraries reside on a shared-access network fitlgeseand indi-
vidual programmers check source modules in and out from énees
Each programmer has his own, private work directory (or tfegubdirec-
tories), usually on his local hard disk.

In this environment there are several tracking files manatd by TLIB:

one tracking file for each of the programmers' work direie®(or trees of
subdirectories), and at least one shared “project levatking file which

resides on the LAN file server. Thus, when any particulagpgomer is
using TLIB Version Control, TLIB must simultaneously uté two track-
ing files.

If you need to “stage” development (e.g., between “develepty “test,”

and “release” levels), then there will be several namedegtdgvels, with
programmers first storing their changed modules at thelrdegel (e.g.,

117

“development”), and later “promoting” them to a higher assice level.
The linkage between levels is established vigpth@ndi= options on the
LEVEL configuration parameters.

The “current project level tracking file” resides on the etk file server
and tracks the current level for the whole project.

The "work directory tracking file” resides in the programrseprivate
work directory (or in the top directory of the tree of workisgbdirecto-
ries).

All of the tracking files are hamelLIBWORK.TRK.

The location of the (shared-access) project level trackiags determined
by the PROJLEV and LEVEL configuration parameters.

4. Two or more programmers working together using a network
(LAN) and working on multiple lines of development.

This environment is similar to #3, except that there is omedalory (or a
tree of subdirectories) for each customized version

Check-in/out locking is enabled.

There is (at least) one project level, and, hence, one prigeel reference
directory and tracking file on the server for each of the costed ver-
sions of the software. However, there is still just one dogc(or tree of
subdirectories) on the server for all the TLIB éiies and lock files.

For each of the project levels, you'll have to configuremvEL parameter
in your TLIB configuration file, and for each customizatidevel you
should specify theb=1" and “b=nn" options on the LEVEL parameter (you

would not do this on theLEVEL parameter(s) for the standard version of

the software).

This is a rather complex development environment, and itissu$sed
more thoroughly later on.

118

Where the Files and Directories Belong

With TLIB, you will have only one set of TLIB libraries, regéless of
how many project levels (variants of your software) you hdmea multi-
ple-programmer project, the TLIB libraries will rés in a shared directory
on the file server.

In addition, if you use named project levels (to manage pigltvariants

of your software), then there will also be one project lewdérence direc-
tory for each of the named project levels. In a multiple-programmer
project, this, too, will be in a shared directorytbe file server.

Note that since the TLIB libraries are not tied to any spegifioject level,
they should not normally reside in any of the project levétrence direc-
tories, nor in a subdirectory of any of the project level refee
directories.

119

Handling Semi-Custom Software With
Basic Version Tracking

Note: this chapter is soon to be revised; you may call for fiehnical
support if you need to use TLIB to manage custahsnéware.

How can you use TLIB's tracking file to simplify maintenaraemultiple,
customized versions of your software product?

If yours is a large project, in which multiple programmerdl e working
on (different parts of) the same customized version of tlogept, you will
need to utilize the “advanced version tracking” and nameijept levels,
which are explained later.

If yours is a small project, and you are the only programmeu, may be
able to use the basic tracking support, without named prégeels, as de-
scribed in this section. However, you still may prefer to eslvanced
version tracking (with named project levels), foeater flexibility.

The constraint for “basic tracking” is this: you must hawee subdirectory
(or one tree of subdirectories) for your “standard” versiand one for

each of your customized versions. That one directory saasgsur work
directory when you are working on the associated customizgsion of
your software project.

You needn't actually have copies of the source files in edt¢hese direc-
tories at all times, but you must have the directories, beeaach of the
customized versions will have aLIBWORK.TRKfile in its work directory

which records the modules and version numbers for that Magayour

software product.

When you are working on a particular customizeciogr of your software
product, you must make that customization's work directbey“current”
directory. It is the directory which contains the trackinidg f(TLIB-
WORK.TRK for that customized version of your software product. Then
when you use TLIB to extract or update your files, TLIB can tfse cur-
rent TLIBWORK.TRK file to retrieve the right versions - and store new
modifications in the correct branches.

120

To make TLIB retrieve the versions recorded ThIBWORK.TRKwhile ex-
tracting, you'll need to configure:

PROJLEV =

To create the initial tracking file for the “standard” vessiof your soft-

ware, you can simply configure TLIB to track your source djléhen

create the work directory, and then extract all the correcsions (use the
E or EB command, perhaps with th@napshoor dilelist syntax). Or, if

you already have the source files in the directory, you canthe U com-

mand to update the TLIB libraries; those modules which hawdranged
will not actually be updated (unless you configur&RCEU ¥, but the en-
tries inTLIBWORK.TRK will still be added.

To create the initial tracking file for a customized versigou must first
create a work directory for the customized variant, then st create its
tracking file using COPYTRAK's-t ” option (note that this i1ot neces-
sary if you are using advanced version trackingraarded project levels).

“COPYTRAK -¢ simply copies a tracking file and adds:=N fields for each
module to the copy. This field tells TLIB to force creation atranch if
you make a new modification (customization) while working this cus-
tomized version of the module. (With advanced version tragkthe b=1

option on theEVEL parameter is used to force branch creation, idstea

121

Tracking file format

A TLIBWORK.TRK “tracking file” is a fixed-line-length ASCII text file
which TLIB uses as a simple database.

It consists of an indefinite number of lines (records), eaghactly 128
bytes in length (including carriage-return and line-feddje 126th byte of
each line is always a period. The first 125 bytes are availédlstore in-
formation. You can think of the tracking file as a simple tfléle”
database, with fixed record size and variable-length dieMthin each
record.

This information about the format of version tracking filssprovided to
satisfy your curiosity.

It should not usually be necessary for users of TLIB to exa@inmodify
a TLIB tracking file, but since it is a normal, ASCII text filgou can do so
if the need arises.

Each record (line) contains a “key” and one or nifigdds.”

The “key” is the first thing in the record. It begins in columinand ends
with a blank.

The fields are of the formd=valu€’ where “a” is a single lower-case let-
ter, and Valu€ is text which does not contain any blanks. The fields are
separated from one another by a single blank, and the unusédrpof
the record is blank-filled.

The first record (line) in a tracking file is special. It begiwith a key of
“1x " and it is used to record a “project level name.”

Except for the first record in the file (which has the spetial " key), the
key is always a file name (possibly prefixed by a “relativéhgafor a file
which you keep under TLIB version control. Under DOS and Q82
key is case-insensitive (that is, it does not matter wheithisrupper-case
or lower-case), because the file names of these operatstgreyg are case-
insensitive.

122

Summary: Tracking files contain two kinds of records:

1) The first record (*header” record) in a tracking file is sj@clt has the
special key fi* " and currently has only has one field:

n= project-1|evel - nane

This field is used only in the special* " record at the beginning of each
tracking file, and are it is normally only present in projéevel tracking
files (rather than work directory tracking files). It is wsas a consistency
check by TLIB, to ensure that the= field in the LEVEL configuration pa-
rameter for the project level indicates the cordictory.

The name should match the- field of the LEVEL configuration parameter
for the project level.

For example, if file FATRUNKS\TLIBWORK.TRK contains n=TRUNK in
thel* record, then the TLIB configuration file shouldntain the line,

LEVEL n=TRUNK d=F:\TRUNKS\ ...

2) Most of the records (one per tracked source file) have thecsofile
name as the key, and contain one or more of thewwig fields:

v=_ version number (always present, except for “d eleted”
names)
c= customization flag (occasionally present)

It may also contain these “internal use only” fields with aiiyou needn't
concern yourself:

= library size when module was extracted

t= “tipness”
s= lock status (unimplemented)

Each record is used to store information about a particuladute being
tracked. The key is a file name (possibly prefixed with a dtele” path)
for a file which you keep under TLIB version contro

Under DOS & 0OS/2, the key is case-insensitive.

123

Details:

V=

The “v="field is usually present. It contains the version numbar tfas
module, in standard TLIB 5.50 syntax. Note that it is alway¥iged”
(“non-floating”) version number (that is, it canramntain an asterisk).

If the v= field is absent, then the record is just a place holder forkihe
in case you should someday add that file name to the tracken{perhaps
with the “A” command). These place holder records are createen the
“AD” command is used to delete file names from a project le¥éle use
of place holder records enables TLIB to ensure that recoriils nat
“move” in the tracking file, a constraint which lets TLIB @t and cache
its internal indices more efficiently.

Note: The rest of this chaper is just included for complessngou prob-
ably will never need this information.

c=

The “c=" (“customization”) field is not often used, since the-1 option

on the LEVEL configuration parameter is usually more convenientdfis
absent, the TLIB U command will attempt to extend the libratth the
next sequential version, only creating a new branch if regs If c=N
then this module has not yet been customized, but if you epithat TLIB
library with a new version then a new branch will be createdreif the
next sequential version does not yet exist (this is usefaramitial value
for the records in the tracking file for a “newly-cloned” vemt of your
software product). Ifc=y then TLIB has already created a new branch for
this variant of the module; it should never be 138eey to do so again.

t= andl=
These fields are used by TLIB to optimize the operation offit{east) suf-

fix option on the E (extract) command. These fields are noegssary for
the operation of TLIB, and you will not “break” anything byldéng these

124

fields, except that if these fields are deleted then thet‘gagract’/*fresh-
en” commands (EF, EBF, EFS, etc.) may do superfiundracts.

The "= " (library-file-length) field is used to record the lengththe TLIB
library file at the time that the corresponding source fil@sdast extracted
into that directory. When TLIB stores a new version numberafenodule
in a tracking file, it either deletes thie: field (if the source file isnot up-
to-date in that directory), or it stores the length of thedily file in the I=
field (if the source filds up-to-date).

TLIB libraries always grow and never shrink, (because TLiBycappends
to them, without changing the old portion), so if someonegiased a new
version of the source file, the= fields in each of the tracking files will in-
dicate the wrong (shorter) lengths, which implies that thwerse file might

need to be refreshed.

More precisely, if you are specifically extracting the versrecorded in
the tracking file (e.g., via theTLIB EBF @TLIBWORK.TRK syntax), then
the source file needs to be refreshed only if thefield is missing; but if
you are extracting some other version then the source fidgelsi6o be up-
dated if the library has grown since the curremsiom was extracted.

The “t=" (tip-version-indicator) field is used in combination Wwithe I=
and v= (version-number) fields to determine when TLIB can saféip s
file while doing “fast-extracts” (EBF, EBFS, etc.), evenyibu do fast-
mode extracts with different specified “floating versionmbers” (con-
taining asterisks) on different occasions.

The details of how TLIB creates and usestthefields are rather complex.
The presence of the= field just makes it possible for TLIB to determine
under a greater variety of circumstances when it can avaigcessary ex-

tracts during “fast extract’commands.

There are three possibilities for tize field:

1) If the t= field is absent, it means that nothing is known about the- “tip
ness” of the version, or it is not a tip version.

2) If t=L , it means that the specified¥”) version number is the very last

version in the library file (so long as the library file islsgqual to the
length indicated by thie field).

125

3) If =T, it means that (if the library file is still the length indieal by the
I= field) then the specified version number is a tip versioouth not the
last version in the library.

This will be true, for example, if the/= version is the latest trunk version,
but there is a branch version that is more recent. It will dedrue if the
v= version is the latest version in a particular branch, butfarotrunk or
branch version is more recent.

The absence of the= field is never a serious problem. At worst, it will
cause TLIB to do unnecessary re-extracts when a fast-éxtomemand is
done. So, if you build a tool which directly manipulates TLtEcking
files, it can just delete the andi= fields and not worry about it.

126

Advanced Version Tracking
& Named Project Levels

Note: this chapter is soon to be revised; you may call for fieehnical
support if you need to use TLIB to manage custahsnéware.

“Advanced Version Tracking” is the use of one or more “nameajqrt
levels” to represent the various lines of development ogistalevels for
your project. This feature provides automatic branchingy amomatic ver-
sion labeling for multiple-programmer teams in networkedinments,
even when there are multiple lines of development or sewifidrent
“current” levels of code.

To support named project levels, TLIB 5.50 simultaneoudgsuat least
two tracking files: the work directory tracking file, andetiproject level
tracking file.

Work Directory Tracking File:

One tracking file is used to track what is in your “work” ditery. It is
usually namedTLIBWORK.TRKand it resides in the work directory (or in
the top directory of a “tree” of work directories). In a netiked environ-
ment, each programmer will have one of these in his privatekwo
directory. This tracking file is sometimes called “the watikectory track-
ing file.”

The location of the work directory tracking file is determath by the
WORKDIRconfiguration parameter (which can reference an enviroriroe
autoset variable, if you wish).

WORKDIRuUsually defaults to X ” (the current directory), but under some
circumstances it defaults to a parent directory of the curdérectory if
you've configuredREEDIRS Y .

Note that the default may not be what you want if you specifgliek
paths for your source files when using TLIB!

127

The only reason TLIB needs a work directory tracking filedseep track
of what versions of your source files you currently have sTikinecessary
for automatic branching, and to implement the F (fast/feegtsuffix op-
tion for the E (extract) command.

Project Level Tracking File:

The other tracking file is used (perhaps simultaneouslyalbgf the pro-
grammers on the team. It is also usually hamBdBWORK.TRK but it
resides in a shared-access “reference” directory on theankt and it
tracks which is the current version of each module in a “curpgroject
level.”

This tracking file is called a “project level tracy file.”

Note: If you are a single programmer working alone, and yoly bave
one current version of your programs, you may not need to aseed
project levels and project level tracking files.

The location of the project level tracking file is determdnley the PRO-
JLEV configuration parameter, which is normally set to a “setmea
which is usually resolved by &ET configuration parameter or 8T com-
mand in your autoset file (but can also be resolved by an enment
variable). There is an example below showing howetothis up.

There can be many project levels (and thus many project leaeking
files), but only one of them is the “current” project levehtking file, as
determined by theROJLEV parameter.

When you Extract (check-out) a module, the version numbethiat mod-
ule in the project level tracking file determines which versis retrieved
(unless you use the S suffix with the E command, to specifyrécodar
version). When you Update a library (check-in a source fille¢ version
number from the work directory tracking file tells TLIB whegrsion you
started with when you began editing that file.

This, in turn, determines the new version number for the rfeo@uhich

may be a branch). However, a warning will be issued if theigaraum-

bers in the two tracking files are not consistent (this i®rdut it could
happen, for instance, if someone else had disabled lockidgstored a
new version without telling you).

128

Setting Up Your Project Level Tracking Files

Note: this chapter is soon to be revised; you may call for fieehnical
support if you need to use TLIB to manage custahsnéware.

Setting up Work Directory Tracking Files:

There is no set-up required for work directory trackingdil@hey will be
created and updated as necessary when you extract soexcariil update
TLIB libraries.

Setting up a Project Level Tracking File for the “mainline” version:

In a multi-programmer environment, you'll need to set ugtieae project
level tracking file and its associated reference direct(for tracking
“trunk” or “main-line” versions). This requires tliellowing steps:

A) Create a “reference directory” on the file server, namedmuorecally.

If your file server is the E:” drive, you might name this directory
F:\TRUNKS. If you use a “tree” of subdirectories to contain your source
files, create the needed subdirectories, too. TLIB will aetate the direc-
tories automatically (unless you configuueKEDIRS Y, see p. 315).

For example, suppose you have a project for which source dile kept in
a main directory and also in two subdirectories calleaSTUFF and
SCREENSrespectively. Then you could create the reference dirg@nd
its subdirectories like this:

MD FATRUNKS
MD FATRUNKS\IOSTUFF
MD FATRUNKS\SCREENS

Note: If you use a “tree” of subdirectories, configUREEDIRS Y .

B) Invent a mnemonic name for this project level. You may wantise
the name of the directory from step (A). The name should bieedntl-
phanumeric (no punctuation characters), and aleuppse.

129

C) Edit your TLIB configuration file (usuallyLIB.CFG).

i) Add a LEVEL configuration parameter to your TLIB configuration file,
like this. At a minimum, this parameter must specify the ngmns¢ and di-
rectory @=) for the project level. You may also wish to configueey to
cause modules to be automatically added to thegqirtgvel tracking file.

For example, if the name that you invented wemUNKS and the directory
you created in step (A) was:\TRUNKS\ , then an appropriateEVEL con-
figuration parameter would be:

LEVEL n=TRUNKS d=F\TRUNKS\

The directory name must be a fully-qualified drive and patllieg in a
back-slash. (E.g.,FATRUNKS\ ”, nOt TRUNKS\ Of F:TRUNKS\).

Note: see “Configuring Your Project Levels” (p. 141) for rednforma-
tion on configuring theEVEL parameters.

i) If you are using a tree of subdirectories fouy source files, you should
also add fREEDIRS Y” to your configuration file:

TREEDIRS Y

iii) You should also configure theROJLEV parameter.

If you will have only one project level, sBROJLEV to the name you chose
in step (B):

PROJLEV TRUNKS

If you will have more than one project level, it is better td@ F&ROJILEVtO

reference a “set” name. Then you can select the currentgirtgeel by
defining the name in younUTOSET.BATfiles with a SET command (or
with an environment variable).

You use what whatever name you like. For this example, we ehos
“PROJECT™:

PROJLEV %!'PROJECT%

Note that the !t ” causes TLIB to display an error message and halt if the
namePROJECT is not defined.

130

iv) Add the following temporary configuration parametertbhe end of the
TLIB configuration file:

CREATETF Y

The name EREATETE is short for “Create Tracking File.” This parameter
will cause TLIB to automatically create the project leveldking file if it
does not already exist.

When you are finished setting up your project levels, it isoadjidea to
delete this parameter or change it back to theulteZREATETF N.

v) Save the modified TLIB configuration file.

D) Or, If you did not configureCREATETF Ythen you must manually cre-
ate arLIBWORK.TRK tracking file in the new reference directory.

The easiest way to do this is to use the POKETRAK utility,isgtthe n=
field in to first (i*) record to the name you chose in step (B).

For example:
POKETRAK F\TRUNKS\TLIBWORK.TRK !!* n=TRUNKS

This creates a 1-record tracking files:\TRUNKS\TLIBWORK.TRK, with
your chosen project level name recorded in it.

E) If you configured PROJLEV IO a “set” name reference, likew!!
PROJECTY%then use an environment variable or (more likely) an awtose
file “set” command to define the name which you chose in st@jii) to

be the project level name you chose in step (B).

For our example:

SET PROJECT=TRUNKS

Now, when you create or update your TLIB libraries, the projevel
tracking file F:\TRUNKS\TLIBWORK.TRK) will be used by TLIB to record
the current version numbers of each source module.

131

Setting up Project Level Tracking Files for branchversions:

If you will need to make changes to more than one version of poit-
ware, then you need an additional project level trackirg dihd reference
directory for each such variant.

There are many reasons for having additional project leveigur soft-
ware. For instance,

o Customized versions for special customers

o Multiple assurance levels, such as Release v$vEeBevelopment
o Multiple supported releases of the product

o Maintenance or “bug fix” levels

To create a branch project level, you follow much the sameequiore as
you followed to create the mainline project level. The difieces are in
steps (C) and (E), and perhaps (D):

C) In your TLIB configuration file:

You will now have a LEVEL parameter for each of your project levels,
defining each of the project level names and their corredpgreference
directories.

In theLEVEL parameter for each branch/customization level:

o Specify thei= namedield of the LEVEL configuration parameter to indi-
cate which “main-line” level(s) the new level isskea upon.

o Specify theb=1 and c=nn fields of the LEVEL configuration parameter,
to force branching in the level if it will be used for alteraatevelopment
paths (bug fix levels, customization levels, etc.). We reoeend that you
select values ofin which are even multiples of 5 or 10. However, you
should not specifyb=1 if the level is for “staged” development, such as a
“development” or “test” level for mainline code, since reieins at that
level should be stored as trunk versions.

For step (C,iii), above, you should configureROJLEVto be a current

project variable, so that you can change the current prejaan environ-
ment variable or autoset command.

132

(There is no need to have more than oreeEDIRS configuration parame-
ter.)

E) Whenever you plan to use TLIB to extract (check-out) a sourodule
or update a TLIB library (check-in a module), you must set therent
project level to be one of the project levels you have comédulf you fail
to do so, TLIB will exit with an error message (due to the ™which you
configured in theROJLEV parameter in step (C)).

D1) You can configure €EREATETF Y to make TLIB automatically create
the new project level tracking files. Alternately, you caeate an empty
(0 to 3 byte) tracking file with a text editor, or with a DOS corand like
“echo.>\refdirntlibwork.trk ". TLIB will replace the empty tracking
file with a proper one. Or, you can use the POKETRAK utilitycreate it,
like this:

POKETRAK F\CUSTOMI\TEMP.TRK !I* n=CUSTOM1

D2) As an alternative to using theé=1 option, you can create your new
project level tracking file with the COPYTRAK utility, usgnthe -c
switch (run COPYTRAK with no parameters for help).

Start with the tracking file for the predecessor releasamnfiwhich this
new variant is derived. For example:

COPYTRAK -c FA\TRUNKS\TLIBWORK.TRK FACUSTOMI\TLI BWORK.TRK

Then set the name in the speciat “” record with POKETRAK. For ex-
ample:

POKETRAK F\CUSTOMI\TLIBWORK.TRK !!* n=CUSTOM1

Creating the new tracking file this way (with COPYTRAK) makithe new
level initially “fully populated” (as opposed to “sparsetvhich may be
convenient for some users. Alternately, you can populaeathew branch
level with the AF command. (Sparse vs. fully populated Isyahd the AF
command, are explained later.)

Setting up for branch versions with “chained” Project Levels:
Unless you used COPYTRAK to create your branch/custonaizgiroject
levels, then the initial tracking files for those levels ampty. All the

source files are simply “inherited” from the parent leves you customize
various source files and store the new (branch) versiomstivg TLIB Ii-

133

braries, the branch/customization project level trackireywill grow to
record the customized source files.

This is called a “sparse” project level, because it only Exp} lists the
modules which differ from the parent (standardklev

Alternately, if you use COPYTRAK (as described in D2, abote}et up
your branch/customization level tracking files, the miitiracking file lists
all of your source files - both the customized ones and theaustomized
ones. Thus, if a new version of a module is stored in the “stedidbroject
level, it will not affect the customized level.

This is called a “fully-populated” project level.

Each approach has both advantages and disadvantages. Thadwan-
tage of fully-populated levels is that changes to the stahdarsion will
not interfere with developers who are working on the custehiversion.
The disadvantage is that someone will eventually have taatégthose
changes into the customized variant. However, TLIB's M (atig) com-
mand usually makes this a fairly painless process.

However, to avoid the migration chore, at least some of tine tiyou may
prefer to use sparse project levels. A sparse “customizedjeqt level
contains only those modules which have actually been cusgainwith
the rest of the modules “inherited” from the “predecessark@. “stan-
dard” or “parent” or “base-line”) project level.

For a sparse project level to work correctly, you must tellBriwhich oth-
er level is the parent level upon which the sparse custoroizdg¢vel is
based. You do this via the= field in the LEVEL configuration parameter
for the customized level. Simply set the field to the name of the stan-
dard (base-line) project level. Then if your current projevel is the
customized level, when you extract a module its version rermill be
determined by the customized project level tracking filehi# module is
listed there, and otherwise by its entry in thegéad project level.

In other words, the two project levels are “chained” togethe the exis-
tence of the= field.

To set up for chained project levels, the only differencenissiep D,
above. Instead of creating an initial customized projeetliéracking file
which contains all the modules (D2), you create an emptykingcfile
(D1). If you have configuredcREATETF Y then TLIB will do it for you;
otherwise, you can create it manually with the POKETRAKItytilsetting

134

the n= field of the “i* " (header) record to the name of the customized
level:

D1) For example:

POKETRAK F\CUSTOMI\TEMP.TRK !I* n=CUSTOM1

One thing to be aware of if you use this approach: a versioal lgbno
longer just a copy of the tracking file. Instead, it must atsmtain the
modules “inherited” from the base-line project leve

For this reason, TLIB includes the S (“snapshot”) commarite $ com-
mand can create a version label file that lists both the cnigeed source
files (found in the current level) and the uncustomized sediles (found
in the parent level). That is, it also lists all the “inhedtanodules from
the base-line project level (and/or promote levels)

Sorting a tracking file

COPYTRAK can also be used to sort tracking file, if you spegtife -s
option:

ATTRIB -R FA\CUSTOMI\TLIBWORK.TRK

REN F\CUSTOMNI\TLIBWORK.TRK TEMP.*

COPYTRAK -S FA\CUSTOMI\TEMP.TRK FACUSTOMI\TLIBW ORK.TRK
DEL FACUSTOMI\TEMP.TRK

TLIB doesn't care whether the tracking file is sorted or i, you may
wish to sort it for aesthetic reasons. Do not do this, howewvbBen another
user is running TLIB, since TLIB “remembers” the#dions of the various
records in a tracking file, and does not expeatith@ move.

135

How TLIB Uses the Tracking Files

Which tracking files are updated by TLIB, and when

When a module is retrieved, the version number is storedenatbrk di-
rectory version tracking file. The version numtsenot, at that time, stored
in any other tracking files.

When the TLIB library for a module is updated (a new versiostared),
then both the work directory tracking file and the approgrigroject level
tracking file (if any) are updated with new version humbersthe mod-
ule.

The “appropriate” level is usually the current level, buthié module was
retrieved from an “inherits-from” level, then that level ynhe used, in-
stead, depending upon how you have set the optiazalffield on the
LEVEL configuration parameter for the current level.

How the Various Version Tracking Files Are Used By TLIB to Deter-
mine the Version Number of a Retrieved Module

If TLIB is retrieving a module andPROJLEVis set to a current level which
is configured with p= (promotes-to) and/oti= (inherits-from) field, then
TLIB may also utilize these “predecessor” levels to deteerthe version
number of the extracted source module.

If the user explicitly specified the desired version, ohi&tmodule is listed

in the current project level file, then the= and i= fields have no effect.
Otherwise, thep= and i= levels are examined, looking for a higher assur-
ance level version of the module. If the module is not foundny of the
levels, then the latest trunk version is used.

Step #0: If the user specified a particular verggither directly or through
the use of a file list), then that version number is used amdvigrsion
tracking file(s) are ignored.

Step #1: If 'PROJLEV *' is configured, or if PROJLEVis not configured at
all, then the latest trunk version of the moduladsd.

136

Step #2: If PROJLEV 2 is configured, then the version specified in the
current work directory tracking file is used. If the modugenot listed in
the work directory tracking file, then the latest trunk wersof the module

is used.

Otherwise PROJLEV is the name of the current project level, so...

Step #3: If the module is listed in the current project levaktking file,
then that entry is used to determine the version number ofdtreeved
module.

Step #4: Otherwise, if there is g= field, then that level is examined to de-
termine the version number of the retrieved module.

Step #5: If the module name is not found in tpe (“promote-to”) level,
then thei= (“inherits-from”) level(s) are examined in the order sffied,
until a level is found which contains the module.

Step #6: If the module name has not been found in any of theeabi@ps,
then use the latest trunk version of the module.

Note that TLIB does not automatically chain-together npléti“predeces-
sor” levels. That is, the only levels that TLIB examines dre turrent
level and the levels specified in the and/or i= fields of the current lev-
el. Thep= andi= fields of the predecessor levels are ignored.

[Limit: While trying to determine the version number of a nubel TLIB

will examine at most 30 “predecessor” levels of the currenjget level.
This seems to be wildly excessive, which is fortunate, sieeeling lots of
project level tracking files would slow TLIB apprably.]

137

Configuration Parameters for Version Tracking

The following new configuration parameters are the mostortgnt ones
provided to support version tracking:

TRACK <Y/N/Maybe>

Enable/disable basic version tracking. You should usENDIF blocks to
enable tracking for only those source files which are pastanir product.
That way, you can check-out “temporary” copies of old vemsiof source
files (naming them file.c1 " for instance, instead offife.c ") without
having them tracked. If you use TLIBCONF to set up your TLIBfigu-
ration file, it will create the neededF /ENDIF and TRACK parameters.
Default iISTRACK N. See p. 297.

LEVEL n= named= pathp= namei= names= {Old/New/Q/Changed}
a={Y/N/Q}r= {Y/N}b= ni= {Y/N}

LEVEL is used to tell TLIB various things about your named projewtls,
which are only used for “advanced version trackingsVEL is explained
under “Configuring Your Project Levels” (p. 141).

Note: though the LEVEL parameter is shown here on two lines, it must be
all on one line (of at most 254 characters) in ybuiB configuration file.

WORKDIRpath

Allows you to specify the “root” of a “tree” of subdirectosewhich con-
tain your source code. This is the directory which will cantine tracking
file, TLIBWORK.TRK You need not specify a drive letter. Since the “tree”
of subdirectories cannot span multiple disk drives, TLIRsoot track the
drive letter. You would not normally configure this unlessuyalso config-
UreTREEDIRS Y . Default is usuallyWORKDIR .\ . See p. 304.

138

TREEDIRS <Y/N>

Enable/disable tracking of “relative subdirectories.”able this if you
wish for TLIB to track a “tree” of related subdirectories aseological
unit. There will be only one version tracking file for the eat‘tree” of di-

rectories, and each “key” will contain a relative path alomith the file

name and extension for source files which reside in the “fbwabdirec-
tories. If you configure this, you should probably also ¢gafe WORKDIR
(previous page). Default TREEDIRS N . See p. 300.

PROJLEV hame

Used to select the name of a “current project level.” The nahwuld be
defined by aEVEL configuration parameter.

Alternately, if name is if the formew!! nameg then you can use an envi-
ronment variable or autoset “set” command to select theeatinproject
level name.

See also p. 299 , and below.

PROJLEV

If you want TLIB to always retrieve the latest trunk versidneoery mod-
ule (unless you specify an explicit version number), but gownot want to
disable TLIB's automatic branching support (which is teggd when you
store a modification of an old version for a tracked moduleg¢n you can
configure PROJLEVWith no name (or don't configurerROJLEVat all, since
this is the default).

This would normally be done only for small projects whichedgrinvolve
branch versions.

See also p. 299.

PROJLEV *
If you want TLIB to always retrieve the latest trunk versiohesery mod-

ule (unless you specify an explicit version number), andoifi yvant it to
store new versions as trunk version numbers regardless ethehthey're

139

based upon the latest trunk version (that is, if you wantm@ata branch-
ing disabled), then you can configuieROJLEV *”.

This would normally be done only for small projects which du imvolve
branch versions.

See also p. 299.

PROJLEV =

If you want TLIB to consult the work directory tracking fil® tdetermine
the versions to be extracted, then you can cordi{RROJLEV =".

In a multiple-programmer environment, this causes TLIB'q{e&tract)
command to always retrieve the version tlyau were last working on,
even if someone else has stored a newer versithre ahodule.

This is inappropriate for most users.

See also p. 299.

CREATETF<Y/N>

The CREATETHparameter is used to tell TLIB to automatically create miss-
ing project-level tracking files (“createtf” is short forcfeate tracking
file”). You can configure CREATETF Yif you would like TLIB to create
project level tracking files automatically. However, yowsh still create
the required reference directories manually. S&98.

SET name-unquoted-string

The SET parameter defines names to be used by TLIB like environment
variables or autoset names. You can reference “set” namasyokind in

the TLIB configuration file viasnamesor %!namesor %! namessyntax
(use the 1" if you want an error message to be displayedaimeis unde-
fined, or use the !t ” if you want a fatal error to occur ifhnameis
undefined). The three kinds of “set” names (envinent variables, autoset
file “set” commands, and configuration file “set” paramsjeare dis-
cussed starting on p. 80. Also see p. 270.

140

Configuring Your Project Levels

How named project levels can be linked to one anogh

This section explains how TLIB 5.50 “links together” seuediferent
project levels (and their associated tracking files) in anhéritance
chain.”

You'll recall that previous sections explained:

o What a “tracking file” is, and how TLIB uses tracking files keep track
of the version numbers for the various related modules whielke up a
“level of code” for a project.

o How tracking files fall into two classifications:

1) The “local” tracking file for the current work directorghe “work di-
rectory tracking file"), which keeps track of the modulesttlyou have
checked-out, and

2) Shared-access “project level tracking files” which késgk of the cur-
rent checked-in modules at one or more “project levels."eSeh project
level tracking files are what this chapter discgsse

o That every project level has an alphanumeric name and arciatsd

“reference directory,” and that for each project level yousmprovide a

LEVEL configuration parameter which gives, at a minimum, the narne
the project level and the path to its referenceatary.

For example, if you had a project level named “test,” andefenence di-
rectory was:\test\ , then you would configure:

LEVEL n=TEST d=F:\TEST\
o That the PROJLEVconNfiguration parameter is used to tell TLIB which of
your project levels is the “current” one. (If you have seVeraject levels,

you can use amamessubstitution and asET name defined in an autoset
file or environment variable to select between them

141

In this section, we tell how you can describe retathips between the var-
ious project levels, such as:

o One (or more) project levels “customize” anothexjgct level.
o A project level is a newer version based uponaleg, stable release.

o A project level is a “lower assurance level,” from which mégican be
“promoted” to the next “higher assurance level.”

Three configuration parameters are used to tell TLIB abbatrelation-
ships of the various levels of code in your systemRACK PROJLEVand
LEVEL.

The TRACKconfiguration parameter enables or disables trackingyetto
er. It should be specified within anF /ENDIF block to enable or disable
tracking for particular file names.

The PROJLEVconfiguration parameter specifies the name of the “cutrent
project level, which should be one of the project levels dbsd via LEV-
EL configuration parameters.

The LEVEL configuration parameters each describe one project lenel,
of which should be the one named in BR®JILEV parameter.

Detailed descriptions of these three parameters are

TRACK <Y/N/Maybe>

Configure TRACK Yto enable trackingrTRACK N(disabled) is the default.
TRACK Yenables trackingTRACK Maybe(0or TRACK W enables tracking
only for those files that are already being trackseke p. 297.

Example:

I Enable tracking for all C++ source files, exc ept for
I those with names starting with “temp”.
TRACK N
IF *.c,*.h,*.cpp,*.hpp,makefile.*

TRACKY

IF temp*.*

TRACK N

ENDIF

ENDIF

142

PROJLEV hame

wherenameis the name of the current project level, which should be one
of the project level names defined via thenamefield in aLEVEL config-
uration parameter (see below).

There is only one current project level at any given time,hseré should
be only onePROJLEV configuration parameter.

See pp. 299 and 139.

LEVEL n= named= pathp= name2= names={Old/New/Q/Changed}
a={Y/N/Q} r={Y/N} b= nc= nni={Y/N}w= {Y/N}

Note: though the LEVEL parameter is shown here on two lines, it must be
all on one line (of at most 254 characters) in ybuiB configuration file.

There must be oneEVEL configuration parameter for each project level.
The required fields are:

n=namegives the name of the project level; it should match the name i
the header of the tracking file.

d=path gives the path of the reference directory for this projeetlethe
reference directory must contain the project level's iragkiile. You
should specify a fully-rooted path, including both a drieg¢tér and a lead-
ing backslash.

For example, this would be fine:

level n=dev d=f:\devdir\

But these are not good:

what'swrong
level n=test d=z: (no leading backslash)
level n=rell d=g:rel1\ (no leading backslash)
level n=cust d=\cusx\ (no drive letter)

143

The optional fields are:

p=name2(Promote-to field) gives the name of the “promote-to levial”
which modules can be promoted (when you have eerifiat they are cor-
rect).

Implementation note: for the= level, to implement the AP (promote)
command, TLIB has to load into memory all tracking file easri(in con-
trast to thei= levels, where just those that are not also in the current leve
will have to be loaded). Thusz may end up being somewhat less “cost-
ly” thanp=linkage.

i= names(Inherit-from field) gives the name of “inherits-from ldgg to

which TLIB will refer to find modules that are not defined ihig project
level. If more than one level name is specified, then the mameast be
separated by commas (with no spaces).

If the i= field lists more than one inherit-from level, then the levealill
be searched by TLIB in the order they are specified

If both p= and i= fields are specified, then TLIB looks first at the- lev-
el, and only examines th& levels if the module isn't defined at the=
level. That is, thep= level (if any) is also implicitly listed as the firsk
level. Thus, the following twoLEVEL configurations are exactly equiva-
lent:

LEVEL n=dev d=d:\dew\ p=test i=rell,rel0
LEVEL n=dev d=d:\deV\ p=test i=test,rel1,rel 0

r=N (Automatic reference directory refresh disabled) This mse#hat
TLIB will not automatically maintain up-to-date copies obyr source
files in the reference directory for this level. (You carlatse the EF or
EBF (fast extract) command to populate the reference dirgathenever
you wish.)r=N is the default.

r=Y (Automatic reference directory refresh enabled) The field causes
TLIB to automatically store up-to-date copies of your seuncodules in
the reference directory for this level. Whenever you do aBrtbmmand
which changes the project level tracking file entry for arseumodule,
(esp., when you update a TLIB library with a new version fds tlevel),
TLIB will also refresh the associated reference copy of therse file in
the reference directory.

Note: see also thREFSUBDIR configuration parameter.

144

=y (Full) indicates that this level is intended to contain d $&it of source
modules. Promoting (with the AP command) from this level wdpythe
source module into the promote level, but the module will s& listed in
this level.

=N (Sparse) indicates that this level is intended to contaily ¢imose

source modules which differ from the ones in its parent leveromoting
(with the “AP” command) from this level wilinovethe source module in-
to the promote level, deleting it from this level.

The default isf=N" (sparse).

Note that thef= field has no effect upon the “top” project level (the level
with noi= orp= fields).

a= & s= These two similar fields which tell TLIB what you would like
done when you store a new version of a source file with the U aoi-
mand, in two different situations:

1) when the source file was previously unlistethgdther; and
2) when the source file was previously only listedni= level.

a=... (Add-new field) tells what you would like done when a nesurce
file (one which was not previously listed in either the cuatrproject level
or any predecessor level) is stored with the U @okhmand.

There are three choicesss , No, andQuery ; see below.

s=... (Store-to field) tell what you would like done when a negrsion of
an old source file is stored with the U (update) command, batsource
file was previously listed only in an “inherits-from” (i=gtel, not in the
current level. The new version can be listed in either the(sijllevel, or
the new (current) level.

There are four choicesNew, Old, Query, and query-ifchanged; see be-
low.

Warning: “LOCKING B (branch locking) should only be used with project
levels for which s=new has been configured in theEVEL configuration
parameter, or which have g= (promote) linkage, or which have n&
links configured, since only the current projectelewill be locked.

145

a=y (Add-new field = Yes) indicates that if a module is checkedda the
U (update) or N (new-library) command, and the module watheeipart
of the current project level nor inherited from a parent Idue., it was an
“untracked module™) then the module will be added to the entrproject
level.

a=n (Add-new field = No) indicates that if an untracked module is
checked-in via the U (update) or N (new-library) commanentthe mod-
ule will not be added to any project level. Thus, this module will remain
untracked (except in the local tracking file).

If you configure a=n, you can still use the A command (add/alter projlev)
to add your source files to the current projecelev

Note: configuring TRACK Nis more efficient thanTRACK Ywith a=N in
the LEVEL parameters, sinc@RACK Nwill avoid the overhead of reading
the tracking files. So, you may wish to use /ENDIF blocks to exclude
frequently referenced but untracked files, even if you alse a=N in the
LEVEL parameters.

a=q (Add-new field = Query) indicates that if an untracked madig
checked-in, TLIB will query the user about whether or notdd she mod-
ule to the current project level tracking file. Tépgestion asked is,

Module filename.extvas previously untracked. Do you wish t
0 add it to project level name(y/n)?

“a=Q’ is the default, unless your current work directory is alse turrent
project level reference directory.

Note: If your current work directory is the current projeevél reference
directory, then thes= field is ignored, and TLIB behaves as #=y and
s=new were both configured.

s=new (Store-to field = New) indicates that if a module was foundaim
“inherits-from” (i=) level, then when the module is checked-in with the U
(update) command, it will be added to the currémew”) level.

Note that this is always what TLIB does with modules found ip=a(pro-
mote-to-and-inherit-from) level, regardless of shefield.

146

Also, note that if you are usingOCKING B(branch/level locking), then
you should also configure=new on the LEVEL configuration parameters,
since TLIB will only lock the current level.

s=old (Store-to field = Old) indicates that if a modwas found in an “in-
herits-from” (=) level, then when the module is stored the new version
will be recorded in that level (rather than the current Igvehis is typical-

ly specified for “customization” levels, where most modulare not
customized, and the programmer would like changes to thasiuilas to

be stored in the “standard” levels. This field should not pecified unless
you have also specified an inherits-from) level: this field does not af-
fect a “promote-to” =) level.

s=Q (Store-to field = Query) indicates that TLIB should ask tiseuto de-
cide whether to add an “inherited” module from an inhents (=) level
into the current (“new”) project level, or, instead, put &dk into the origi-
nal (“old”) project level in which it was found. The questi@sked is
usually:

Do you wish to add module FILENAME.EXT to pro ject level
NEWNAME? Choose “Y” for yes; or choose “N” to update t
he
entry in project level OLDNAME; or press ESC t o enter i

in neither. (y/n/Esc)?

However, if the correct version number is already listechia i= level for
this source file, then TLIB just asks whether you wish to add ithe cur-
rent level. This usually happens when the U command repbatsthere
were “no changes” in your source file, so that & mersion is not created.

s=Q is the default (but if your current work directory is also tberrent
project level reference directory, TLIB behaves asifNew, regardless of
how you've configured it).

s=C (Store-to field = query-if-Changed) is a “smarter” vargation s=Q, in
which TLIB tries to avoid asking you questions if it seems iolng how
you would probably answer.

s=C is just like s=Q when you are storing a new version of your source file
with the U (update) command.

However, if there were no changes to the source file, so tieatx com-

mand doesn't store a new version, and the version number @n th
predecessorli«) level is already up-to-date for this source file, then TLIB

147

will not ask you whether you wish to add the source file to theent lev-
el.

Instead, what TLIB does in this case is determined bydhdield. If a=N

or a=Qis configured (the usual case), the source file will not bdeatito
the current level. Ifa=Y is configured, TLIB will go ahead and add the
source file to the current project level, but offilizy is configured.

Note #1: If your current work directory is the current prdjézvel refer-
ence directory, then the= field is ignored, and TLIB behaves assfnew
anda=y were configured.

Note #2: configurings=0ld or s=Q should also affect the operation of
branch locking (LOCKING B) when a module is E(xtracted) from aiz
(inherits-from) level, since TLIB should lock the modulethat level in-
stead of the current level. However, this is not implemeimetLIB 5.50.
Instead, TLIB 5.50 always locks the current level whepCcKING Bis con-
figured, so you should always configueeNew On your LEVEL parameters
if you USELOCKING B .

b=1 (Branch = 1-deep) indicates that this project level corgtamstomiza-
tions which should not normally be stored as “trunk” (intdgeersion
numbers. You will probably also want to specifgnn, to specify a char-
acteristic branch number for each level at which you've igoméd b=1;
see below.

b=0 (Branch = 0-deep) is the default, which allows new versiandé
stored as trunk (integer orajor:minor) version numbers where possible.

c=mm (Created branch number preference) You can configurery’
(wherenn is an integer) to tell TLIB what branch number you prefer be
used when TLIB is creating a new branch versiore “Hranch number” is
the (parenthesized) number of the branch, not the numbédreo¥/¢rsion
within the branch.

If TLIB creates a new branch to store a new version of any filethis
project level, TLIB will try to use nnn as the branch numbaer, {(bbranch
nn already exists, TLIB will create the next-higher unusednbtaversion
number).

This is for aesthetics; by using the: option, you can make all the branch

versions for a particular level share the same branch nuifthengh the
branches may still sprout from different trunk vens).

148

Suppose, for example, that you use tbeeommand to store a revision to
version 6 of FOO.C, but version 7 of FOO.C already exists. Then TLIB
must create a branch version from version 6. If, in tt®VEL parameter
for the current project level you have specified1s, then TLIB will cre-
ate the new branch version axi5)1 "

You may want to usec=nn in combination with theb=1 option (which
forces branch creation).

For example, suppose that TLIB.CFG contains:

LEVEL n=STD d=H:A\TLIBLEVS\STD\ a=Y
LEVEL n=CUST1 d=H:A\TLIBLEVS\CUST1\ i=STD b=1 C=10
LEVEL n=CUST2 d=H:A\TLIBLEVS\CUST2\ i=STD b=1 c=20

If the current version ofBAR.C is 7, and you customize it for levetusTy,
then the new version created by the(update) command would (by de-
fault) be 7.(10)1 , instead of7.1 [7.1 is equivalent to7.(1)1 , since the
default branch number is].

w=N (Non-Writable level) Configurew=N' to tell TLIB that this is a “non-
writable” project level, at which the U (update)das (check-out for modi-
fication) commands are prohibited. This is providedthe convenience of
users who must comply with ISO 9001, which mandates a 3-jgnaghote
structure, and prohibits direct updates to the upper levétsler the 1ISO
9001 scheme, all work must be done at the lowest project,lewvel then
promoted to the upper levels with thie command.

w=Y (Writable level) This is the normal setting and ttefault.
Here's an example of how you might ugen’:

TLIB.CFG contains:

LEVEL n=REL d=H:\TLIBLEVS\REL\ w=N
LEVEL n=TEST d=H:\TLIBLEVS\TEST\ p=REL w=N f=Y
LEVEL n=DEV d=H:\TLIBLEVS\DEW\ p=TEST i=REL f=Y a =Y

In this example,DEV (the development level) is the “lowest” level (with
the highest version numbers), which is where the developmenk is
done. All Updates must be done at tibevlevel. It promotes toTEST and
inherits fromrREL .

The “upper” levels REL and TEST) are non-writable, because=N' had
been configured.

149

The “f=Y” used in this example means that the levels are Vfull
populated” (not sparse). For details about why you mightepreparse vs.
fully-populated levels see p. 171.

Here is an example of severeVEL statements from a TLIB configuration
file which defines a fairly complex set of sevepjpct levels:

! Define 3-level promote chain (DEVELOP -> TEST -> REL2)
! for the “regular” version, which also “chains-ba ck”

! (inherits from) the previous release (REL1):

LEVEL n=DEVELOP d=f:\stddw\ p=TEST i=REL2,REL1 s=N EW

LEVEL n=TEST d=f:\test\ p=REL2 i=REL1 s=NEW
LEVEL n=REL2 d=f:\release2\ i=REL1 s=NEW

! Define the previous (now stable) release level, REL1:
LEVEL n=REL1 d=f:\releasel\

! Define a 2-level “promote-chain” (CUST1DEV -> CU ST1R2)
! for a customized variant of the regular version:

LEVEL n=CUST1DEV d=f:\c1dw\ p=CUST1R2 i=CUST1R1,TEST,REL2,REL1 b=1 c=20
LEVEL n=CUST1R2 d=f:\c1r2\ i=CUST1R1,REL2,REL1 b=1 ¢=25 s=NEW

! The previous release (CUST1R1) of the customized variant:
LEVEL n=CUST1R1 d=f:\cust1rl\ i=REL1 b=1 ¢=15 s=NE w

Here's a drawing of the relationships between the projeeidedefined in
the above example, with the “oldest” (most staldegls on the right:

DEVELOP |===>| TEST =— REL2 ——>| REL1
> > >

CUSTI1DEV CUSTI1R2 (- CUSTI1R1

In this drawing, the boxes indicate the seven project levieésdouble hor-
izontal arrows indicatep= (promotes-to-and-inherits-from) relationships,
and the single arrows indicate (only-inherits-from) relationships.

This diagram is inexact, since it does not show the compistef i= (in-
herits-from) library levels which TLIB searches when loudi for a
module. However, these would normally be defined in “chdif®r in-
stance, if level DEVELOPinherits from TEST, and TEST inherits from

150

REL2, then DEVELOPwould normally be configured to inherit fronREL2
(as a “second choice”) as well as frogsT.

The actual levels & the order in which they are examined byBTisl de-
termined by thep= and i= fields, and the order in which you have
specified the levels in the field.

Promote chains

Promote chains implement a classic “staging” approachftaace project
management, with successively “higher assurance levelstaming suc-
cessively more rigorously-tested (but older) versions.nsider the
following promote chain:

DEVELOPMENT =——>TEST ——> RELEASE1

In this example, a new version of a module would be first stdrethe
DEVELOPMENTevel, then it is promoted to th@EST level, and then pro-
moted to theRELEASEL level.

Note that the “highest” levelRELEASE1 in our example) contains the old-
est modules and, consequently, the lowest versiombers!

We would configure the three levels like this:

LEVEL n=development d=d:\dew\ p=test i=release 1
LEVEL n=test d=d:\test\ p=releasel
LEVEL n=releasel d=d:\rel1\

When programmers are working on “rough” code, they would BRO-
JLEV to DEVELOPMENT This could be either by a special TLIB
configuration file or by configuring PROJLEV %!!CURRENTY% and requir-
ing the programmers toSET CURRENT=DEVELOPMENMefore running
TLIB (or, more conveniently, putSET CURRENT=DEVELOPMENM their
autoset file).

When a programmer is satisfied that his changes are cotreaises the
AP command to “promote” the changed modules to the next |@eetl
TESTin our example).

When someone responsible for testing the modules atTeer level is
working, they would setPROJLEVi0O TEST. When they are satisfied that

151

the modules are adequately tested, they promote them toekielevel
(level RELEASE1 in our example).

Note that there is nothing magical about the nand&YELOPMENTTEST

and RELEASE1 nor about having three assurance levels. You can name
your levels anything you wish, and you can have as many orwasofe
them as you wish, within reason. (But if you have a promotercten lev-

els deep, you should probably reexamine your gjydte

The evolution of LEVEL structures

When the RELEASE1level of code is actually shipped, development begins
on the next release. At this time, all modules (source fites)e been pro-
moted to theRELEASEL level.

The goal is to develop a new, improvedELEASEZ level of code. Some
of the modules will be the same as RELEASE3 but some will be new or
changed.

The plan is to use the ol®EVELOPMEN&Nd TEST levels for the new code.
Modules will be promoted from th@EVELOPMENTevVel to the TEST level,
as before, but then they will be promoted from tmesT level to the RE-
LEASE2level (instead of theRELEASE1level). So, the newRELEASE?level
must be inserted in the chain “above” theeST level (so that promotes
work correctly) but “below” the RELEASE1level (so that RELEASE2can
“inherit” the unchanged modules froRELEASE1).

The new chain looks like this:

DEVELOPMENT =——=>TEST =——> RELEASE2 ——> RELEASE1

The single-line arrow connectinRELEASE2t0 RELEASElindicates that
you cannot actually promote modules froRELEASE2t0 RELEASE1(be-
cause RELEASE1 has been shipped and is stable), but tiRELEASE2
“inherits” some unchanged modules fremLEASEL.

We would change the configuration to look like this

LEVEL n=development d=d:\dew\ p=test i=release?2 sreleasel
LEVEL n=test d=d:\test\ p=release?2 i=releasel

LEVEL n=release2 d=d:\rel2\ i=releasel s=new

LEVEL n=releasel d=d:\rel1\

152

(Note that the order in which the fourEVEL configuration parameters are
placed in the TLIB configuration file is of no cawgience.)

In this example, the module first exists on tiRELEASE1level. Then it is
checked-out, modified and stored (with the TLIB “U” command the
DEVELOPMENfevel. Then, when the programmer is satisfied with the mod-
ule, it is promoted to theesT level.

When testing is complete, the module is promoted again,dRELEASE2
level, where it stays.

A Larger Example

Other uses for “linked” levels are also possible. For insé&rin the fol-
lowing diagram, double arrows indicate a promote chain, aimgjle
arrows indicate “inherits-from” linkages used farstomizations:

DEVELOPMENT ~ —=>TEST —
T L
[—> STOREL
CUSTIDEV ~ ——>CUSTIREL —! —>
CUST2DEV ~ —> CUST2REL ——

In this example, there are three assurance levebs fstandard” version of
the software, plus two customizations of the standard eerseach of
which has two assurance levels.

We would configure the seven levels like this:

LEVEL n=development d=d:\dewv\ p=test i=stdrel
LEVEL n=test d\d:\test\ p=stdrel
LEVEL n=stdrel d=d:\std1\

LEVEL n=custldev d=d:\cust1\ p=custlrel i=stdrel b=1 c=10
LEVEL n=custlrel d=d:\c1rl\ i=stdrel b=1 c=15 s= new
LEVEL n=cust2dev d=d:\cust2\ p=cust2rel i=stdrel b=1 c=20
LEVEL n=cust2rel d=d:\c2r1\ i=stdrel b=1 ¢=25 s= new

Another Example

153

In the following diagram, double-width arrows indicate amote chain,
and single-width arrows indicate customizations:

DEVELOPMENT =

>
——>TEST ——
—> _I—>

— e STDREL
CUST1DEV =———> CUSTIREL >
| |
CUST2DEV =———> CUST2REL
As in the previous example, there are three assurance l&ress “stan-
dard” version of the software, plus two customizations o #tandard

version, each of which has two assurance levels. Howevéhjsnvariant,
the chaining is slightly more complex.

LEVEL n=development d=d:\dev\ p=test i=stdrel
LEVEL n=test d=d:\test\ p=stdrel
LEVEL n=stdrel d=d:\std1\

LEVEL n=custldev d=d:\custl\ p=custlrel i=test,st drel b=1 c=10
LEVEL n=custlrel d=d:\c1rl\ i=stdrel b=1 c=15 s=n ew
LEVEL n=cust2dev d=d:\cust2\ p=cust2rel i=test,st drel b=1 c=20
LEVEL n=cust2rel d=d:\c2rl\ i=stdrel b=1 c=25 s=n ew

How does this differ, functionally, from the preumexample?

In this example, the customized “development levelsU4TiDEVand
CUST2DEY derive from a less stable level of the standard version (the
TEST level). Thus, if CUSTL1DEMS the current project level and you extract
a module which has not previously been customized (thatiis niot listed

in CUST1DEVOr CUST1REL, then you will get the version currently in the
TEST level (if it is not in the TEST level, it will be retrieved from the
STDRELlevel, as before). If the chaining were set up as in the previx-
ample, and you extracted a not-yet-customized module, yloenwould

get the version listed i®TDREL, rather tharmmesT.

154

Administering Multiple Project Levels

It may not always be obvious which project levels should @nbhes, and
what you should do when you need another project level. Tdutien is
intended to advise you.

Scenario #1a:

Development level + Release level
For small to medium-sized projects
(Sparse REL2)

You started your project with just one project level, callegL1, which
contains the trunk versions of your preliminary specifimas and source
code while it is under development. Now, however, the codedeking,
and you are ready to “release” what you have, either to yostocoers or
to an internal Test Department for further testing. As bygpres come in,
the development team will have to give priority to fixing theblems. In
the meantime, however, they will begin development of the nejor re-
lease.

Recommendation:

First, be sure you've updated all the TLIB libraries with theest level of
code (checked-in all modules).

Since this is release time faREL1, you need to use the S command to cre-
ate a “snapshot” version label file which records the rewishumbers for
each source file at this point in time - otherwise, it will ro@ easy for you

to recreate this version in the future. (Actually, since y@ve only one
level, you could simply save a copy of the tracking file, ead of using
the S command.)

Hint: you may wish to store the version label file into a TLiBrhary of its
own.

155

Now you need to “split”’REL1. That is, you need two project levels: one to
track fixes to the new release, and the other to track the regldpment
work for the next major release.

Change your TLIB configuration file to describe tWewels instead of one:

old:

LEVEL n=REL1 d=f:\rell\ a=Y r=Y

New:

LEVEL n=REL1 d=f:\rell\ r=Y b=1 c=5
LEVEL n=REL2 d=f:\trunks\ a=Y r=Y i=REL1 s=new

Initially, the two levels are effectively the samegL1 will be a fully-pop-
ulated more-or-less-stable level which contains the seldaversion,
perhaps with bug fixeREL2 will be the “rough” level where the develop-
ment team stores the new, incomplete enhancements whicavwsittually
become the second release of your product.

The “main” long-term development path is the work on the meajor re-
lease REL2), so that should be the “trunk” level, which means that the
released versionrR€L1) should now be tracked with a “branch” project
level. That's why we configureg1 for theREL1 level.

We can represent the inheritance chain like this:

REL2 —>REL1

Initially, REL1 and REL2 effectively contain the same versions of each
module (sinc&EL2 inherits all “missing” source files froREL1).

When you make modifications to the modules in tReL2 level, the new
versions of the source code will be stored as trunk versionisa TLIB li-
braries.

However, if you make modifications to modules ie®EL1 level (say, for
fixing bugs), the new versions of the source code will beestas branch-
es in their TLIB libraries. This happens automatically hes=aof theb=1
field in theLEVEL parameter fOREL1.

156

An Alternate Recommendation:
You can defer creation of the n®EL1 project level, if you wish.

If you think that you may not need to do maintenance on thisas#, then
you needn't create the newEL2 project level at this time. Just be very
sure that you save a version label, and you can keep usingdhem 1
level for work on your second release (though the choice ofasais obvi-
ously poor).

Then, if it later develops that you need to create a projed lfor mainte-
nance ofREL1, you can do so by creating a new level, and then initializing
it with the saved version label files. For example, if youvesh snapshot
version label file is calledrREL1V1.SNP, then you can populate the new
level with the old versions be making the new level your cotrigroject
level and using the A (add/alter project level) coamd like this:

TLIB A @REL1V1.SNP

Note that REL1V21.SNP can be either a snapshot file created with the S
command, or a saved & renamed copy of the oldBWORK.TRKtracking
file for REL1. TLIB will work equally well with either one.

Modules which are unchanged from the first release need eqdabt of
therReL2 level; they will be “inherited” from the olHEL1 level.

Scenario #1b:

Development level + Release level
For small to medium-sized projects
(Fully-populated REL2)

This is an alternative solution for the same scenario desdriabove as
“Scenario #l1a...”.

Rather than makingreEL2 inherit from REL1, you can simply set UREL2
to be another fully-populated project level.

One way to do this is to use COPYTRAK as described in (D2, p) 133

make a new, fully-populated tracking file fREL2 . Then use POKETRAK
(or a text editor) to change the=REL1 to n=REL2 on linel (be sure that

157

you don't change the length of the line -- it must be exacth 12
characters).

Alternately, you can set UREL2 as described in scenario #1a, above, and
then use the AF command to fully-populate the rewelt

TLIB AF *.*

You can, if you wish, also convert from a fully-populatetL2 level to a
sparseREL2 level. First, you must first add air-REL1 field to the LEVEL
configuration parameter foreL2 (if it isn't already there). Then you use
the ADF command to remove frorREL2 those modules which are defined
as the same version REL1 :

TLIB ADF *.*

Scenario #2:
Development level + Test level + Release level
For large projects

In this scenario, you will use multiple project levels to ilmment different
“assurance levels.”

The “lowest” assurance level in this example i$ecHfRUNKS. It is similar
to the REL2 level of scenario #1, abovaRUNKSis used for “first try”
rough code, for main-line development.

There is no guarantee that code from theuNkslevel is working at any
given time.

A TEST level will be used for modules which the developers beliene a

working correctly; this level is the level of code which thest Depart-
ment tests for its “system tests.”

A third level, called RELEASE is used for modules which the Test Depart-
ment has “blessed.”

TRUNKS ==>TEST =—> RELEASE

158

(Note: there is nothing sacred about this three-level aira¢cyou may use
as many or few assurance levels as you wish (30 is the limitnowe than
four or five would be very unusual.)

As in scenario #1, the trunk versions should berfam-line development.

The TESTlevel is a “promote-to” project level fronTRUNKS Because the
main development process begins at ttRUNKSlevel, any changes made
directly at the TEST level should be branches. Therefore, you may want to
use the b=1" and “c=nn" fields in the LEVEL configuration parameter for
TEST.

Similarly, the RELEASElevel is a “promote-to” level fromTEST. You will
create theRELEASEproject level for the first time when the firstesT ver-
sion has “passed” system test.

Questions & Answers for Scenario #2:
Q.1: When should a snapshot version label filereated?

A.1l: Whenever you “ship” a version, and whenever you thinki yost
might possibly someday have a reason to need to know whatwakeivel
of code. When in doubt, save it! You can avoid a proliferatafrsaved
snapshot files by storing them in a TLIB library.

Q.2: What happens when a bug is discovered in the developTROKKS
level of code?

A.2: This one is easy. The developer makeRUNKsShis current project
level, then he usesTtiB E” to extract (check-out) the defective source
file(s) into his work directory (perhaps\woORK\), he fixes the bug, and he
uses TLIB U” to store the fix. TheTRUNKdevel's tracking file is automat-
ically updated. Note that the current/work directory sldobk a private
directory used just by this developer, perhaps on thedrive. It should
not be the project level's reference directory.

Q.3: What about a bug discovered in tlesT level of code? The bug then
presumably exists in both thesT level and th@RUNKS level.

A.3: You have two choices:

a) You can make the fix directly in th@esT level. In this case, you (the
programmer) makeTEST the current project level; then usgLiB E” to

159

extract (check-out) the defective source file(s); then‘uses U” to store
the fixed version.

The TEST project level tracking file will be automatically updatedow-
ever, you'll eventually need to migrate the fix back “dowmita the
TRUNKSlevel using the M (migrate) command, and perhaps manualy co
rect any “change collisions” which DIFF3 reports.)

b) If the TRUNKS(development) level has not incorporated any new code
which would preclude its inclusion in theesT level, you should probably
make the fix on theTRUNKsSlevel, then promote the fix to th@esT level
with the AP command.

Q.4: What about a bug discovered in tReLEASElevel of code? The bug
may also exist in theEST andTRUNKS levels.

A.4: You have three choices:

a) You can make the fix in theRELEASElevel, then later migrate it down
into theTEST andTRUNKS levels with the M (migrate) command. Or,

b) You can make the fix in theresT level, then promote it (with the AP
command) to theRELEASE level, and later migrate it down into the
TRUNKSevel. Or,

¢) You could even make the fix in th#@RUNKS(development) level, and
then promote it to theTEST level, and from there to th&RELEASElevel.
However, before doing this you should verify that there ishirg in the
TRUNKSevel modules which would “break” thiReLEASE level code.

Scenario #3:
Semi-custom Software

In this scenario, you will use multiple project levels to mtain cus-
tomized versions of the software.

If you're read scenarios #1 and #2, above, this one may sesptesiThe
TRUNKSlevel will be for your “standard” version. You will create eror
more “customized” versions by creating branch project le¥eom the
TRUNKSlevel.

160

When the time comes to bring a particular customized versrio the
level of the standard version, use the M (migrate) commanddib the
TRUNKSevel changes to the branch levels.

If, as in scenario #1 or #2, you have more than one “standamdore (of
differing vintages), then you can create the cugtethversion from any of
the “standard” versions (e.REL1 OrREL2 in scenario #1).

Using Load-Time Conditionals

Sometimes you may have two or more different work envirors)eso
that you need to configure TLIB two or more ways. Tirr directive is
ideal for this.

For example, a TLIB user we know has several different prtagjweach of
which gets slightly customized for each of perhaps as mar§Oasr 60
customers. A particular developer may work on several ptgjiand on
both standard and customized variants of each.

Warning: the following description of how we set up TLIB for this cus-
tomer assumes familiarity with TLIB's named project levedananisms. If
you're new to TLIB, you'll probably find it befuddg.

This customer has a work directory for each variant of eachlyct, in a
tree like this:

c:\work\product1\std\ “standard” directory for product 1

c:\work\product1\cust1\ 1st customized directory for product 1

c:\work\product1\cust2\ 2nd customized directory for product 1
etc.

c:\work\product2\std\ “standard” directory for product 2

c:\work\product2\cust1\ 1st customized directory for product 2

c:\work\product2\cust2\ 2nd customized directory for product 2
etc.

The goal was to configure TLIB so that the current projecelelibrary
path, etc. would all be deduced by TLIB automatically frone tturrent
work directory, all with a singleTLIB.CFG file (to be placed in the TLIB
executables directory). Here's an excerpt fronTthecrG file:

I Get name of the current directory, and of the di rectory
I'above it. The current directory is the customer name,

161

! and the directory above it is the product name:

set CUST=%tlibcfg:workdir:-1%

set PROD=%tlibcfg:workdir:-2%

set REFDIR=d=\\acme\sys\levIs\%PROD%\%CUST%
set STDDIR=d=\\acme\sys\levis\%PROD%\std

! There must be an "ordinal.inc" file in each pro j level

! reference directory, with a single line like thi S:

! set ORD=20

! That sets the branch noumber for customized vers ions of

I each module stored at the level. In effect, the ordinal
l'is a customer number. We recommend that the ordi nals NOT
! br adjacent integers. Instead, space them by 5 or 10

! (e.g., use 5, 10, 15, 20, etc.)

!'In "standard" (%PROD%_std) levels, the ordinal s hould be:
! set ORD=1

include %REFDIR%\ordinal.inc

I There is just 1 set of library files for all t he custom

! (and std) variants of each product, of course:
path \\acme\sys\libs\%PROD%\

I Current proj level is determined by current di rectory:
projlev %PROD%_%CUST%

I Standard level (which might also be the curren t level):
level n=%PROD%_std d=%STDDIR%\ b=0 c=1 a=y

I Last, if current level is a customized level, we must
! also configure the LEVEL parameter for the curre nt level:

iff (%CUST%' nei 'std’)
level n=%PROD%_%CUST% d=%REFDIR%)\ i=%PROD%_std b=1 c=%!ORD% a=y
endif

For more information on load-time conditionalsSF{/ELSE/ENDIF) see p.
323.

162

EBF command: Fast-Extract
(extract only changed files)

TLIB 5.50 adds support for a “fast extract” operation, irded for quickly
refreshing (“freshening”) browse mode files in your workidirectories
and reference directories. You use it by adding the “F” apto your ex-
tract commands, as in these examples:

TLIB EBF @TLIBWORK.TRK or
TLIB EBFS <wild-card-spec-or-@filelist> *

Read “EBF” (or, equivalently, “EFB”) as “Extract/browse#t”. Read
“EBFS... *" as “Extract/browse/fast/latest-trunkrgmn”.

For “fast extracts” to work, you must be using version tragk{that is,
you must have configuretRACK Y or TRACK M).

If you are using check-in/out locking (e.g.OCKING Y}, then you'll proba-
bly want to configure READONLYB Yand REPLROBR Yto use this
command to refresh browse mode files in your war&atory.

This command is somewhat symmetrical with the “UF” (fast aijg)l com-
mand which, if you work alone (and withOCKING Nconfigured), makes
it easy to “freshen” your TLIB libraries by storiygur latest changes.

However, unlike the UF command, the EF (fast extract) comindoes
not work by comparing file dates. Instead, it works by set@md examin-
ing three fields, V=", “I= " and “t= ", in the tracking files {LIBWORK.TRK).

Also, unlike the UF command, fast extracts are mainly useatkimorked,
multiple-programmer shops. Such programmers normally hasking en-
abled, so they normally use “UO” (“update owned files”) et of “UF"
when they want to update/check-in all changed.files

Note: the old FASTEBFT.BAT kludge is obsolete in TLIB 5.50, thanks to
major performance improvements in the EBF command.

163

Reference directories

A reference directory is the directory associated via thefield of the
LEVEL configuration parameter with a named project level. By difdhe
reference directory contains only theBWORK.TRK file, so the name “ref-
erence directory” is, perhaps, a bit misleading.

However, if you wish, the reference directory can also donteeference
copies” of a complete set of source files for thejgxt level (which is why
we call it a reference directory). TLIB 5.50 can automaticedaintain ref-
erence directories for any or all of your projestdls.

If you wish for TLIB to keep up-to-date reference copies ofiygource
files in the reference directories for one or more projeetlg, simply con-
figurer=y in theLEVEL configuration parameter for those levels.

For project levels withr=y configured, TLIB will automatically copy the
source file into the reference directory whenever you upda¢ TLIB li-
brary with a new version at that project level.

Note that this feature doe®ot respect theOLDDATE Yconfiguration pa-
rameter; the reference copy always gets the current dage/go that your
MAKE utility can correctly rebuild dependent modules. Tlésa subtle
difference between using r=Y and using the EF or EBF commaritht

plement reference directories.

See also theREFSUBDIR (below) and FORCEREFRp. 306) configuration
parameters.

164

The REFSUBDIR configuration parameter.

Syntax:

REFSUBDIR directory- name

This configuration parameter can be used in combinatioh waiit IF /EN-
DIF block when you are not usingrREeDIRS Ybut you need to keep the
reference copies of your include files in a different dicggtfrom the ref-
erence copies of your main source files.

Why would you need to do this? The usual reason is a probleim thvé
directory search order used by most compilers when readirigde files.
Usually, when searching for an include file included by atipatar main
source file, the compilers first look in the directory cdntag the main
source file.

Unfortunately, if the main source file is a reference copyl ¢he include
file is one that you have checked-out into your personal wdirkctory
and have modified, then that search ordewisng! It will cause the old,
unmodified version of the include file to be used insteadhaf bne that
you are trying to test! For reference directories to workpenty, youmust
somehow prevent the compiler from reading the referencg ob@n in-

clude file when you also have a modified version of that ideluile

checked-out into your work directory.

Note that this same problem occurs when you have “custoiniZdevels
for the support of semi-custom software versions. The daisglat a cus-
tomized include file may not be used when compiling a mainrc®dile
which has not been customized.

If you are programming in C, you may be able to avoid this olowsx
compiler behavior simply by usingcangle braces instead of " quote
marks in your #include directives (though this does not work for all
compilers).

Alternately, you can separate your include files from yowainmsource
files by configuring eitherTREEDIRS Y (if you also keep them separated
into a “tree” of subdirectories in your work directories), BEFSUBDIR(if
you keep all the files together in one work diregto

165

For example, if you are programming in C, you migbmfigure:

LEVEL n=main d=f:\main r=Y
REM - Ref copies of header files go in F:\MAIN\IN C subdir
IF *.h
REFSUBDIR inc
ENDIF
PROJLEV main

Note that (despite theRenark in that example) theREFSUBDIRparameter
applies toall of your project levels; you cannot configureREFSUBDIRfor
just one project level (unless, of course, you have only angept level).
Thus, for example, if you were to configureREFSUBDIR INCL’, then
you'd also need to create ancL\ subdirectory in each of your project
level reference directories (except for project levelschtdon't haver=y
set in tha.EVEL parameter).

However, there are several caveats to remember w$iegREFSUBDIR:

a) Do not useREFSUBDIRIN combination with TREEDIRS Y(doing so will
confuse TLIB).

b) REFsuBDIR will not solve the problem of the compiler reading the
wrong include files if you “nest” your include directivedét is, if your in-
clude files include one another)! (Think about it.)

c) If you manually refresh the files in ®E FsuBDIRsubdirectory, be sure
that you do so only when thevoRKDIRdirectory (by default, the current
directory) is the main reference directory for that projestl. Otherwise,
TLIB will not find and use the proper project level trackingef and it will
create a bogus work directory tracking file in yoeREFSUBDIRsubdirecto-

ry.

There are also two special forms of tlEFSUBDIRconfiguration parame-
ter, (and these formmanbe used in combination WittREEDIRS Y):

“REFSUBDIR nul” prevents storing reference copies altogether. (Think of
nul as the “bit bucket”).

“REFSUBDIR (Or “REFSUBDIR .") disables REFSUBDIR just as if you had
not configured it at all.

These special forms can be used, in conjunction WHYENDIF blocks, to
enable and disable the creation of reference cdépiesrious files. For in-

166

stance, the following could be used if you wanted referemgees only of
.c files, and not anything else:

REFSUBDIR nul
IF*.C

REFSUBDIR
ENDIF

167

A (add/alter project level)
and AP (promote) commands

These commands are used with TLIB 5.5x's named projectdeeek.a.,
advanced version tracking).

Most of these commands are working in TLIB 5.54. However, tom-
mands marked with asterisks do not yet work; they are plaforea future
version of TLIB.

The “A...” commands are:

A command:Add-to/Alter a project level or file list

Legal suffixes ar¢d,F,P,S,U,X] (plus search mode suffixes):

A oOrA0- Add files to the current project level

AP - (with Promote suffix: add to promoge=) level)

AS - (with Specify-version suffix: specify version nunmpe
AU* - (with Undo suffix: go back to previous version nwmp
AX - (with eXclude suffix: mark files as excluded=X")

AD - (with Delete suffix: delete from current projectdd)

AF - (with Fast suffix: populate a sparse project level)
Combinations:

APU* - (undo promote)

ADF - (depopulate (make sparse) a project level)

APX - (mark eXcluded file as eXcluded in the promote lpve

(**” means commands planned for a future version dBYL

Note #1: Default wild-card search modeigall project levels) except for
AP and AD, for which the default search moderigthis level).

Note #2: IfPROJLEV is not configured, these commands won't work.

The A (add/alter project level) command

The A command is used to add modules to the current project levds. T
is mainly for those who have configuregkN in their LEVEL configuration

168

parameter, so that modules are not automatically added etactinrent
project level by the N (new library) and U (updhieary) commands.

Note:it is frequently useful to specifiy thev (workfiles) search mode suf-
fix with theA command (i.e., make it threv command).

The AS (add/alter project level, specifying versioncommand

The AS command is just like the A command, except that it algou to
override (“specify”) the default choice for the initial \son number that
will be recorded in the project level tracking fite the added modules.

Note that if you have configured TLIB for automatic refererdirectory
refresh (t=y ") in the current project level, then the A and AS commands
will also cause an automatic extract of the source file(&) the reference
directory.

The AX (eXclude source file) command

The AX command is for handling “obsolete” source files, fdnieh there
are TLIB libraries, but which are no longer used in your peogr Use the
AX command to mark a module as “excluded” (obsolete) in theeni
project level (though it may still be in use in etlproject levels).

Under most circumstances, the E (extract) command will ntiaet ex-
cluded files that are specified by wild-cards. To make th@Emand find
and extract the files anyhow, use the S suffix to specify iexplersion
numbers (e.g# for latest trunk versions).

Note that if you have configured TLIB for automatic refererdirectory
refresh, then the AX command will also (in mostesgsrase the reference
copy of the source file from the reference directory. (Impéatation note:
eXcluded source files are indicatedvax in the tracking file.)

The AD (delete from project level) command

To remove a module from the current project level, use the AElete)
command.

169

The AD (delete) command is similar to the AX command only for a
project level which has no ‘parent’ (i= or p=) levels. If thareent level
has a parent level, then the two commands have different effects.

The AD command effectively “undoes” the A command. Thusgmjiou
use the AD command to delete a module from the current prigeet, the
current version of that module will be determined by the potaror inher-
its-from levels.

This is not true of the AX (exclude) command. The AX commandssd
to indicate that a module is obsolete (not used at all) at timeent project
level. Thus, the AX command effectively “blocks” the moduiie®m

TLIB's view, even if the module is still listed in a parent &vThus, the
“A” (all levels) wild-card search mode will not find an exadad source
file, regardless of whether the source file ilisin other levels.

The AD (delete) command can only be done for source filesatatisted
in the current project level. The AX command, however, cardbee for
any source file.

The AP (promote) command

The AP command adds or changes a module in the current “pedrist
el, as determined by the= field of the current project level'S EVEL
configuration parameter. That is, it “promotes” adule.

If you have configured TLIB for automatic reference diragtoefresh
(r=Y) in the promote level, then the AP command will also causewto-a
matic extract of the source file(s) into the promote leveéserence
directory.

Note: the AP command cannot be used to promote a module which i
locked (checked-out for modification) at the promote-twele Further-
more, if LOCKING Yis configured, then a module which is lockedaaty
level is effectively locked aall levels. Therefore, if you want to be able to
promote a module which someone has checked-out and lodkexd,ybu
should configure OCKING B (branch locking) instead @bCKING Y .

The APX (promote-exclude) command

To promote an ‘excluded’ (obsolete) module, use the APX r{prie-ex-
clude) command. This will mark the file as excluded in therpote level

170

instead of the current level (or, ifLEVEL ... =Y " is configured, the APX
command will mark the module as excluded in the promote lagelvell
as the current level).

Note that a source file must already be marked as excluddtkicurrent
level (via the AX command) before you can use the APX command t
mark it as excluded in the promote level.

Full vs. Sparse project levels:

The behavior of the AP (promote) command is affected by thé (“full”
vs. “sparse”) field of theEVEL configuration parameter.

Specify ‘t=y ” for levels which will contain the full set of source modules
for your project. Specify N " for “sparse” levels, which only contain
modules that are different from those in the parept’(“and/or “i= ") lev-
els.

If “t=vy " (full) for the current level, then after you promote a saaifie it
will be defined in both the current level and the promote lgwath the
same version number, of course). That is, the AP (promote)ntand
copiesthe module into the promote level.

If “t=N" (sparse), then after you promote a source file, it will béirtkd in
only the promote level. That is, the AP (promote) commamolvesthe
module into the promote level, deleting it from the currentdl. This is
the default.

The AF (make-level-full) command

To fully-populate a sparse project level, by adding to itsdurce files
which are listed in parent levels but not in the current leuske the AF
command, like this:

TLIB AF *.*

The F suffix, in this context, “filters out” all files whichra already listed
in the current project level, so that those files will not bfeated by the
command.

171

You would normally use the AF command after first adding the (full)
field to the LEVEL configuration parameter for your current project level.
However, the operation of the AF command is not affected lgy ith
field.

Note: You can also use the F suffix when adding source files to aeptoj
level with the A command, if you also specify an appropriaiélsgard
search mode suffix (e.g., W, for workfiles, or L for librarjek). For ex-
ample, if you wanted to adc: and .h files in the current directory to the
current project level (skipping those which are alreadytisn the current
project level), you could use the following command

TLIB AFW *.c,*.h

The ADF (make-level-sparse) command

The reverse of the AF command is the ADF command. It makes jagiro
level as sparse as possible, by removing from it any soukeentiich is
listed as having the same version numbers that it has in apleneel. To
make the current project level as sparse as possible, usaDRecom-
mand like this:

TLIB ADF *.*

The F suffix, when used in combination with the D suffix, téits out” all
files which have different version numbers in the parentlswas com-
pared to the current level.

You would normally use the ADF command after first changiay to
f=N (sparse) in theLEVEL configuration parameter for your current project
level. However, the operation of the AF and ADF commands tsaffect-
ed by the= field.

Locking:

If locking is enabled, then you may not Add/Alter a moduladrg in a
project level tracking file with the A, AX, AP family of comnmals when
someone else has the module checked-out/locked at thdt éxeoept for

LOCKING W(weak locking) mode.

This is a good reason to USBCKING B instead 0L OCKING Y .

172

Also, if you have the module checked-out/locked, or if someelse has it
locked at a different level iLockING B(branch/level locking) mode, then
a “Note: " message will be displayed to that effect.

EXAMPLE #1: Defining a 3-level hierarchy, and using “AP” (pr o-
mote)

Suppose that you have decided upon a 3-level staging schartteefpro-
gram that you are developing. The old, already shipped messare in
level REL1 (which probably will not change). The prospective next aske
versions are in levelTEST, where your Quality Assurance (QA) depart-
ment is pounding on them to flush out bugs that the develomess have
overlooked. The “rough” versions which the developers aogkimg on
are in levebEVL.

The TLIB configuration looks something like this:

locking b

level n=rell d=f:\rell\ r=Y

level n=test d=f:\test\ i=rell r=Y s=new
level n=devl d=f:\devl\ p=test i=rell r=Y
workdir c:\work\

projlev %!'PROJECT%

“Projlev devl " is appropriate for developers working on the next re-
lease, butprojlev test " is appropriate for the QA department, so in this
example we let an environment variable set the current grdgerel. The
developers would usesET PROJECT=DEVLand members of the QA de-
partment would uUSeSET PROJECT=TESTThe SET command could be in
either your DOS AUTOEXEC.BATfile (or CONFIG.SYS for OS/2), or in
TLIB's AUTOSET.BAT file (AUTOSET.cMOor OS/2).

Note that the order of theEVEL configuration parameters in your TLIB
configuration file is inconsequential.

Since there are reference directories for each level, araksky is con-
figured for each level, TLIB will maintain “reference copieof the source
files for each level. (However, we do not recommend usingréference
copies for purposes which could keep the files open for mioaa & few
seconds, since this could prevent TLIB from properly uptathem; for
this reason, letting a source-level debugger use the refereopies is gen-
erally a bad idea.) Someone who is responsible for suppttia existing
code which customers are using would use the code arthe level, but

173

someone who was responsible for testing the néedise would work with
theTEST level code.

Now, suppose that a particular modulgyz.c, is at version 12 in level
REL1, and is not defined at th@esT or DEVL levels (because it has not
been changed for the new, upcoming release). However, sagpat you,
a programmer working on the next release, identify a chahgemust be
made inXyz.C to support a new feature.

Your current project level iDEVL, so when you check-out/lock the mod-
ule, TLIB looks first in FADEVL\TLIBWORK.TRK to determine the version
needed. Sincexyz.c isn't listed there, TLIB next looks in the promote lev-
el, which is TEST (because of they=test field in the LEVEL configuration
parameter for levelDEVL). Since the module isn't defined there, either,
TLIB looks at the REL1 level (because of the=rel1 field in the LEVEL
configuration parameter for levekvL).

Note that the levels do not automatically “chain.” That ts fevels that
TLIB consults are determined solely by the and i= fields for the cur-

rent project level BEVL). Since REL1 and TEST are not the current level,
theirp= and/ori= fields have no effect.

TLIB records in the work directory tracking file¢:\WORK\TLIBWORK.TRK,
the version number ofrz.c which you have checked-out.

Now, you make your changesxwz.c and update the TLIB library with a
new version, number 13. The current versions are:

DEVL TEST REL1
XYZ.C v=13 v=12

However, in the course of your debugging, you famdl fix several bugs in
your changes, storing the new versions each time. Finadly,decide that
you've gotten it right. The current versions are:

DEVL TEST REL1
XYZ.C v=16 v=12

Because you've finished your modification ¥rz.c, and are satisfied that
it is correct, you can now “promote” it to th&@esT level, thus making the
new version available to the QA department.

The TLIB command to promoterz.C toTEST is:

174

TLIB AP XYZ.C

Now, the current versions are:

DEVL TEST REL1

XYZ.C v=16 v=12 (sparse, LEVEL n=DEVL f=N ...")
or
XYZ.C v=16 v=16 v=12 (full, “LEVEL n=DEVL f=Y ...")

At this point, you go on to work on other things, while someetee tests
the next release, at levalesT. When he identifies a problem inyz.c, he

tells you about it, so you again check-out the module withBl@mmand,
fix it, and store it with the U command.

Now, the current versions are:
DEVL TEST REL1
XYZ.C v=17 wv=16 v=12
Then you can promote it to thesT level, just as you did before:

TLIB AP XYZ.C

Now, the current versions are:

DEVL TEST REL1

XYZ.C v=17 v=12 (sparse, LEVEL n=DEVL f=N ...")
or
XYZ.C v=17 v=17 v=12 (full, “LEVEL n=DEVL f=Y ...")

The use of multiple project levels allows developers to wweith the very
latest “rough” versions, storing as many rough version$ag wish, even
as testers are working with more stable versions. Both theldpers and
the testers can work with their chosen level of code withowny way in-
terfering with people who are supporting customers in te&fivho still

have the old version.

EXAMPLE #2: Adding a bug-fix level

175

Continuing with the above scenario, suppose that a bug wrtegh in the
REL1 version, but you do not wish to make the fix directly in tReL1 lev-

el because you will still need to have the originREL1 around for some
reason (say, because some customers are still using it)t $tibald you
do?

Insert another level “betweerEL1 andTEST, like this:

REM -- added a bug fix level, REL1FIXES
level n=rell d=f:\rel1\ r=Y

level n=test d=f:\test\ r=Y i=rellfixes,rell s=new
level n=devl d=f:\devI\ p=test r=Y i=rellfixe s,rell
level n=rellfixes d=f:\rellfix\ r=Y i=rell s= new

We had to make two changes:

1) We defined aLEVEL configuration parameter for the neREL1FIXES
level.

2) We added the nevrREL1FIXES level to the i= namedlists of DEvVLand
TEST. Since we wantbEVLand TESTto “inherit” the changes fromREL1-
FIXES in preference to the olREL1 versions, we listedREL1FIXES ahead
of REL1 in thei= namedists forDEVL andTEST.

Now the TEST and DEVL levels will automatically inherit the fixes that
you make in REL1FIXES, so long as the fixes are in modules that are not
explicitly listed in theDEVL andTEST tracking files.

For modules that are listed iDEVL or TEST, perhaps because they have
changed, you can use the M (migrate) command to add the fixexvL
and TEST (the M command utilizes DIFF3 where necessary to merge
changes).

EXAMPLE #3: Adding a customization level

Suppose that, as with example #2, you need to make changhe wd
REL1 level of your program after you've already started makirgngles (in
the DEVL and TEST levels) for the next major release. However, the
changes are not bug fixes. Instead, you wish to build a cugemhvariant

of REL1 (perhaps for sale to Acme Corp., an important customer) yand
don't want the changes to be “inherited” by the n@®sT and DEVL lev-
els.

176

This scenario is similar to example #2, since you need to adthar level
for the new version of your program, which is a modificatidnttee ver-
sion in level REL1, and you need to leavREL1 unchanged. As in example
#2 the new level should chain back (via its list) to the REL1 level, so
that it will “inherit” all the unchanged module®mREL1.

However, unlike example #2, these changes are not interateddorpo-
ration into the next release, so ttEST andDEVL levels should not inherit
from the new level.

Here, we've added the new level (calledmg to the TLIB.CFG from ex-
ample #1.

REM -- added a customization level, ACME

level n=rell d=f:\rell\ r=Y

level n=test d=f:\test\ r=Y i=rell s=new

level n=devl d=f:\devI\ p=test r=Y i=rell

level n=acme d=f:\acme\ r=Y i=rell b=1 c=10s =new

Note that all three of the originalEVEL parameters are unchanged; the
only thing we did was add the newcmEevel, and set it to chain back to
the REL1 level. Unlike example #2, we did not add the new level to the
lists forDEVL andTEST.

One other difference is that we configured thet” and “c=nn" options
for the AcmEevel. While not strictly necessary, this is always a goashid
for “customization” levels, since it ensures that the newsigms you cre-
ate for Acme will be stored as branch versions, leaving thekiversions
available for “main line” development (so that the modulesbevL and
TEST will contain trunk versions).

EXAMPLE #4: Using both bug-fix and customization levels

Suppose that we had a bug-fix level, as in example #2, and skedito
add a customization level, as in example #3. We start withekels de-
fined in example #2, and add a new levet{g, just as in example #3,
except that it is probably appropriate to make theMelevel inherit the
fixes fromREL1FIXES , like theDEVL andTEST levels do:

level n=rell d=f:\rel1\ r=Y

level n=test d=f:\test\ r=Y i=rellfixes,rell s=new

level n=devl d=f:\devl\ p=test r=Y i=rellfixes,rell

level n=rellfixes d=f:\rellfix\ r=Y i=rell s=new

level n=acme d=f:\acme\ r=Y i=rellfixes,rell b=1 c=10 s=new

177

M command: Migrate changes

With the “M” (migrate) command, you can now migrate (mergbaicges
from one entire project level into another, albate.

The M command analyzes the revision histories for each sdiilecto de-
termine which changes have already been migrated, and & D#eF3
(where necessary) to merge the new changes. In most cases)lyhman-
ual task that you are left with is reconciling any “changdismns” which
DIFF3 may have flagged.

You will usually use the M (migrate) command with wild-cardsd
TLIB's project level version tracking to migrate changesnirone project
level into another.

Syntax:

TLIBM files <versions-to-be-merged>

TLIB MS files <target-versions> <versions-to-be-merged>

TLIB MF files <versions-to-be-merged>

TLIB MFS files <target-versions> <versions-to-be-merged>

TLIB MSS file <target-version> <base-version> <version-to-be-merged>
TLIB MFSS file <target-version> <base-version><version-to-be-merged>

Note: The “F" (“fast”) suffix just makes them command quietly skip al-
ready-migrated files, for a more concig&SRATE2.BAT file.
EXAMPLE #1 (third-party library):

Last year, you bought a “third-party library” in C-languagmurce code to
do windowed user interfaces, ISAM file access,. etc.

Prudently, you stored the original source modules, as vedeirom the
vendor, into TLIB libraries (as version 1 of eacluce file).

178

Then you modified the source code to make it work better wathryappli-
cation. Of course, your new versions are also stored in th8 Tibraries,
as later trunk versions.

Now, after you've made many modifications to the originaki@n, you've
received a new version from the vendor. Of course, the negia@K(you
are told) is enormously improved in a dozen ways, and fixesrsg subtle
(but potentially catastrophic) bugs that were in the oagwersion... and
the vendor no longer supports the old version.

So, you are now faced with having to merge your own modifaregiwith
the vendor's. Big job, right?

No! Simply store the new versions in the TLIB libraries (pablty as
“branches,” e.g., version1* "), and then TLIB can migrate the changes
for you, all at once, with the M (migrate) commaBee p. 181 for detalils.

EXAMPLE #2 (semi-custom software):

You develop and sell a semi-custom software product, wriitteClipper,
for professional practice management. You call your prodRiactice
Management Software (PMS for short).

Your standard version is tracked in leve$TD, with tracking file
c:\std\tlibwork.trk . However, you generally have to modify it to meet
the needs of your customers. Whenever you do so, you createjecip
level for that customer.

As a service to those customers who pay an “extended supigert’you
provide them with monthly updates to their customized \@rsif the soft-
ware, incorporating fixes for all known bugs, and sometinwher
improvements. So, every month you must migrate your lategirove-
ments from theTD level into each of the customization levels.

Does this sound like a monthly nightmare? It's not!

For instance, suppose that last month you customized yeurltiest ver-
sion of the software for Dr. John Smith, DDS. You built Dr. Smd
version in leveBMITH , with tracking filec:\smith\tlibwork.trk

Now, it is the first of the month, and you have fixed severagdin the

standard version of the software, so now you must bring DrittSrver-
sion up to the latest level, but without losing tistomizations.

179

No problem! Simply go toc:\smith (or a suitable work directory) and
use the M (migrate) command to merge the changes from levelinto
level smITH. Then recompile, run your standard suite of regressiors,test
and mail the diskette to Dr. Smith. See p. 181dftails.

Note:if you work alone, with locking disabled, then you can do yaurk

in the sMITH level's reference directory. However, if there may be other
programmers working on Dr. Smith's version, you should énéixrking
(configure LOCKING Yor LOCKING B and do your work in a private work
directory, but withPROJLEV set tosSMITH .

EXAMPLE #3 (merging fixes into the next release):

Last January, your company shipped “release 1” of your softvproduct,
written in Pascal. At that time, you had only omejgct level REL1 .

When REL1 shipped, you created a new project leveEL2, and your de-
velopment team immediately began work on “release 2.” Samglously,
your change team continued to make occasional bug fixes ted minor
improvements to the original release, at |1 .

Now, you need to migrate these fixes fregL1 INtOREL2.

It's easy! Just use the M (migrate) command to do it all at o8ee p. 182
for details.

Note: TLIB will (eventually) extract/check-out the need#ds, so be very
sure that any modifications that you've recently made ta ypowrce files
havealreadybeen stored into the TLIB libraries. IfFOCKING Yis config-
ured, then use theTtiB UOo ** ” (update owned files) command to
check-in/unlock the files BEFORE doing the M (migflacommand.

180

How to use the M command on the examples:

EXAMPLE #1 (third-party library):

Your latest/greatest modified versions are stored in thiBTibraries as
“trunk” (integer) versions, and the new release(s) that get from the
vendor are always stored as branches from versiofe.g., 1.1, 1.2,
1.3, etc.).

First, make the current directory the work directory whicuyse for your
regular (trunk) versions, which you now want modified tdeet the ven-
dor's new modifications.

Next, make sure that any modifications that you've recemtyle to your
source file have already been stored into the TLIB librariéss is impor-
tant! If locking is enabled, you can use the UO (update owned files)
command to ensure this; if locking is disabled, use the UFmand, in-
stead.

Now you can migrate the vendor's latest changes into yourifiredd
source code like this:

TLIBM *.c,*h 1.*
or: TLIB MS *.c,*h* 1.*

Note that this simple case works even without the use of ptdgvel
tracking, since you've used a version number conventionigtinduish
your versions from those of the vendor. Your versions arakirversion
numbers (the latest ist"), and the vendor's releases are branches from
version 1 (the latest is 1.»). However, most other scenarios do not lend
themselves to this trick, and so are best handled throughgbef TLIB's
named project levels.

EXAMPLE #2 (semi-custom software):
You need to migrate the latest changes from lesgb into level SMITH.
First, make your current work directory the one which youmnailty use

when working on Dr. Smith's customized version of your paogr If you
work alone, then it is probably the reference directory el SMITH,

181

c\smith\ . Otherwise, it may be a private work directory. Also, be sure
that your currentPROJLEViIS set to SMITH (this is automatic if your current
directory is the reference directory for legeliTH).

Now, you can migrate the latest changes fr@mD into the current level
(smiTH) with the following command:

TLIB MT *.prg @c:\std\tlibwork.trk

Here you have used the project level tracking file for levaiD as if it
were a version label, to tell TLIB what versions you wish torgeeinto the
current level.

Note the use of the T (“this level”) wild-card search-modéfizuto tell
TLIB that you want it to search the current project level fousce files
(instead of finding all files for which there are TLIB libiias, which is
what the default L search-mode would do).

You could also have used a snapshot version label taken (@étl$ com-
mand) earlier in the development history of tisgDlevel. For instance, if
you took a snapshot on July 15, 1992, and called2i7-15.snp , then
you could migrate thesTD changes through July 15, 1992 with the follow-
ing command:

TLIB MT *.prg @92-07-15.snp

If STDis a sparse project level (in which only a subset of the sofiilee
were actually listed, with the rest being listed in promtiexnd/or inherit-
from “parent” levels), then you should generally use a shapsstead of
using STDs tracking file directly, so that all the needed version bens
will be specified.

EXAMPLE #3 (merging fixes into the next release):

You need to migrate the fixes frorREL1 into REL2. This example is han-
dled almost exactly like example #2, except that you are mgrfrom
REL1intoREL2 instead of fronsTD into SMITH.

First, make your current work directory the one which youmnailty use

when working onREL2, and be sure that your currefROJLEVIS set to
REL2.

182

Now, if the tracking file for REL1is f:\rell\tlibwork.trk , you can mi-
grate the latest changes froreL1 into the current levelKEL2) with the
following command:

TLIB MT *.pas @f:\rel1\tlibwork.trk

Or, if REL1V2.SNP is a snapshot &fEL1, you could use this command:

TLIB MT *.pas @REL1V2.SNP

Note that you can use all the usual TLIB wild-card search-enadd file
list mechanisms to specify your source files. For instantgou only
wanted to migrate the changes for a subset of the files indhect level,
you could use a file list:

TLIB M @files.lis @REL1V1.SNP
or: TLIB M filel.pas,file2.pas,file3.pas @REL1V1.SNP

Finishing the job

The M (migrate) command handles several different casesiffareht
ways:

1) Some files will probably not need to have any changes maeleause
there are no changes for those modules in the versions thataye mi-
grating into the current level.

These files are left alone.

2) Some files can simply be copied from the versions to be atkrge-
cause the current versions are base versions from whichetiségons to be
merged were derived.

For such a file, the needed version is extracted from the Tibi&ry, and

a special [COPIED..] " supplemental comment line is added to the top, us-
ing the SCOPY program. If check-in/out locking is enabldgart the file
will be left checked-out to you.

Later, when you use the U (update) command to store the nesiovethe
supplemental comment line will be removed and used in theBTddm-
ments for the new version, thus recording for posterity whbie version
came from (so that future migrates will work cothgc

183

3) Some files will need to be merged with DIFF3, because Weelgeen
changed in both the current level and in the versions thatyeumigrating
into the current level.

For such a file, three different versions of the source file extracted (in-
to temporary files), DIFF3 is used to do the merge operaao, a special
“[MERGED.] " supplemental comment line is added to the togheffile.

Later, when you use the U (update) command to store the nesiovethe
supplemental comment line will be removed and used in theBTddm-
ments for the new version, thus recording for posterity Whiersions
were merged to create the new version (so that future migraiie work
correctly).

If check-in/out locking is enabled, then the file will betlehecked-out to
you.

The M command does not actually extract the temporary filed @n
DIFF3 with them. Instead, the M command creates a file nanved
GRATE2.BAT, which contains TLIB, DIFF3, and SCOPY commands to do
the actual migration.

This gives you the opportunity to examine what TLIB will beirlgp, and
intervene, if you wish.

For instance, you may need to run a “pretty-printer” (souwode refor-
matter) on the temporary files before doing the DIFF3 megieeh a step
is not recommended unless one of the versions has been edfedral-
ready, in which case DIFF3 would otherwise be unable to doogpear
merge because of the pervasiveness of the changes.

Generally, you should first rumMIGRATE2.BAT to do the merges, and then
examine any modules for which it warns that there were “sifis” (con-
flicts) between the merged versions. The collisions arekethrwith
distinctive “flag lines.” (The flag lines normally contaimg “###”, which
you can search for with your editor, but they can be changdil the D3-
COLLIDE configuration parameter).

If any of the merged files have been reformatted, it will bet@b obvious
when you look at the huge “collision areas” marked by DIFF8t such
cases, you can edit thRIGRATE2.BAT file to make it reformat the three in-
put files before running DIFF3, to make them more consisteittt one

184

another (use the same pretty-printer that caused the pnolifigpossible).
Then you can run the modifialGRATE2.BAT again to retry the merge.

Other “collisions,” if there were any, must be resolved el by exam-
ining the flagged collision areas and correcting the pnuislevith a text
editor. Be sure to leave intact the specialMERGED..]" and
“[COPIED_..] " comments at the beginning of the files.

Hint: To capture a “log” of everything that happened when you ran
GRATE2.BAT, use Chris Dunford's wonderful “freeware” CONCOPY
utility. With Mr. Dunford's kind permission, we've includea copy of
CONCOPY with the shareware and public domain utilities extion on
the TLIB CD.

After you've used the M command to migrate youmgfes, and you've run
MIGRATE2.BAT to do any DIFF3 merges that were needed, you can delete
MIGRATE2.BAT.

Then you should test your new versions. In our experienciheife were
no collisions, the merged version almost alwayska@orrectly. However,
this is not guaranteed. In fact, it seems rather surprisig;e there are
many ways for two different changes to be incompatible withisaving

obvious textual collisions that are detectable IbyH3.

For example, the two merged versions could each have added aari-
able, for completely unrelated reasons, but withgame name.

Nevertheless, such cases don't seem to crop upoftery.

After you have finished testing, you can use the TLIB U (upflatom-
mand to store the new versions of your source files in theiBTllbraries,
and the TLIB S (snapshot) command to label the vensions.

MSS and MFSS -- Overriding the “Base” Version

Occasionally you may want to override TLIB's determinatafrthe most
recent common ancestor of the two versions to be merged hisriiLIB

provides the MSS and MFSS commands.

Themss (andMFss) commands take four parameters:

TLIB MSS filename.ext toVer baseVer fronVer

185

For example, suppose that version 7 aiyfile.prg is the latest
"standard" version, and version 7.(5)3 is a customizedamamf it. Now,
suppose that you fix a bug in version 7.(5)3, and store it asime 7.(5)4,
but the bug was also present in the standard versio

Of course, the problem would have been simpler if you'd pathibg fix

onto the standard version first, instead of the customizedion. Then
you could have simply migrated all improvements to date finbon the
standard version into the customized version. Unfortupasometimes
you may not have the luxury of making that choice; if the costo has a
"sev 1" problem, you may have no choice but to first implentbetfix in

his customized version.

In that case you cannot use theor Mscommand to merge the bug fix in-
to version 7, because TLIB has no way of knowing that only thst |
revision to this customized variant is applicable to thendgad version. If
you were to dorLIB MS myfile.prg * 7.(5)4 then TLIB would add all
the changes between versions 7 and 7.(5)4 to the latest version, with
the result that the customizations would also become patteostandard
version (which is not what you want).

Instead, you should use thesscommand, to tell TLIB that you want only
the changes between versions 7.(5)3 and 7.(5)4 added td¢athdasd ver-
sion:

TLIB MSS myfile.prg * 7.(5)3 7.(5)4

The MFsscommand is just like theusscommand, except that TLIB will
silently skip files for which no action was needed. That ddedo any
good for the example above, but is can be useful when the elsamgst
be made to many files.

Suppose, for example, thadstweek.snp is a shapshot taken (with the
command) of your customized project level before you madelaborate
set of changes to many of the source files in the customiaed, leo fix a
complex bug. Also, assume that the standard level's prigeet tracking
file is f\std\tlibwork.trk and the customized level's project level
tracking file isf:\cus\tlibwork.trk

You need to migrate that bug fix into the standard projectlleVo do so,

you would do the following command (while working at the stard lev-
el):

186

TLIB MFSS *.* @f:\std\tlibwork.trk @lastweek.snp @f Acus\tli
bwork.trk

(should be all on one line)

Or, if the standard version is always the latest trunk vaisishis does the
same thing:

TLIB MFSS *.* * @lastweek.snp @f:\cus\tlibwork.trk

That tells TLIB to migrate into the current (standard) leedll changes
made to the customization level since thetweek.snp snapshot was
taken.

As with all of the Migrate commands, the result is a batchpgcrivii-
GRATE2.BAT, which you must run to finish the migration. After you have
done so, you will be left with a set of checked-out files whitgtve had the
needed changes made to them. If there were any "conflict&hwiLIB's
DIFF3 utility was unable to resolve (i.e., if your fix charmpdéines that
were specific to the customized version), then you'll haveessolve the
conflicts manually. They will be flagged in the source filggh distinctive
text lines, ###Change collision detected " (or whatever you have con-
figured for the D3COLLIDE configuration parameter), so that you can easily
find them with TLIBSCAN or your favorite GREP utii

A comparison between they MS and MSSscommands may be instructive.
They all do the same thing, except that with tiesscommand you must
specify all three version numbers for the merge, but thgand M com-
mands determine one or two of the versions forawwmatically.

With the Mmsscommand, you specify a total of three versions, and what is
to be merged into the first of them is specified by a pair ofsi@rs pa-
seVerandfromVe):

TLIB MSS filename.ext toVer baseVer fronVer
But with thems command, you do not specifiy the base versios;deter-

mined automatically by TLIB as the most recent common aocedtthe
other two versions:

TLIB MS filename.ext toVer fronVer

187

The mcommand is similar to thenscommand except that the version into
which the changes are to be added is not specified, eithisrtdken as be-
ing whatever version is current at the currentgubievel:

TLIB M filename.ext fronmver

A Limitation

The M command does not handle added, deleted, excluded amezh
files. You'll have to handle such files manually.

A Note About Performance

The current TLIB 5.xx release may seem unpleasantly slhgglsen you
migrate changes from a snapshot or tracking fie this:

TLIB M *.* @snapfile.ext

What is happening is that TLIB is finding every file which robhés *.* 7,
using the default wild-card search mode (L, all libraryg)eThen, it looks
for each file name in turn in snapfile.ext, using a dumb, &ifiorce search,
to determine the version numbers.

Those file names that are not listed énapfile.ext , TLIB skips. How-
ever, if you have a lot of files, andnapfile.ext only lists a few names,
TLIB can spend a great deal of time searchisigpfile.ext for missing
names.

A future version of TLIB will speed this process up. Howevar,the
meantime, you can speed things up by limiting the numberles fihat
TLIB examines. For instance, you could build a fige like this:

COPYTRAK -n snapfile.ext justname.lis
TLIB M @justname.lis @snapfile.ext

This simply makes a file list with the names imapfile.ext , and per-
forms the M command with just those files (instedd+* 7).

188

The special TLIB “-n” and “-t” command-line options

TLIB supports two command-line options which are intendeainty for
use by the M (migrate) command in the generat@dRATE2.BAT file. In

command-line versions of TLIB, they are supported on theroamd line
only, not in interactive mode. However, they serve to makeRATE2.-

BAT more concise than it would otherwise be.

a) Thet (temporary file) optiont is just a shorthand equivalent for:
C "locking_n" C "track_n" C "readonlyb_n"

and:
C "keyflag" C "logflag"

That is, it overrides those 5 configuration parareet

b) The-n filename(override Name) option is used in conjunction with

E command to extract a source file into an alternatively-edimutput file.
(Note: When -n filenameon the command line is used, TLIB does not up-
date anything the work directory tracking file.)

The -t and -n flenameoptions are used (in thelIGRATE2.BAT file) by

TLIB's M (migrate) command when extracting temporary filese also p.
108.

189

Journal file

TLIB can create a chronological “journal file” containingformation
about the operations which TLIB performs. Two configuratfarameters
are available for using this feature:

JFILE <fil enane>
and
JOPTIONS <option- characters>

To create a journal file, you must specify the file name usirg.E . For
instance, if you want the journal to be namedURNAL.DATIn the root di-
rectory of thec: drive, you could specify:

JFILE C:\JOURNAL.DAT

The JOPTIONS configuration parameter is optional. It alowu to select
the kinds of information which you wish to have stored in tberpal file.
There are currently seven legal option characters:

U - commands which update the library

I - commands which check-in a file (with locking btead)

0- commands which check-out a file (with lockingabled)

B - commands which extract a file, even in browsaeno

C - the 1st comment line

A - all comment lines

P - commands which alter a project level

The default configuration value for JOPTIONS is:

JOPTIONS UOCAP

190

This causes TLIB to record in the journal all commands whipbate the
library (since U is specified) or modify a project level (since is speci-
fied), and all check-out (locking) operations (since is specified).
Additionally, the comment lines associated with every updaperation
will be recorded (since anda are specified).

To record only the first comment line (instead of all comns@nyou can
remove the A” option letter, configuring like this:

JOPTIONS UOCP

Unless A is specified, every journal entry is one line, consistingl16f
fields separated by 12 commas. The last field is the (opfiac@nment
line, which is surrounded by quote marks and is the only fiblat can
contain blanks. When additional comment lines are recondée journal
(because thex option is set), the first 12 fields are null (that is, the live
gins with 12 consecutive commas).

This “comma-delimited” format is consistent with the ingeguirements
of common data base programs, which can be used for morgtarid re-
port generation from the journal file by projectmagers.

We've also included a sample AWK progralQURNAL.AWKtO parse the
journal file.

Note: Your report generator should not read the journal file diyesince
while the journal file is open TLIB will be prevented from assing it. In-
stead of reading the journal file directly, use the inclu&ciOPY (shared
access file copy) progransCcopPY.EXE to make a copy of the journal file,
and then run your report generator against the .demyusage instructions,
run SCOPY with no parameters.

The 13 fields in each journal line are:

1 date of operation (in TLIB formabD-MMM-YY, €.¢9.19-Oct-97)
2 time of operation (in TLIB formatH:MM:SS)
3 command (e.gyF for fast-update)
locking mode:

N for locking disabled
4 wory for whole libraries locked

B for branch/level locking

weak for weak locking

191

5 current user ID

6 library file path

7 text file path

8 lock file path (if command did check-in or checkiou

9 version number

10 source file's “key” (name) in the tracking files

11 current project level

12 other project level used, if any (see below)

quoted comment line (1st comment line includes source file
date/time)

Note:fields 10-12 are new in TLIB 5.

The journal file is a normal text file, just as text-format BUibraries are.
If you configure ‘ADDCTRLZ Y', the journal will end in a Ctrl-Z (ASCII 26)
character. If you configureREADONLY % the journal will be kept as a
read-only file, to prevent accidental deletion (you can theeDOS ‘“t-
trib " command to reset the read-only attribute).

Changes in TLIB 5

New fields:

The journal file now has 13 fields instead of 10. It records pinoject level
“key” (which is just the source file name unless you've cguafed
TREEDIRS V) in the 10th field, and it records the relevant project level
name(s) in the 11th and 12th fields. The old 10th field (thecents for

N and U commands in TLIB 4.12) is now the 13thdiel

The 11th field always indicates what the current projecelevas when
the command was done.

The 12th field, if present, indicates what “other” projeetél was used. If
the 12th field is absent, it means “the currenjgmlevel”.

The only command which always has a 12th field is the AP (ptejno
command, for which the 12th field is the name ef pihomote level.

For the U (update) command, the presence of the 12th fielidates that
the command stored a module into an “inherits-fréenel (one of the lev-

192

el names listed in the= field of the current project level'sEVEL configu-
ration parameter).

For the E (extract) command, the presence of the 12th figlit@tes that
the module was not listed in the current project level, antBT¢onsulted
the named level to determine the version number for the eetiasource
file.

JOPTIONS configuration parameter:

Journaling of the A and AP commands is enabled by includimgrtéw
“P” option letter in youdOPTIONS configuration parameter.

The default is nowJOPTIONS UOCAB.

193

U (update) with a file list

In TLIB 5.0, we changed the semantics of U (update) with alfie so
that, for example, tfio u @tlibwork.trk " will now do something rea-
sonable.

Specifically, we changed it so that “fixed” version numbars ignored in
file lists used for update commands, except that if the fixetsion num-
ber is inconsistent with the version number obtained froenttacking file
then a warning is generated (only when version tracking mbku, of
course).

(Recall that “fixed” version numbers are version numberscivtspecify
an exact version, and “floating” version numbers are versimmbers
which end in an asterisk.)

Note that you can still specify either a fixed or floating sien number on
the command line or interactively if you use the S (spec#ysion-num-
ber) suffix with the U command (i.e., the US comuhan

Also, floating version numbers in file lists arélsespected by the U com-
mand.

The E and N commands are unchanged: they both still respéctfized

and floating version numbers in file lists (except that thedinmand will
not create a new library file with a non-trunk stag version number).

194

Whereis - file finder

WHEREIS is a handy file-finder, which (like TLIB) supportsuttiple &
leading asterisks in wild-card specifications (even urid@s), as well as
options to find hidden/system files. Under OS/2, it willatell you which
files have “extended attributes” attached, and (optigindlbw big the ex-
tended attributes are.

WHEREIS 1.9 supports multiple wild-card specificationppagted by
commas and/or spaces. When separated by commas, the dtereale-
plies to all the wild-card specifications withiretitomma-delimited list.
Examples (note the subtle difference between them):

whereis cd:*.c,*.h (find all *.c and*.h files onC: andD:)

whereis cd:*.c *.h (find all *.c files onC:andD:, and all
*.h files on the current drive)

WHEREIS exits with errorlevel 1 if no matching files were falj other-
wise it exits with errorlevel 0.

WHEREIS supports many command-line options; run it with @oape-
ters for detailed instructions.

195

Quiet mode

TLIB 5.0 added support for theQ (“quiet”) command line option, to sup-
press display of the TLIB “banner line” (with the copyrighttice, etc.) as
well as a few other “noise” messages which TLIBmalty displays.

The -Q (or -q, or -g1) option, if used, should be the first thing on the
TLIB command line.

w_ "

You can also specify-§2 ", which is just like the “q ” or “-q1 ” option ex-
cept that it also suppresses display of any user-configusdNERIines
(see thesANNERandNUMBANNEReonfiguration parameters, p. 333).

Actually, TLIB is not really very quiet even with theQ option. The -Q
option only makes TLIB a bit less verbose.

See also theQUIET configuration parameter, p. 279 , which is similar but
does not suppress the TLIB copyright banner.

Redirecting standard output

An unusual feature of TLIB (command-line versions) is thawill echo
error/warning messages and prompts to “standard erratédtas well as
“standard output” (stdout) when stdout has beeireetd.

This was done, in part, because some ex-Unix users like icetdtdout

to nul, which caused them to miss important error messages. It also
makes it possible to redirect output into a file, and stile ssee the
prompts, etc..

To see how this works, you could do:

tlib2 e nonexistantfile >nul

Only the error message is echoed to stderr, so all you'll s@emething
like this:

ERROR: No such library file: "f:\srclibs\nonexist. $"

196

We also added the¢ " command-line option to TLIB, to override TLIB's
automatic determination of whether stdout has lvedimected.

You may specify “e1 " to tell TLIB that stdout has not been redirected, so
that TLIB will notecho error/warning messages and prompts to stdout.

This is mainly for use when “piping” output to a program whitten dis-

plays the output on the console, such as MORE or (under OSKET)r

TEE. When piping output to MORE, and when using TEE to captiee
output under OS/2 or NT, you can specifgl ” to avoid seeing duplicate
copies of the error/warning messages and promgtsngles:

tlib2 -el | tee >tlib.log
or tlib2 -el u *.c,*.h My comment | tee >tlib.log
or tlib2 -el t *.c,*.h | more

You can also specify-&0 " to force TLIB to echo error/warning messages
and prompts to stderr even when stdout has not been redirebigugh
this is less commonly used.

197

Poketrak & Copytrak

POKETRAK is a little utility for “poking” (changing) spedif fields and
records in a TLIB version tracking file.

Run it with no parameters for help.

COPYTRAK is a little utility for sorting, copying and otherse modifying
entire TLIB version tracking files.

Run it with no parameters for help.
Note that you should not replace BLIBWORK.TRK file with a sorted or
otherwise reordered one if anyone might be running a copyLtB &t the

time and accessing that file, since TLIB “remembers” theatmmns of the
records in the tracking files, and does not expeain to move.

198

Saving Disk Space

When you are not working on a particular customized versjan, can
save disk space by deleting the source code. First, of coymsél want to
make sure that your TLIB libraries are fully up to date, anat tie track-
ing file, TLIBWORK.TRK contains the correct version information for each
module.

A simple way to do both things in one step is to utilize TLIBY§LETESRC
configuration parameter, like this:

TLIB C "DELETESRC Y" U *.C

Or, you could update all the libraries with the U command dmehtjust
“DEL *C" or even ‘DEL ** ", That sounds radical, but therLiB-
WORK.TRKile is stored as a read-only file to prevent it from beingededl.
Be careful, though, lest you accidentally delete sometlelsg of value
(e.g.,TLIB.CFG).

Note: the best time to do this is right after you have backed-up yaud
disk. Otherwise, you are “putting all your eggs in one baskatd if a
hard disk failure damages one of your TLIB libraries, you n@ge your
only copy of that module.

Note: you can use the DOSATTRIB” command, or TLIB'SWHEREIS.EXE
program (p. 195), to list the files and to tell which one(syé#he read-on-
ly and/or archive attributes set. For instanogheteis \tlibwork.trk "
will display the attributes of the TLIB version ¢ttdng file.

199

Temporary Files

Note:this section discusses the temporary files that TLIB ceatel uses.
If you want to know how to extract temporary copies of souitesffrom
TLIB see pp. and 108.

TLIB 5.50 sometimes needs to create one or more (usuallylsteaipo-
rary files, usually called$TLIB_TM.0 or $TLIB_TM.2 (but any name from
$TLIB_TM.0 through $TLIB_TM.9 is possible). TLIB will create these files
in one of four possible places, in the followingler of preference:

o Where your TMP environment variable, if any, indicates. For example,
you could put SET TMP=D:\" in your autoexec.bat file (or in con-
fig.sys under OS/2) to make TLIB put its temporary files on time
drive.

o Where youmrEMP environment variable, if any, indicates.

o In the current directory.

o If all else fails, as a last resort TLIB tries to create its pamary files in
“C:\ 11.

Note that TMP(or TEMP must be a real environment variable; TLIB will
not UsSeTMP or TEMP settings from youTLIB.CFG Or AUTOSET.BAT file.

Performance will be enhanced slightly iivP(or TEMB is set to a ramdisk
(VDISK).

200

Network Bug Workarounds

TLIB has code to detect (and avoid the worst consequenced8in po-
tentially-catastrophic network bugs.

Some network software caches writes and immediately retafisuccess”
result after any attempt to write a file, before the file hasually been suc-
cessfully written. If the write then fails for some reasorg(gbecause of a
hardware problem, a disk-full condition, or a per-user diplace alloca-
tion limit), the program writing the file may not see any iodiion of the
failure.

That can be alisaster!If the file being written was a TLIB library, it is
critically important that it be written correctly. For instance OELETESRC
Y is configured, TLIB deletes the source file after finishengupdate, so if
the library wasn't correctly written your sourcedeaould be lost!

So, we included code in TLIB to check the size of the updatedhiy file
after it is closed, to make very sure that the tgeas successful. If the li-
brary file is too small, TLIB now aborts with an error messagehout
deleting the source file (evendELETESRC Y is configured).

This almost always prevents any data loss. The one excefitanwe
know of is a network which uses Windows-NT 3.5 and the NTFS dijs-
tem on the server. That version of Windows-NT 3.5 containsaehe-
coherency bug that can occasionally substitute zeros teratathe server,
even though the program that wrote the data cahitdeack correctly. It is
not possible for TLIB (or any other program) to detect and kvaround
this bug. Fortunately, Microsoft fixed this bug with SemiPack 2 for NT
3.5. S0, never use a Windows-NT 3.5 server with NTFS unless yaprve
plied service pack 2!

The most common network-related problem for TLIB users basot with
file ownership issues under Novell NetWare. Furtunateiis problem is
not a threat to data integrity. The problem results from tloeréNl facility
for limiting disk usage by any one user. If you're using tlasility, then
you should be aware that when someone adds another versailtitB
library, the storage used accrues to the "owner" of the TibBaty (usual-

201

ly the person who first created the library witle ti command), regardless
of who is doing the TLIB U command. Thus, you can "run out" ofldi
space because someone else has used up theireatotm

To determine who owns a TLIB library, use thadIR command. To deter-
mine whether the owner has used up his disk allotment, loghaeu his
user ID and use theHkvoL command.

If the owner user ID is no longer defined (say, because thdammp left
the company) then that ID has no disk allotment, and the £an occur
regardless of how much space they were once allotted. Ifishizhat
caused the problem, then you need to wseER to change the NetWare
owner ID for each of the TLIB library (or journat tracking) files.

The READ_ME.TOdfile that comes with TLIB has up-to-date information
on using TLIB with many different kinds of networks

202

Listbld — file list builder

LISTBLD is a program to build and manipulate file lists. Ifiyprogram in

C, Pascal (Borland or Microsoft), MASM, COBOL, QuickBASIEprtran

(Lahey or Microsoft), Intel 8096 assembler, Batch90 or DBt&n LIST-

BLD can create file lists automatically by scanning your reeucode for
“include” statements (and COBOLCOPY verbs). It can also use wild-
cards and other file lists to add and remove files from fitsli and it can
augment file list entries with version numbers or branctcgmations for

using TLIB with tree-structured library files.

dBase and Clipper programmers can generate TLIB-compdtillel lists
usingdBFind, from The Software Development Factory, P.O. Box 1106-
B, Hunt Valley, MD 21030. Tel: (410) 666-8129.

If LISTBLD does not recognize include statements in the paogming
language you use, please contact us. We will try to add stupoyour
programming language.

Since it does not do a full parse of the source file, LISTBLDynoaca-

sionally make mistakes when scanning for include statesndfdr this

reason, it echoes the include statements and file names totisole as it
runs; if you see that it has deduced a file name incorrectiy, gan manu-
ally edit the file list to correct the mistake, or use the LEBD REMOVE
option to remove the erroneous file list entry, or simplydgmand tolerate
the “file not found” error messages from TLIB. The usual @fw this is

“commented out” include statements (or COBQIOPY verbs).

If your compiler allows “nested” include statements (thatinclude state-

ments within include files), then LISTBLD can be instructiedscan the
nested include files, too, like this:

LISTBLD inputfile outputfile NEST

Otherwise, you would run it like this:

LISTBLD inputfile outputfile

203

Inputfile is normally the “main” (outer) program source file, ardt-
putfile is often *lis ”

If there are several modules in your program, you can run BIST once
for each of them, using thebbDoption to make LISTBLD add each set of
new names to the same file listtputiile), like this:

LISTBLD inputfile outputfile ADD
or
LISTBLD inputfile outputfile NEST ADD

Note that LISTBLD detects and deletes duplicate namespusautfile
will not end up with duplicate list entries even if two or moredules use
the same include file.

To add file name(s) to a file listvithout scanning for include statements,
you can use the ONLY option, like this:

LISTBLD inputfile outputfile ONLY
or
LISTBLD inputfile outputfile ONLY ADD

If inputfile is of the form @filelist , LISTBLD with the onNLY and
ADDoptions can be used to merge two file lists together, elitmgadupli-
cates.

Similarly, you can remove names from a list with tiREMovBption, like
this:

LISTBLD inputfile outputfile REMOVE

By using wild-cards and file lists fomputfile ~ , you can easily build file
lists representing complex relationships between files. iRstance, the
following example builds a file list named.LIS containing all the assem-
bler source files in the current directory plus all the seuites for A.EXE
andx.ExE , except for the standard include fdebio.H and those include
files used byB.EXE :

LISTBLD A.C Z.LIS NEST

LISTBLD X.C Z.LIS NEST ADD
LISTBLD *.ASM Z.LIS ONLY ADD
LISTBLD B.C TMP.LIS NEST
LISTBLD @TMP.LIS Z.LIS REMOVE
LISTBLD STDIO.H Z.LIS REMOVE
DEL TMP.LIS

204

The resulting file list can be used to specify input files fieost programs
in the TLIB package. For instance, to convert blanks to tabthe files
listed inz.LIS , you could do:

MD TEMP

TABS IN @Z.LIS TEMP* *
COPY TEMP*.*

ECHO Y | DEL TEMP*.*
RMDIR TEMP

By default, LISTBLD records only file names. However, if yepecify the
RELATIVEPATHSOption, it can also store “relative” paths along with the fil
names. The relative paths are relative-to the ntgebdirectory.

When the REMOVBption is specified withoutRELATIVEPATHS then any
relative paths are ignored, and LISTBLD removes every eintttye out-
put file list which matches the specified inpué(@).

When the REMoOVBption is specified wWithRELATIVEPATHS the complete
path+name must match for each entry to be removed.

For example, suppose thexCLUDE.LIS and MYFILES.LIS file lists are as
follows:

exclude.lis myfiles.lis

iostuff.c aa\iostuff.c

flanalyze.h iostuff.c
bb\iostuff.c
analyze.h
aa\analyze.h
compute.c
flanalyze.h

Then specifyingREMOVEWIithOUtRELATIVEPATHS...
LISTBLD @exclude.lis myfiles.lis REMOVE
results in:

myfiles.lis
compute.c

205

and several warnings about duplicate entries being del@tedause the
multiple “iostuffic " and “analyze.n " entries are not allowed when
RELATIVEPATHSIsSN't specified).

However, specifyinREMOVEWIth RELATIVEPATHS...

LISTBLD @exclude.lis myfiles.lis REMOVE RELATIVEP ATHS
results in:

myfiles.lis

aa\iostuff.c
bb\iostuff.c
analyze.h
aa\analyze.h
compute.c

LISTBLD can also create file lists containing version numisdormation.
To do this, use theoNLYoption and put the version number specification
on the LISTBLD command line, like this:

LISTBLD A.C Z.LIS ADD ONLY 5.*
This would add or change the file list entry fer.c to include the version
specification 5.* ”. Then when you use the.LIS file list to specify a set

of files to TLIB's E, U, or S command, you would be selecting thtest
branch version (5.1, 5.2, 5.3, etc.) instead ofldtest trunk version.

LISTBLD also supports theboTsTARoption for converting file lists with
exact version numbers (or snapsho4t files) into “floating” version la-
bel file lists (in which, for each file name in the list, thesasiated version
number ends in “*"). However, this feature is not often usexyraore,
since TLIB 5.50's named project levels provide a similarlitgcmuch
more conveniently.

For more information on using version numbers lmIfsts, see p. 209.

Example :
The “REMOVEOption, to specify files to be removed from &fiist:

old listxyz.LIS :

206

MAINFILE.C
STDIO.H
IOPKG.C
LOWLEVEL.ASM
MAKEFILE

command:
LISTBLD *.C XYZ.LIS REMOVE
new listxyz.LIS

STDIO.H
LOWLEVEL.ASM
MAKEFILE

Note that wildcards and file lists can be used with any of th&TIBLD
options. This provides a very flexible mechanism for matdpng file
lists.

Example :

To combine two file lists into a single, larger file list (Wwiduplicates re-
moved):

LISTBLD @NEWNAMES.LIS MAINLIST.LIS ADD ONLY

The lists NEWNAMES.LISand MAINLIST.LIS will be combined; the com-
posite list ISVAINLIST.LIS

Example :
The REMOvmBption can be used to “subtract” two file lists. If you wanted

to remove fromMAINLIST.LIS all the names INJUNKLIST.LIS , you could
do this:

LISTBLD @JUNKLIST.LIS MAINLIST.LIS REMOVE

Example :

The following command would build a list of all thec” files in the cur-
rent directory:

207

LISTBLD *.C BIGLIST.LIS ONLY

Example :

The following command would build a single, composite litadl the
“.c” files in the current directory, plus all the include filesad by the.c
files (it scans for include files becauseLy isn't specified):

LISTBLD *.C BIGLIST.LIS

Example :

The following would build a file list, calledmissINCL.LIS , listing all the
include files which arenotin the current directory, but which are used by
Pascal programs in the current directory:

rem 1st, build list of .PAS files & files they " include”
LISTBLD *.PAS MISSINCL.LIS

rem Then build list of all files in the current directory
LISTBLD *.* TEMP.LIS ONLY

rem Then "subtract" the second list from the fir st

LISTBLD @TEMP.LIS MISSINCL.LIS REMOVE

If you forget how to use LISTBLD, run it with no parametersdanwill
display a short “help” message.

208

File Lists and Snapshots

The snapshot files (version labels) that are created by TL$Bcommand
are just normal file lists, except that they have version berra specified
for each file name. That is, each line of the snapshot fileinsewith a
source file name, which is followed by the version numberc#mation.
For instance, a snapshot recording the current versiona.torand b.c
might look like this:

A.Cv=5
B.C v=7

This example records the fact that version 5 is the currersive for a.c
and version 7 is the current version forc . Note that TLIB also accepts
an older format which omits the=". For example:

AC5
B.C7

Because file lists (both regular file lists and snapshesijilare so simple, it
is easy to create or modify them manually, with a text edivau could,
for instance, for some special purpose, have a snapshabrdebel file
which, for a.c, specified the latest version within a particular branch,
rather than a specific version number:

AC5.*

Version specifications like that, which end in an asteréle calledfloat-
ing version numbers. Version numbers which do not contain iskteare
calledfixed (or specifig version numbers. Although TLIB's S (snapshot)
command creates snapshots which contain only fixed versignbers,
there is nothing to prevent you from creating and using fit@matersion
numbers in a manually created or modified snapfleot

For instance, the following file list specifies the lateaink version of

module A.c, plus the latest descendent of branch version 5.1 of module
B.C (i.e., version 5.*), and version 12.2 of modole :

209

If there are version numbers with each file name in the fdg then it is a
version label file listor snaphot because it “labels” the versions of each of
a set of source files. If the version numbers end in asterisksa floating
version label file list, because the effective version namstifloat” to the
highest version numbers on the specified branches. If tr@orenumbers
do notend in asterisks, it is fixed version label file list, because the ver-
sions are “fixed” at the specified values.

Note that if you use a file list to specify files to TLIB, themyaversion
specifications within the file list will be respected by B.lunless you
specifically force TLIB to use a particular version

Thus, if you used the above file list (callesdiles.lis) to specify files to
TLIB's E (extract) command, you'd get the latest trunk \@rsf A.C, but
you'd get the latest branch from version 5 farc, and version 12.2 of
D.C:

tlib e @3files.lis

However, if you wanted to extract the latest trunk versiomlbthree files,
you could do so by using the “S” suffix to specify the desireatsion to
TLIB, overriding the version numbers 3files.lis , like this:

tlib es @3files.lis *

Note to users of TLIB 3.x and 4.karlier versions of TLIB did not support
the S (snapshot) command. Instead, TLIB came with a prograltedc
TLIBSNAP, which produced snapshot files that resembled files con-
taining TLIB commands. Although TLIBSNAP is obsolete, TL#anN still
recognize and use TLIBSNAP's olgtat format snapshot files. You use
them exactly as you would use the snapshot files producedUty'sT S
command. For example:

tlib e @oldsnap.bat

As an example of how LISTBLD can be used to create file liststie S
(snapshot) command, here is a littleat file which you could use to take

210

a snapshot of an entire software package (consisting of foograms)
written in Pascal, whenever you release a newersi

REM snapshot SnazzyWrite package into snazzy.snp,
REM then add shazzy.snp to its TLIB library.

listbld snazwrit.pas snazzy.lis

listbld snazspel.pas snazzy.lis add

listbld snazthes.pas snazzy.lis add

listbld snazinst.pas snazzy.lis add

tlib s snazzy.snp @snazzy.lis

tlib ¢ locking_n u snazzy.snp

del snazzy.lis

del snazzy.snp

211

Keywords

TLIB can insert any of several kinds of information into yaource file
when you extract it from a TLIB library file (text format onlyhis feature
is not supported forFileType binary). The information TLIB inserts is
determined by your choice of the “keywords” which you use keyword
format strings” in your source files. Currently popted keywords are:
%vVersion number.

%f File date & time for this version (or date alone, f0dGTIME N is con-
figured).

%d File date for this version.
%t File time for this version (do not use IfGGTIME N” is configured).

%wWho last checked it in (for multi-user environments, itGUSER Yis
configured). This isiot necessarily theurrentuser ID.

%l Lock status. This is the user ID of the programmer who checkid t
file out for modification, or else the special strirgg_NOBODY_**+ if the
file was extracted in “browse mode” (with EB). (Note:™is a lower-case
L, not the number one.)

%nFile name.

%ol iteral percent sign%"”

Note: TLIB can also insert a complete revision history commentklimto
your source code. See Revision History Loggin@22.

Keyword information is inserted in the source code in suchag that it
can be automatically removed when the modified module isddd the

library file (with the U or N command).

To use TLIB's keywords, you must do several things.

212

Thefirst step is to add theKeyFlag configuration parameter to your TLIB
configuration file (usually namedLiB.CFG). Also, examine the configu-
ration file to make sure that you are not usSiFQETYPE BINARY for the
files that you want to have keywords in.

(The second and third steps are to &40 additional lines to each of your
source files, as described below.)

The keyword flag lines a line in your source file containing theyword
flag, a special string of characters starting at aifpdaolumn number.

The KEYFLAGconfiguration parameter is what you use to tell TLIB what
keyword flag it should look for in your source files. TheEYFLAGparame-
ter specifies a column number and a quoted string, sepabogtaccomma.
(Note: there mustnot be a blank next to the comma.) For instance, if
KEYFLAGwas configured imlib.cfg as:

keyflag 1,"; ***keyword-flag***"

then a flush-left MASM-style comment line in your sourcesfitould be
the keyword flag line, like this:

; ***keyword-flag*** "version %v"

More flexibly, you could configure:

keyflag 3,"***keyword-flag***"

This specifies that the keyword flag indicator in your saufite starts in
column 3 and consists of the 18 characterskéyword-flag*** ", This
KEYFLAGwWould match any of the following example keyword flags embed
ded in your source code file:

{ ***keyword-flag*** '%v %w %f' } (Pascal)
[F***keyword-flag*** "version=%v" */ (C)
; ***keyword-flag*** '%f %10w' (MASM)

Note: the first column is column one, not zero. Configuringgyflag

1, ...” indicates that the keyword flag indicator is “flushtlig(not indented
at all) in your source file. Configuringkéyflag 3, ...” means that in your
source code the keyword flag hago (not three) blanks (or other charac-
ters) preceding the configured string.

213

The second stepfor using keywords is to add the keyword flag to your
source file(s). It should generally be part of a comment, lared it should
be immediately followed by a quoted “keyword format temelatThe
keyword format template tells TLIB what to insert into thexhéne be-
tween the quote marks. The quote (delimiter) character ineighe first
non-blank character after the keyword flag. For exampletha sample
Pascal keyword flag line, above, the keyword flag ts*Keyword-
flag~+ ", the delimiter is an apostrophe)(and the keyword format tem-
plate is%v %w %f'

Note that the keywords must be lower-cags, (%w %f, etc.); you cannot
use upper-case keywords\ %W %F, etc.).

Thethird step is to add to your source file(s), on the line immediately fol-
lowing the keyword flag line, the statement in which you wahe
keyword information inserted. The line must include exattto delim-
iters (quote marks). The keyword information will be sutgéd between
the delimiters according to the format template which yoecsied on the
previous line (the keyword flag line).

For the following examples, assume that tiisyFLAGdefinition has been
configured:

keyflag 3,"***keyword-flag***"

Example #1(MASM):

If version 14 in the library file contains the fling:
DB 'version '

; ***keyword-flag*** '%v'
DB ",10,13

...then it will be extracted as:
DB 'version'

; ***keyword-flag*** '%v'
DB '14',10,13

214

Example #2(C language):

If version 5.2.1 in the library file is dated 9-<Bif,11:23:00 and contains:

[****keyword-flag*** " %v %f" */
char version[] ="";

...then when it is extracted it will contain:

[F***keyword-flag*** " %v %f" */
char version[] =" 5.2.1 9-Jul-87,11:23:00";

Example #3(Pascal):

If version 5.2.1 in the library file is dated 9-Jul-87 (witlo time recorded
becauseogTime N is configured) and it contains:

{ ***keyword-flag*** 'version %v, date=%f"}
const version =",

...then when it is extracted it will contain:

{ **keyword-flag*** ‘version %v, date=%f"}
const version = 'version 5.2.1, date=9-Jul-87";

Example #4(Pascal):

If version 5.2.1 in the library file contains:

(****keyword-flag*** #%v# *)
(*This is a comment. This is version ##, within
the comment.*)

...then when it is extracted it will contain:

(****keyword-flag*** #%v# *)
(*This is a comment. This is version #5.2.1#, wit hin
the comment.*)

By inserting an integer “field width” after thess of a keyword, you can
force TLIB to blank-pad the corresponding value to the dgksize. This
can be useful when you need to insert the information in adfixéth
field, as in the following Turbo Pascal example:

215

Example #5(Turbo Pascal):

If version 5.2.1 in the library file contains:

type pstrl8 = packed array [1..18] of char;
{ ***keyword-flag*** ver5|on %10v' }
const version: pstrl8 =

...then when it is extracted it will contain:

type pstrl8 = packed array [1..18] of char;
{ **keyword-flag*** 'version %10v'}
const version: pstrl8 = 'version 5.2.1

Another warning:the column number specified for &EYFLAGdoesnot
properly count columns in lines containing tab charactéiso, TLIB
does not properly handle leading and trailing blanks witAirKEYFLAG
string, nor does it transparently match tabs andKd.

Therefore, we recommend that you:
1) specify a column in the range 1a8d

2) don't use tabs or multiple blanks in #EYFLAG string

The use of the first three keywords is fairly obvious, but taekeyword

needs a bit of explanation. This keyword is onlgfuswhen locking is en-
abled. It is designed to warn you if you are about to make chaubga file

which you do not have checked-out for modification. To usgau'll also

need to set either theDELETESRC Y or the “FIXKEYWD Yconfiguration

parameter, so that checked-in files are not left around hvhpear to be
still checked out.

The %l keyword works well because most programmers' editors strt
by displaying the first 24 lines or so of the text file when ywegin an edit
session. So, a prominent warning inserted at the top of kaevfil be seen
whenever anyone edits the file.

To use this keyword, insert &EYFLAGcomment at the beginning of each
text file, similar to the following C language exalex

#if O
/* --=>keyflag<=-- " checked-out to %l " */
oo

216

#endif

When “Dave” checks out the file for modification with the U ¥rcom-
mand, the beginning of the file will look like this

#if O

/* --=>keyflag<=-- " checked-out to %l " */
/* " checked-out to DAVE " */

#endif

But if the file was extracted with the EB command (browse mpttee be-
ginning of the file will look like this:

#if O

* --=>keyflag<=-- " checked-out to %l " */
/* " checked-out to *** NOBODY_***" */
#endif

Note that the%l keyword cannot do the “right” thing if you use the O and
| commands to manage your check-in/check-out locking. Vihatserted
depends solely upon the type of extract command which youTise EB
command is for “browse mode”. The E command checks out tleefdit
modification.

We're grateful to Mr. Larry Young for the idea badhithis feature.

For an often-superior alternative to thwel keyword, see theREADONLYB
configuration parameter, p. 280.

Two notes:

1) If you use TLIB's “Revision History Logging” feature (p22), then
you'll notice that theKEYFLAGparameter is similar to theOGFLAGparam-
eter. If you configure both &KEYFLAGand a LogFlag, TLIBrequiresthat
the starting column numbers and the first two characterkeflag strings
for the KEYFLAGand LOGFLAGbe identical (this requirement is imposed
for performance reasons).

2) Keywords and Revision History Logging are only supporfed text
format library files, not for binary files. If keywords do h@eem to be
working, check that you have not configuredieType binary . Also,
note that theFileType configuration parameter only affects the creation
of new library files; if a library file already exists, therhanging the

217

FileType parameter will have no effect on it. You can easily tell wieeth
a particular TLIB library file is text format or binary formdy inspecting
the first three bytes in the file. If the file begins with/¢ ” then it is in bi-
nary format; if it begins with ‘v ", “.v_", or “.vt " then it is in text
format.

If you need to convert one or more TLIB libraries frorileType Binary

to FileType Text , Or vice-versa, you can use the TLIB-to-TLIB conver-
sion utility, TLIBTLIB.EXE (or TLIBTLIB.AWK). (With some versions of
TLIB, these conversion utilites may be found in tr@®NVERT1.ZIP or
CONVERT2.ZIP archive.) See the. TXT or *.DocC files in that archive for
instructions.

Keyword-based version number checking

TLIB 5.0 added “keyword-based version number checking,iclipro-
duces a warning if you update a library with a new version of lute
and the new version contains an olév keyword which is not the prede-
cessor of the new version. If you putkeYFLAGwith “%V’ in each of your
source modules, then this new feature will provide an agluiti measure
of safety to help programmers notice when they are aboutrtiddtisome-
one else's changes.

Caveat: TLIB must be able to find the version number in the formatted
keyword information. More specifically, you must not hawersething ad-
jacent to thevv which could be confused with a version humber, and if
thev is not the first keyword in the keyword formatirsgy then it must be
preceded by something distinctive.

Usually this is not a problem, but if you try, you can find a wayconfuse
TLIB (and perhaps yourself, too). For instance, supposeytba config-
ured:

keyflag 3,"-=>keyflag<=--"
...and suppose YOKEYFLAG format looked like this:

[*-=>keyflag<=-- "version=%v0" */
char embedded_id[42] = "version=960";

...then TLIB will think you have version 960 instead of
version 96.

218

Less obviously, you can confuse TLIB by having another keyinmefore
thewv, and not have something distinctive between theminstance:

[*-=>keyflag<=--" %n %v " */
char embedded_id[42] =" MYFILE.C 96 ";

...will confuse TLIB because the single blank before theis insufficient-
ly distinctive (since there are other single blanks elsewliethe keyword
format string). However, the following will work aly:

[*-=>keyflag<=-- " %n %v " */
char embedded_id[42] =" MYFILE.C 96 ",

...because the double blank before theis unique in the keyword format
string.

Keyword-based version nhumber checking is especially lidefuthose
who have locking disabled, perhaps because the programmerissta-
tions are not connected via a network (“sneakernet”), tlo& laf which

makes check-in/out locking less convenient). Howeverravigles an ex-
tra measure of safety regardless of your developem@rironment.

Other changes in TLIB 5.0

TLIB 5.0 and later let you specifyes%in a keyword format string to gen-
erate % in the formatted keyword information.

Also, TLIB now displays a warning if theewkeyword is used butoGus-
ER N is configured.

What if it doesn't work?
If keywords don't seem to be working for you, tlobeck the following:

o Make sure that the configure®EYFLAGSstring isidentical to the key-
word strings in your source files. Beware of casenmtches and tabs.

o Count the column numbers carefully. If you've configured &k the
starting column, then the keyword string must start in thigriest column

219

of your source file.

o Make sure there is only on&EYFLAGparameter configured. If there is
more than one, then all but the last is ignored (except thatcan use
IF /ENDIF blocks to specify different keyword flags for differentdd). If
you use INCLUDE directives in your main TLIB configuration file, be sure
to check the included configuration files, too.

o Make sure that TLIB is reading the right configuration filkow can you
tell? Add a line of gibberish to the configuration file. If TR doesn't com-
plain, then it isn't reading that file (see p. 250). Also, yean obtain a
dump of TLIB's actual configuration settings by using the tempfile
command-line option, as inlib -ctemp.tmp q "

o If the file is more than a few thousand lines long, make sua¢ tthe key-
words are near the beginning. For multipass libraries, TcHh only
process keywords that appear within the filtsssize (MAXLINES lines
(default 4000). If you need to use keywords near the end ofra laege
file, you can create the TLIB library witlPASSSIZE set as high as 16000,
and useTLIBX.EXE (the DOS-extended version of TLIB). That will allow
you to use keywords anywhere within the first 15888s of the file.

o Make sure that your TLIB library was not created wWiHLETYPE BINA-

RY configured. Examine the TLIB library file with a text editofFhe first
two characters areV”. If the library is in text format, then the third char-
acter is “”, “t”, or a blank. If the third character i<" or “d” then the
library is |n blnary format, and you'll have to create a nevatiy file (with
FILETYPE TEXT configured) to make keywords work, or convert the li-
brary to text format format withTLIBTLIB.EXE oOr TLIBTLIB.AWK (p.
296).

220

Tlibscan

TLIBSCAN is a fast file-scanning program, similar to fgrépcan search
any kind of file, including binary files, and display ASClath found in
the files. TLIBSCAN is especially useful for identifying X files which
have embedded keyword information (like WHAT or IDENT frorther
systems), but it can also be used as a generapgeifle searching tool.

If you use the TLIB keyword facility to embed version-spéciihforma-
tion in your source files, TLIBSCAN can find it in the .EXE dil By
default, TLIBSCAN will search for the string &(#) ”, and it will display
text found after the &#) " and up to the first control character (such as a
0-byte or carriage return). Seven command line options aadadle to
change its behavior. For a list of options, run TLIBSCAN wih parame-
ters.

Here are examples of how to use keywords to embed scanndbienax
tion in your programs. Both assume that you've configuretB™imilar to
this:

keyflag 3,"-=>keyflag<=--"

Example #1(C):

[*-=>keyflag<=-- "&(#)MAKE #%yv %f" */
static char embedded_id[] = "&#)MAKE #63 2-May-99 ,9:23";

Example #2(Turbo Pascal):

{--=>keyflag<=-- '&(#)%n #%v %f'}
embedded_id: string[41] = '&#)TST.PAS #8 2-May-99 ,9:30'#0;

We have embedded scannable information in several of thé& Tb-
grams. So, to try out TLIBSCAN on the TLIB prograraster:

TLIBSCAN *.EXE

221

Revision History Logging

Revision history logging is a feature which allows automatisertion in
your source file of a revision history comment block (texedi only; this
feature is not supported foFileType binary). The revision history is
similar to the output of TLIB's L (list versions) commarifl.you do not
need this feature, you need not read this chapter.

Several TLIB configuration parameters are used to tell ThiBv to auto-
matically insert a “revision history” of version commenméis into your
source code when you extract the source file fioerlibrary file. The con-
figuration parameters allow you to specify the format aratpment of the
“revision history log” in your source file (typidglin a “comment block”).

Three parametersogFlag, logPrefix & logSuffix) are used to support the
automatic insertion of a “log” of version definition commntdimes into the
source file. ThelogFlag parameter is used to determine where in the
source file the log will be inserted. ThgPrefix and logSuffix — are
optional parameters which are used to format the log inftonavhen it

is inserted in the source file.

The log must be both preceded and followed by a “LogFlag,”clvhis
very similar to &KEYFLAG (for keywords, p. 212).

If you configure both akEYFLAGand a LOGFLAG then TLIB requires that
the starting column numbers and the first two characterbeflag strings
for the KEYFLAGand LOGFLAGbe identical (this requirement is imposed
for performance reasons).

The LOGFLAGS a line containing a special string of characters stakding
specified column number, so the configuration parameteaf@OGFLAG
consists of a column number plus a quoted string, separgtedcbmma.
(Note:there shouldhot be a blank next to the comma.) For instance, if the
LOGFLAGwas configured as:

logflag 1,"C ***revision-history***"

then a pair of Fortran-style comment lines would delimit kbg Or, more
flexibly, you could specify:

222

logflag 3,"***revision-history***"

which would match, for instance, these Fortran, Pascal, CASM com-
ments:

C ***revision-history*** (Fortran)

{ ***revision-history*** } (Pascal)

[****revision-history****/ (PL/I or C)

; ***revision-history*** (MASM)
(***revision-history*** (Pascal: begin-log)
ravision-history) (Pascal: end-log)

This LOGFLAGIS compatible with the exampl&EYFLAGdescribed earlier,
since the KEYFLAGand LOGFLAGboth start in column 3 and begin with

hogekc??

Note that when you create the original source file, you mosiuidetwo
LOGFLAdInes, one after the other, in your source file. Later, when gx-
tract the source file, the log will be inserted between thBmcertain that
you havetwo logflags, since everything after the first one and befoee th
second will be deleted when you use the U or N command to put the
source file into the library file!

For C programmers, we recommend that the log be placed #ifaun-
dif block, like this:

#if O
ravision-history

ravision-history
#endif

Note that the TLIB U (update) and N (new library) commandsl wot
modify the source file to update your revision history logdu've config-
ured FIXKEYWDS NSO to get an up-to-date version log inserted in your
source file after an update, you may have to re-extract thecsdfile (or
just configureFIXKEYWDS Y).

Another warning: the column number specified forLeaGFLAGdoesnot
properly count columns in lines containing tab charactédso, TLIB
does not properly handle leading and trailing blanks within OGFLAG
string, nor does it transparently match tabs aadkd.

223

Therefore, as with KeyFlags, we recommend that you:
1) specify a column in the range 1a8d

2) don't use tabs or multiple blanks in tlesFLAG string

LogPrefix and LogSuffix specify what, if anything, should precede the
version comment lines when they're inserted in the sourde es a revi-
sion history log. Both theLogPrefix ~and LogSuffix parameters specify
a column number (where the prefix or suffix is to be inseri@al) a quot-
ed string. The version comment lines will be truncated asleedo fit
between the prefix and suffix, so you may wish to restrictlgreggth of a
version comment line by using thegwidth parameter (p. 267).

Restriction:theLogPrefix ~ can't extend past column 80.

Here's alogflag , logprefix and logsuffix for use with Pascal pro-
grams:

logflag 1,"{--=>revision history<=--}"
logprefix 1,"{"
logsuffix 79,"}"

Note that with this choice of. OGFLAGand LOGPREFIX it is impossible for

a version comment line to accidentally match thieating logflag, since
the LOGFLAGalways has =" in column 2, but the version comment lines
will have either a blank or a digit in column 2y(it and you'll see why).

One final warning about. OGFLAG: if you use them, you may have to be
careful not to put any “close comment” delimiters into yoersion defini-
tion comment lines, lest your compiler try to compile parttioé version
log! This is obviously not a problem in languages which leti genote a
comment by preceding it with a special character (e.d.,fér MASM).
For C programs, the problem can be avoided by puttingltheFLAGpair
within an “%#if o /" #endif " block. But Pascal programmers, watch out!

Note: if you program multiple languages, you may need to configee

eral styles of revision history comment block. You can us¢éBH&.IF and
ENDIF configuration parameters for this; see p. 321.

224

Cmpr delta generator

CMPR is a text file compare utility based on TLIB. Its outpsitaidelta: a
description of the differences between a “new” file and ali™dile. The
delta can be used to reconstruct the “new” filerfithe “old” file.

The primary purpose of this utility is to allow transfer ofusoe code up-
dates in a compact format over low speed teleconwation lines.

Note #1:for a more “human-friendly” (informative) compare utiljtyry
COMPARE.EXEfrom PUBLIC.ZIP). Or, for the nicest compare utility we've
seen for ASCII text, buyDELTA™ (list price $100) from OPENetwork,
215 Berkeley Place, Brooklyn, NY 11217. Tel: (7B8B-3838.

Note #2:For comparing specified versions of a file in a TLIB librany,
for comparing an already-extracted file to another versigrch is in a
TLIB library, you can use the includedoMPAR.BATScript. It simply in-
vokes TLIB to extract the desired version(s) into temporfilg(s), uses
COMPARE.EXHO compare them, and then usesOREt0 view the differ-
ences. You can easily modify it to use a different compargmamm (such
asDelta), and/or to use a different tool to view the résuf you wish.

Modes

The output is in any of several formats, selected accordirgy“mode” pa-
rameter. The default mode NORMAD) is a TLIB-style differences
description. If you have the old version of a file, plus theltd file” pro-
duced by CMPR, then you can reconstruct the new version hygusi
simple .bat file which builds a temporary TLIB library file, appends the
delta to it, and then extracts the new version.

See thesNCMPR.BATfile for an example of how to do this.

You can also select a CMPR mode ofNEPASSwhich is just like the nor-
mal mode except that it is guaranteed that the lines refecknc .C
(copy) edit commands will be monotonically increasingstiriay simplify
your task if you wish to translate the delta file into anotfemat, for use
with a “batch editor.”

225

The third supported modeli$sSDEL , which is similar to onepass mode ex-
cept that the edit commands consist of inserts and delettsaith of inserts
and copies. This format is described below. We've also desdua simple
Pascal program, DSAPP (“Delta Script Applier”), which caply insdel
format deltas to a file. DSAPP is supplied as both source eok.EXE
file; see p. 230.

The fourth supported mode iSPERRY which causes CMPR to output its
delta file in a format which is compatible with the Sperry Bys
SDF/SIR$ program. Thus, if you keep source files on both a R€C a
Sperry Unisys mainframe computer, you can edit the PC veraia up-
load just the changes (to make the file transfer faster). d@uthen easily
reconstruct the new version on the mainframe byguSDF/SIRS.

The fifth supported mode i®ANVALET which is similar to SPERRYMode
except that the output is compatible with Pansophic's PANKERA pro-
gram management system. The format uses thec and ++D
subcommands of ther+UPDATE command, as described in the PAN-
VALET User Reference Manual. The special PAN#1 column ogé “
input character combinations are translated properly,(&sg” is substi-
tuted for ‘*). We've also included a PANVALET/P-COMPARE format
delta script appliepSAPPPAN.EXE.

“PANVALET” is a registered trademark of Pansophic Systeins,. The
PANVALET User Reference Manual, number OSUP11.0-8412yv&la
able from Pansophic Systems, Inc., Lisle, IL.

The sixth supported mode isIBRARIAN, which generates a delta script
file that is compatible with Applied Data ReseasddBRARIAN program
management system. This format uses th&s'” and “-DEL” control
statements as described in the ADR LIBRARIAN User Referévlaaual.
JCL, POWER and LIBRARIAN control statements are automdyica
translated with the appropriate LIBRARIAN “conversion cheters” (e.g.,
“I: 7 is substituted for *). We've also included a LIBRARIAN format
delta script appliepSAPPADR.EXE

“LIBRARIAN" is a registered trademark of Applied Data Resea Inc..
The ADR LIBRARIAN User Reference Manual, number SV2G-1Q-30
available from Applied Data Research, Route 206 and OrcRardCN-8,
Princeton, NJ 08540.

The seventh supported mode IBMUPDATE which generates a delta script
file that is compatible with IBM's UPDATE mainframe utilityrhis format

226

utilizes “/ 1 " and “./ D " control statements. A sample VM/CMS EXEC
for applying deltas is included with TLIB, in thiefnamedBMUPDAT.EX.

Add the 'smooTHoption to make CMPR generate more concise deltas for
large (multi-pass) files in theONEPASS INSDEL, SPERRY IBMUPDATE
PANVALET andLIBRARIAN output formats.

The smooTption tells CMPR to "resynchronize" between passes, 9o tha
the output does not show a bogus edit for lines that have maweiks the
DIFFLINES -long line buffer boundary. This effectively makesFFLINES

vary from pass to pass, according to the contents of the fikediles that

are longer than the configurediFFLINES number of lines. The default
DIFFLINES size is 3000, so thesmooTHoption does not affect operation
with files that are smaller than that.

If you are using CMPR to generate TLIB-compatible deltasofRMAL
mode), then you should not specify trevooTHOption, since TLIB uses
only fixed-length pass sizes, and cannot handle the vari@bigth pass
sizes which result from tr@mMooTHoption.

Three other CMPR options are provided for use in combinatiibh main-
frame delta formats:

WIDTH=NN Truncates lines at columm.

IGNORE=nN Ignore firstnn characters on each line.

SEQ10Sequence by 10 instead of 1.

Use the wibTHoption with any CMPR output format to remove sequence
number information from the input files. For instance, tmowe sequence
numbers from columns 73-80, specifyDTH=72.

Similarly, you can use theGNOREoption to cause CMPR to pretend that
the first nn characters on each input line are blank. This is useful for
COBOL programs with sequence numbers at the begirofieach line.
CMPR does not recognize sequence number information int ifiles.
The line numbers which it uses simply refer to the positiothmfile. That

is, line N normally refers to the N-th line in tfike.

However, in some mainframe environments lines are custbnraferred

to by sequence numbers which increment by ten. That is, thelifie is
number 10, the second is number 20, etc..

227

To accommodate mainframe programs which expect this kirseqlience
number, CMPR can optionally multiply all line numbers by tehen gen-
erating mainframe delta script files. Specify th&EQ10 option if you
require sequence numbers which increment by 10.

Since CMPR cannot recognize sequence numbers in columB8§,Aiu
may need to do a resequence operation on your mainframeefiteebap-
plying the delta script.

If you have a requirement for a special CMPR output mode sgleantact
Burton Systems Software. We will be happy to work with you rp tb
meet your needs.

Output Format Detail

NORMAL and ONEPASS Mode:

In normal and onepass modes, CMPR outputs a TLIB-styleréiffees de-
scription, consisting of av header line followed by (insert) and.c
(copy) commands.

The.l edit command format is...

AN
newlinel
newline2

newlineN

...whereN is the number of new lines to be inserted.
The.c edit command format is...

.CXY

...where x is a line numbers in the ‘old’ input filexr is optional. If it is ab-
sent, a single line is to be copied. ¥ >= X then x and Y represent the
first and last old line numbers in a range of linesMf< Xthen Y is one
less than the number of lines to be copied.

228

You could write a program to combine the delta file with thél'dile to
reconstruct the ‘new’ file like this:

1) Start out with an empty ‘new’ file buffer

2) Examine next edit command Einsert or.C =copy)
3) Append inserted or copied lines to ‘new’ fileffien

4) Repeat 2 & 3 until there are no more edit conusan

In fact, this is exactly what TLIB does when iré&ading a library file.

INSDEL Mode:

In insdel mode, the CMPR output format consists of insertbdaletes in-
stead of inserts and copies. The difference between inepytformat and
insert/delete format is in how you go about combining theadéle with
the ‘old’ file to reconstruct the ‘new’ file:

1) Start out with a copy of the ‘old’ file

2) Examine next edit command Einsert or.D =delete)
3) If it is an insert, add the lines at specifiesiion

4) If it is a delete, remove the specified lines

5) Repeat 2-4 until there are no more edit commands

In insdel mode, the (insert) edit command format is...

AW N
newlinel
newline2

riéwlineN
...where N is the number of lines to insert, andlis where to insert them.

More precisely,wis the line number in the ‘old’ file after which the new
lines should be inserted (to insert before thé fiing, use ‘ioN).

229

The.D (delete) edit command format is...
DWN

...where N is the number of lines to be deleted, andis the (old) line
number of the first line to be deletedi¢ always greater than 0).

We have also included a small program cal@8APPwith TLIB. DSAPP
(“delta-script application”) can be used to apply a CMPRejated
“delta” file (in insdel format) to an “old” file, creating arew” file.
DSAPP is about 100 lines of Turbo Pascal; both source .@xé are pro-
vided.

Because it is uncopyrighted, you may give copies of DSAPPniniae

you wish. You can use it to speed distribution of source cad#ocumen-

tation updates via slow telecommunications links. You wloggnerate an
insdel format delta from the “old” and “new” files using CMPRBend the
(small) “delta” file to someone who already has the “old’efiland they
can regenerate the (large) “new” file using DSAPP.

DSAPP is similar in function touUNCMPR.BAT But if you use DSAPP, the
recipient need not own a copy of TLIB. AlsaJNCMPR.BATUtilizes the de-
fault CMPR output format, while DSAPP uses INSDIBtnfiat.

We've also included programs similar to DSAPP for the PamisopAN-
VALET and ADR LIBRARIAN formats. These programs are called
DSAPPPAN.EXEand DSAPPADR.EXErespectively. UnlikeDSAPP.EXE these
programsare copyrighted. Run them with no parameters for instructions
on how to use them.

Other modes:

When you use CMPR'SSPERRY PANVALET LIBRARIAN Of IBMUPDATE
modes, the output format is similar in structure t/eSDEL mode, except
for the format of the insert and delete commands. For detsdls the ap-

propriate Sperry Unisys, Pansophic Systems, Applied Dase&ch or
IBM documents, respectively.

DOS Errorlevels

230

CMPR exits with the DOS errorlevel set to indicate whether ¢dbmpari-
son failed or succeeded. The errorlevel will be zero if CMP&h r
successfully and the two files were not the same.

If the ‘old’ input file does not exist, CMPR will still run, buhe “delta”
file which results will consist of a single large insert. TROS errorlevel
will be zero. If you need to test for this in @8AT file, use DOS's it ex-

ist " construct (see your DOS manual).

If CMPR ran successfully but the two input files were idealj¢he error-
level will be 1. CMPR will still create an output (delta) filbut it will be
very short (or empty, for insdel and Sperry modes).

If an error occurred (file not found, for instance), then GRIRll return
with an errorlevel of 2. The only exception to this is a CtreBk or Ctrl-C
from the keyboard, which may cause CMPR to haklwitorlevel O.

Configuration

CMPR reads the same configuration file as TLIB, but all exdepr of the
configuration parameters are ignored. The four parametbish are not
ignored are:

addCtrlZ : Same purpose as for TLIB; determines whether or not a Ctrl-Z
character (End-Of-File, code 26) will be addedht® output file. Default is
N (no). See p. 276.

difflines: Defines the size of CMPR's internal line buffer. This is than-
ber of lines which CMPR will compare at one time. Note that GMill
handle files which are longer than passsize/maxlines,lmitelta may be
somewhat less concise. The default is 3000 lines, which isoa ghoice
for most people. If your computer does not have much RAM mgmaru
may need to reduce difflines.

CmprEntab: Determines whether blanks are compressed to tabs when
read by CMPR. This would allow CMPR to match lines correctgard-

less of whether they have tabs in them. Note that TLIB and CMBR
only correctly convert standard 8-space tabs. Deifai (no).

CmprDetab: Determines whether tabs are expanded to blanks in the delta

file. Default is N (no). Set this to Y if you want tabs expandedhe delta
file (see p. 339).

231

Help Screen

If you run CMPR with no parameters, you will see a help screemia to
the following:

Usage: CMPR <oldfile> <newfile> <differencesfile> < options>
<oldfile> and <newfile> are the two input files

<differencesfile> is the output file

<options> are either omitted or:

NORMAL - output is standard tlib “delta” (default)

ONEPASS - same as NORMAL, but .C references are monotonicall y
increasing
INSDEL - similar to ONEPASS, but translated to

‘Insert/Delete’ format

SPERRY - output in Sperry Unisys SDF/SIR$ format

IBMUPDATE - output in IBM UPDATE format

PANVALET - output in Pansophic PANVALET format

LIBRARIAN - output in ADR LIBRARIAN format

WIDTH=nn - truncate lines at column nn

SEQ10 - for mainframe formats, sequence line numbers by 10
instead of 1

IGNORE=nn - pretend first nn characters on each line are
blanks

On exit, the DOS errorlevel is set to:

0 - no errors (or aborted with Ctrl-Break)
1 - no errors, but input files are identical
2 - error; <outfile> was not created

232

Timerge / Diff3

TLMERGE is a program to merge two sets of revisions, or toctffely
“delete” a set of changes from a TLIB library file while retaig later
changes. It is used by TLIB's “Migrate” command to migratevge
changes from one version of your program into agroth

DIFF3 is a 16-bit version of TLMERGE.

TLMERGE (or DIFF3) compares three files, a “base” file and timew”
files, and generates a fourth file (the “output”) which congs the
changes from each of the two “new” files.

Usage

TLMERGE is most commonly used indirectly, by using TLIB's hi{
grate) command to generate a migrate2.bat file which costaLIB and
TLMERGE commands to migrate/merge changes from one vaoiaydur
program or project into another. Examples would includeratigg bug
fixes from a currently-release level into a develompenelgor to migrate
changes from a standard version into a customized versibryoul use
TLIB's Migrate command, then you don't need to worry abottigg the
TLMERGE syntax correct, because TLIB determines what ndedse
merged, and generates the proper TLMERGE commartdmatically.

However, you can also run TLMERGE (or DIFF3) by itself, from
DOS/Windows command prompt. If a source file has been edlitedio
different ways, and you need a version which contains botls sé
changes, run TLMERGE like this:

TLMERGE basefile file2 file3 outputfile
or
TLMERGE basefile file2 file3 outputfile WIDTH= nn

where:

basefile is the original unchanged file

233

fle2 is the modified version of basefile with one sketlwanges

file3 is the modified version of basefile with the otkkbanges
outputfile is created by TLMERGE and contains both sets ahgbs
WIDTH=NN truncates lines at columm.

Use the WIDTH option to remove sequence number information from the
input files. For instance, to remove sequence numbers froomms 73-
80, specifywIDTH=72.

Alternately, you can think of the parameters likist

TLMERGE deltaold deltanew inputfile outputfile

where:

deltacld and deltanew are a pair of files which, by the difference be-
tween them, describe a “delta” or set of changes

inputfile is the file which you need to modify

outputfile iS inputfile modified in the same way thadeltaold was
modified to makeleltanew

For example, suppose you had a module with two developmeins pder-
sions 1 through 8 are the “main” (trunk) versioviersions 5.1 through 5.3
are for a special, custom version of the module needed by@ddwvcus-
tomer.

If you discovered a bug which was introduced in version 4nttree bug
would need to be corrected in both the regular and the cugemhier-
sions. Rather than manually making the same changes to hwibnt
versions, you could make the change to one of them and then let
TLMERGE apply the change to the other version. If you madectienge

to version 8, creating a new, fixed version 9, then TLMERGE ozake

the same set of changes to version 5.3. Think of version 8 argion 9 as
defining the delta, and version 5.3 as the input file. The ;@w®tom mod-

ule (version 5.4) is the output file:

TLMERGE version8 version9 version5.3 version5.4

234

where:
version8 andversion9 are the unfixed and fixed trunk versions
version5.3 is the unfixed customized version

version5.4 is the fixed customized module, created by TLMERGE

Sometimes TLMERGE might be unable to reconcile the two séts o
changes, because, for example, both file2 and file3 comidifications

to the same line(s) in basefile. The changes are said to biatiog (or
have “collided”). TLMERGE will warn you about such confligtbut you
must reconcile them manually.

To help you do this, TLMERGE will insert special “flag” stgs in the
output file for which you can search with a text editor. By aldf, the
flags look like:

/* ###Change collision detected! filename(s) */

If you don't like the default flag, you can change it with tiscoLLIDE
configuration parameter in your TLIB configuratifile (see p. 340).

You can also cause all changed lines to be flagged with aratidn of
which file they were changed in (see tlmSFLAG2and D3FLAG3 parame-
ters, p. 340).

Undo a Revision Without Losing Later Revisions

Occasionally, you may need to undo a set of changes made tof goeir
source code files without undoing a later serieshainges.

For example, suppose that version 4 m¥MAIL.C supports 40 byte name
records and 5 digit zip codes. In version @yMAIL.C was changed to sup-
port 100 byte name records. Version 6 was changed to supmbgit%ip
codes. Finally, an unrelated bug was found and fixed, argatérsion 7.
The last 4 lines aftyMAIL.C 's revision history might look like this:

4 MYMAIL.C 4-Aug-86 5-digit Zip, 40-byte names
5 MYMAIL.C 20-Oct-86 support 100-byte names

235

6 MYMAIL.C 13-Nov-86 use 9-digit Zips
7 MYMAIL.C 12-Dec-86 Bug fix for files > 64K

Now, suppose that you need a new version which is just likeioer7, ex-
cept that it should support 40 byte name records instead @byt name
records. In other words, you would like to undo the changeishvereated
version 5 from version 4, but retain the improvements madesisions 6
and 7.

TLMERGE can do this automatically. Simply consider versioto be the
basefile, and combine the changes needed to coramsion 5 back to ver-
sion 4 with the changes needed to convert version 5 into arergj like
this:

tlib ebs mymail.c4 4

tlib ebs mymail.c5 5

tlib e mymail.c7

diff3 mymail.c5 mymail.c4 mymail.c7 mymail.c

In other words, the “delta” is the set of changes needed toardrersion
5 into version 4, and the input file is version 7.

Note the use of a handy “trick” in this example: we extractédtecent ver-
sions ofmymail.c ~ without having to rename them by the simple expetdi
of chosing alternate file names which still “map” to the saitiite library
file (probably mymail.c$ in this case, if you have configuredIBEXT 2

Configuration
TLMERGE and DIFF3 use the following TLIB configuiat parameters:

addCtrlZ : Same as for TLIB & CMPR. (Ctrl-Z for output files? Default is
N/no.) See page 276.

difflines: Maximum number of input lines (per file) which will be haedl
at one time (same as for CMPR). DIFF3 generally works welheif¢he
input files are longer thamIFFLINES , as long asDIFFLINES is larger than
any of the changes. The default is 3000. See page 3

CmprEntab: Same as for CMPR. (Enable blank-to-tab conversion? De-
fault is N/no.) See page 339.

236

CmprDetab: Same as for CMPR. (Enable tab-to-blank conversion? De-
fault is N/no.) See page 339.

d3collide: D3collide defines a special line to be inserted in the oufie
wherever DIFF3 detects conflicting changes in file2 and3illf this con-
figuration parameter is not defined, a default flag line $d. See page
340.

d3flag2: Because changes to a program may well conflict even if nglein
line in the base file is altered in both file2 and file3, youymweish to flag
all changes, rather than just those which happen to “collitleis parame-
ter is used to describe how to flag all those lines which weoslifred or
inserted in file2. If this parameter is not defined, nothiagnserted. See
page 340.

d3flag3: Same a®3FLAG2, but for file3 instead of file2.

DOS Errorlevels

TLMERGE and DIFF3 exit with the DOS errorlevel set to indeat
whether the comparison failed or succeeded. The errorgldbe zero if
TLMERGE ran successfully and the three input filese not the same.

If the three input files (basefile, file2 and fileBere identical, the DOS er-
rorlevel will be 1. In this case, TLMERGE will still run, bulhé output file
will be the same as the input files.

If an error occurred (e.g., file not found), then TLMERGE wéturn with
an errorlevel of 2. The only exception to this i8ta-Break or Ctrl-C from
the keyboard, which causes TLMERGE or DIFF3 to stih errorlevel O.

Help Screen

If you run TLMERGE or DIFF3 with no parameters, it will disgla short
“help” message describing how to use it. The message canéapicture
drawn with the IBM PC's extended graphics characters; thigi@ may
not display properly on some computers. However, TLMERGBD B3
will still function correctly on these machines.

237

Additional features

TLMERGE and DIFF3 have two other minor features, which aredusy
TLIB's M (migrate) command:

a) TLMERGE and DIFF3 allows an “alias” to be specified for2isd and
3rd input files. The alias will be displayed in collision glainstead of the
actual file name. TLIB's Migrate command uses this featorentke the
collision flags show meaningful version numbers.

The aliases, if present, must be enclosed aurly braces, and must fol-
low the file names immediately, without intervensaces. For example:

TLMERGE basefil file2{12} file3{9.3} outfil
b) TLMERGE and DIFF3 allow specification of aife1= ...” parameter,

to insert an extra line at the top of the output file. (This $&d by TLIB's
Migrate command to insert tleMTFLAG string.) For example:

TLMERGE basefil file2 file3 outfil linel=[MERGED_ 12 + 9.3]

238

NS Command — split a library

TLIB was carefully written to run as fast as possible, so fltat can make
frequent library updates without wasting a lot of time. Bwelly, howev-
er, if the number of versions in a library file becomes vergéa(say, over
1000), you may find it convenient to “split” a library fileptimprove
TLIB's performance or save disk space.

One way to do this would be to simply store the old library file an
archival diskette, and create a new library file (with the dfrenand) from
the current version of your source file. However, this wolelad to confu-
sion because there would then be two “version dnes.

To avoid this problem, TLIB provides the NS (split librarygramand. The
NS command is just like the N (new library) command, except §ou
must explicitly specify the version number for the first sien in the li-
brary file; the “S” suffix stands for “specify.” (The firstersion in a library
file created by the N command is always number 1.)

You would normally specify a version number which is one éartipan the
highest version number in the old library file; you can use Ith(list) com-
mand with the old library file to find out what thaumber is.

Here is an example showing how to use the NS cordman

The library file for monst er. pas is using up a lot of disk space, so we
decide to split it. Assuming that the TLIB library fe®nster. pas is
in \tlibs\nonster. p$s, here is how we go about splitting it:

TLIB L MONSTER.PAS
(use L command to find that there are 100 vers@nsonst er . pas)

TLIB E MONSTER.PAS
(get the latest version from the old library file)

REN \TLIBS\MONSTER.P$S *.TL1
(save the old library file asonster.t11)

TLIB NS MONSTER.PAS 101 old lib's v100
(start a new library file, with the first versioreing number 101)

239

TLIB will now run faster and use less memory, since it doeseéd to
read as many old versions each time you do an epmtaxtract.

240

Retrieving by Date/Time

You can retrieve particular versions by date & time, as welbg version
number or by snapshot or file list name. Simply use the ES d8 EBm-
mand and specify the date and/or time insteadeof/éision number.

If you specify a date/time as the version number for the ESnoand,
TLIB will retrieve the newest version which is not newer thifue speci-
fied date/time. By default, only trunk versions are exardinaut if you are
using branching then you can select a particulanddr.

For retrieval by date/time to work correctly, the versionsyour library
file should be in chronological order; that is, the datesha& versions in
your TLIB library file should be monotonically increasingt(least within
the series of trunk or branch versions which TLIB needs ta)csince
TLIB will stop reading versions from the library file when ad-new ver-
sion is encountered.

If you plan to use this feature then you shaudticonfigure LOGTIME N".
You should normally specify the date and time in the formatchTLIB

uses when displaying the date & time for stored versionst ®hdor the
date the required format is:

DD-MMM-YYYY

where:

DDis a 1 or 2-digit day of the month, from 1 to 31

MMMs the first 3 letters of the English month namg(Feb)
YYvvis the 2 or 4-digit year, 80-99 or 1980-2043

Time of day must be specified in 24-hour format:

HH:MM:SS

where:

HHis the hours, 0 to 23

241

MMis the minutes, 00 to 59
Ssis the seconds, 00 to 59

If you specify only the time, then today's datassumed.

If you specify only a date, then 23:59:59 is assumed (so thatsion will
match if it was created at any time that day). If you specifthbaate and
time, separate them with a comma or slash. TLIB customasésia com-
ma, but you can optionally use a slash instead of a comma tratepthe
date from the time. This is useful if you use tlEs command with a speci-
fied date/time in lieu of a version number, and you want tosptse
date/time to TLIB indirectly, as a parameter to a batch fileick invokes
TLIB.

The problem is that DOS's obnoxiou&mmand.com converts commas
(and semicolons and equal signs) into spaces, so that (famge) a
date/time like 25-Dec-94,12:00.00 " turns into two parameters,25-
Dec-94 " and "12:00:00 " when you pass it to abat file. So, in case you
need to do this, TLIB lets you specify the date/time &%-Dec-
94/12:00:00 " so that command.com won't mangle it when you pass it as a
parameter to aat file.

If you are using branching, then you can select by date/tima particular
branch in the library, by specifying both the branch and thtfime. The

branch specification must end in™ since it makes no sense to specify
both a date/time and an exact version number. For clarity,symuld sep-
arate the date/time from the version number wisleraicolon.

Here are some examples of legal version specificationshier8BS and
ES commands:

23 selects version 23.

25-Dec-92,13:00:00 selects the latest trunk version as of 1pm, Christ-
mas day, 1992.

@snapname.ext selects the version in the snapshot.

3-Feb-88 selects the latest trunk version as of midnight, Februady 3r
1988.

*3-Feb-88 equivalent to the previous example

242

6.%;3-Jun-91 selects the latest branch version 6.x as of midnight, June 3,
1991.

@filelist;12:00:00 selects the latest version as of noon today in the
branch specified in the named file list.

You should be aware, when using retrieval by date/time, tthetlate/time
which TLIB uses is the date/time-stamp that the source fid tvhen it
was saved in the library, not the time at which the library wpdated (but
see th@oucHsSouUmarameter, p. 288).

243

Comment Files

TLIB can read comments from a file when updating a libraryhvdt new
version. This is useful, for example, if you wish to updatensn@LIB li-
brary files with new versions, and you want to enter the saomengent for
each file, but the comment will not fit on a single line (on h®S com-
mand line). Suppose, for example, th&OMMENTS.TXTcontains the
comments. You could make TLIB update the libraries and réadcbm-
ments fromcOMMENTS.TXTlike this:

tlib uf *.c @comments.txt

Note that TLIB automatically stores the file name, date, ett the first
comment line, which uses up quite a bit of the available roonthe line.
If the first line in cCOMMENTS. TXWill not fit in the space that remains,
TLIB will automatically move all the comments down one lires (f you'd
left a blank line at the top @OMMENTS.TXJ.

You can use wildcards in the name of the comment file; TLIB wilbsti-
tute for the wildcards from the name of the source file. Thaset of
modified source files and associated comments can be @eparad-
vance, then the update operations can be doneaica. For example:

tlib uf *.c @*.cmt

...which would read comments fronMYFILE.CMT for source file my-
FILE.C , and fromYOURFILE.CMT for YOURFILE.C .

This is useful in highly “controlled” environments, whereogrammers
can extract and check-out modules, but are not allowed taidddte” op-
erations. Instead, the programmers must send the files t@yatém
librarian” to be checked-in. In a networked environmeng, sigstem librar-
ian is the only person who requires read/write access toilbnary files;
programmers do not need write access to the libraries if thaye
read/write access to the lock files (hint: for Novell and mother LANS,
this is easily accomplished by keeping the library and lolgsfin separate
directories, as shown in the example on page 260).

244

This type of control might be required by the configuratioarmagement
plan for some U.S. government contracts.

As a shortcut which is equivalent to th@*.ext ” format, you can specify
just “@d for the comment file, and TLIB will derive the comment filame
from the source file name. By default, the name of the comnfienis
simply the name of the source file with the extension charigedcMT
(you can change this convention with the CmtExt configoraparameter,
as described on p. 263). For example, if you diecommand:

tib uf *? @

...then the comments foMYFILE.C are expected to be iMYFILE.CMT,
and the comments f®MOURFILE.H should be irvOURFILE.CMT.

See also p. 105.

245

Configuration

Alphabetical listing of parameters

T - means TLIB uses this parameter
C - means CMPR uses it
D - means TLMERGE & DIFF3 use it

parameter default
T AATTR <set/preserve/reset> Set
T ABORT message
T C D ADDCTRLZ<Y/N> N
T ARCCMD<path-of-pkpak.exe>
T ARCEXT extension ARC
T ARCTEMP<temporary-directory>
T AUTOBRNCHY/N/Q> Query
T AUTOSETfilename AUTOSET.BAT
T BANNER<1-42>" string'
CD CMPRDETABY/N> N
CD CMPRENTABY/N> N
T CMTEXTextension CMT
T CMTFLAG<1-80>,<quoted-string>
T CMTSUFFIX <1-253>,<quoted-string>
T COLORIZE <Y/N> N
T COLOROFF<string>
T COMMANDS.comma-delimited-list>
T CREATETF<Y/N> N
T CZTRUNC<Y/N> N
D D3COLLIDE <line-to-insert> I* #t
D D3FLAG2 <0-253>" string'
D D3FLAG3 <0-253>" string'
T DATAPATH<Y/N> N
T DEFEXT extension
T DELETESRC<Y/N> N
T DETABE <Y/N/Mayhe> Maybe
CD DIFFLINES <100-16380> 3000
T DOTDOTOKY/N> N

246

page
287
309
276
328
328
328

292
333
339
339
263
289
289
313
315
330
298
291
340
340
340
278
263
278
255
339
303

parameter
ELSE

ELSEWHEREKY/N>
ENDIF

ENTABU<Y/N>
EQUALDATE<Y/N>
ERRORPAUS0-3>
EXITPAUSE <Y/N>
EXTENSION ext], ext2 ...

FINDIFILE <Y/N>
FIXKEYWD <Y/N>
FNAMECASEU/L/A>
FORCEREFR<Y/N>
FORCEU<Y/N>
HELP <1-49>" string'
ID name
IF <list-of-wildcard-specs>
IFF expression

C D INCLUDE path
JFILE <name-of-journal-file>
JOPTIONS <journal-options>
KEYFLAG <1-254>" string'
LET nameexpression

LIBDIRQ <1-54> string'
LIBEXT extension

LOCKING <Y/N/B/W>
LOGFLAG<1-240>" string'
LOGPREFIX <1-80>," string'
LOGSUFFIX <20-253>" string'
LOGTIME <Y/N>
LOGUSER<Y/N>
LOGWIDTH<20-254>
LOKEXT extension
LONGNAMESY/N/M>
MAKEDIRS <Y/N>

MAXLINES <100-16380>
MULTIPASS <Y/N>
NEWLINE <CRLF/LF/CR>
NT351BUG <Y/N>
NTFS35BUG<Y/N>
NUMBANNER1-42>
NUMLIBDIR <1-5>

A4 444 A4 A4 44444444444 A A4 A A4 A A A A A A A A A4 A~ - -

LEVEL n= named= pathp= name etc.

default

N

znN zZzZ

FILETYPE <Auto/Binary/Text/Runlen/EOFtolAUTO

N

z2zZ2>r <

page
323
308
321
256
275
312
313
254
294

277
309
306
275
329
266
321
323
264
190

UOCAPOr UIOAP 190

4000 Or 16000
Y

CRLF

N

N

0

213
270
300

262
265
222
222
222
266
266
267
262
77
315

335
311
316
317
329
1329

247

A4 44444444444 44444444444+ A—AdA—AAAAAA—4—4d 4 A4

248

parameter
NUMHELP<1-49>

NUMPROMP®1-42>
OLDDATE<Y/N>
ONETHREADY/N>
PASSSIZE <100-16380>
(this is a synonym ofAXLINES
PATH <path-of-libraries>
PROJLEV name
PROMPT<1-42>" <string>"
QUERIES <Y/N>

QUIET <Y/N>
READONLY<Y/N>
READONLYB<Y/N/W>
READONLYT<Y/N/W>
REFNEWLN<CRLF/LF/CR>
REFSUBDIR <directory-name>
RELAXVERS<Y/N>

REMor! Anything
REPLACE<Y/N/Q/A>
REPLROBR<Y/N/Q/W>
ROLOCKS<Y/N>

SAY message

SERIALNO VVV-SSSSS-nNn-cccccccececce

SET name<unquoted-string>
SETFTIMEW<Y/N>

SHEIGHT <0 or 8-70>
SHOWLNAMEY/N>
SLASHCONT<Y/N/M>
SLICKEPSI <Y/N/Maybe>
SWIDTH <0 or 40-32765>
TOPRELATI <Y/N/Maybe>

TOUCHSOURKY/N/Modified/Revhist>

TOUCHU<Y/N>
TRACK <Y/N/Maybe>
TRACKEXTextension
TREEDIRS <Y/N>

UNARCCMBXpath-of-pkunzip.exe>

UPDATENEWKY/N>
USEDUPHAN<Y/N/Maybe>
USEUMBS<Y/N>

VALIDATE <Y/N>
WARNMessage
WORKDEPTHIN

default

Zz < kO

4000 Or 16000

Zz < zzz<

EWLINE

Zz ZO0

page
329
329
267
292

257
299
329
269
279
279
280
320

305
307
252
268
282
280
309

270
274
284

285
292
284
301

275
297
308
300
326
276
285
319
285
309
310

parameter default page
T WORKDIR<path> A (usually) 304

249

Configuration overview

TLIB supports a large number of configuration parameterlitaw you to
tailor its behavior to your needs. However, most of the aunfation pa-
rameters have reasonable default values so that you do adttoevorry
about the features which you do not require.

To avoid making users contend with commands and featureshwthey
may not need, we have even made the TLIB user interface coafite in
command-line versions of TLIB. That way, unneeded commaitasot
even appear on the menu.

TLIB Combo Edition comes with a Windows-based Cguafation Wizard,
and TLIB for DOS comes with a program called TLIBCONF, to hgqu
set up your initial TLIB configuration fileYou should run the TLIB Con-
figuration Wizard or TLIBCONF even if you upgraded to TLIB®from
an earlier version of TLIBSee p. 15.

Where is the Configuration File?

TLIB first looks for a file named fLIB.CFG " in the current directory. If it
is not found, TLIB checks the DOS environment area for sat
tlibcfg=pathfile.ext " command. If there was one, then TLIB will try
to open path\file.ext as the configuration file. If that fails, then TLIB
will look in the directory from which it was run for a file narde
“TLIB.CFG ".

If you want to prevent TLIB from looking forTLIB.CFG in either the cur-
rent directory or the directory containingLIB.EXE , then use S$et
tlibcfg=!path\file.ext " (the “1” means “force”). However, if you do
this then TLIB will not run at all unless it finds the speciieonfiguration
file.

There is also a semi-secret “patch point” which can be usdaroe TLIB
to look in one and only one place for its confidima file; see p. 105.

250

In addition, before reading the regulatis.crFG file, TLIB looks for and

(if it exits) reads a supplemental configuration file cdllgLIB.SER , in the
same direcectory that the TLIB program resides in. Usualiyg.SER
contains onlyserialno parameters (but you can put other configuration
parameters into it, too).

TLIB for Windows also uses arLiB.INI file, to store user interface pa-
rameters (command-line TLIBs may read it as well).

By default, TLIB.INI resides in the same directory as the TLIB executa-
bles. However, if you have a multi-user TLIB license andatistd TLIB
into a shared network directory, then this is inappropriatesre should be

a different TLIB.INI for each user. So, if TLIB is installed into a shared
network directory, you should use theLIBINI environment variable to
tell TLIB where to find TLIB.INI . The easiest way to do this is to add a
SET statement to yoututoexec.bat (or OS/2config.sys) file, e.g.:

SET TLIBINI=C:\

DOS Environment Space

If you get an “Out of environment space” DOS error in respotasgour
SET command, then under DOS 3.2 (and later) you may wish tease
your environment space using the parameter of the SHELL command
in your CONFIG.SYS file (your DOS manual has details).

To approximately triple your environment space urid@S 3.2 and later:

shell=c:\command.com c:\ /p /e:512

Checking the configuration: -c command-line option

TLIB has a facility to “dump” most of TLIB's configuration ¢k into a
file, so that you can see the result of the environment viriabbstitu-
tions, include directives, etc..

The “cfilename " option writes the configuration information to file-
name.

Example:

251

tlib -cmyfile.txt q

That will run TLIB, write the configuration data tenyfile.txt , and then
exit to the operating systemQ“is “quit”).

Note: The configuration parameters that TLIB dumps are tiesdhat you
can reference as pseudo-environment variables in thegroafion file via
thewtlibcfg: ~ parameternanmsyntax.

Note that empty/do-nothingf/endif blocks in your configuration file
will not appear in the dumped configuration data. For examiplyou con-
figured:

if *.c,*.h
track y

endif

track n

...then thef/endif block does nothing, so TLIB ignores it.

What does the configuration file contain?

The TLIB configuration file is a normal DOS text file, whictoy can edit
with any text editor. The initial configurationdilshould be created by run-
ning TLIBCONF and answering the questions whichsits you. However,
TLIBCONF only configures the most common, basic configaparam-
eters, so you may need to make additions or changes by ediiag
configuration file manually.

Configuration files can contain comment lines, which mueggib with “”
or “REM ". The other thing they contain is configuration parameterse
per line, in the formats described below.

C command: Overriding Configuration Parameters

With the C command, you can specify or override any confitjonapa-
rameter, either on the DOS command line or interelgt For example:

252

TLIB ¢ "readonlyb N" eb myfile.c
(means disable read-only-browse mode, then do lrawsde extract

of nyfile.c)

TLIB ¢ readonlyb_n eb myfile.c
(another syntax to do the same thing)

TLIB ¢ readonlyb=n eb myfile.c
(yet another syntax to do the same thing)

Using an underscore) instead of a blank after the configuration parame-
ter name is more convenient, since it avoids the necesspiyttihg simple
configuration parameters in quotes. It only saves a coupleeystrokes
when typing. However, it avoids problems when passing TLoBfiyura-
tion parameters tabat files, since DOS's command processor strips off
guote marks irbat file parameters.

The “=” (as a third alternative to a blank or™) is allowed because we've
observed a tendency for users to get confused and #isistead of a
blank. However, it has the same problem that quote marks: halkren
passed in abat file parameter, £” gets stripped off by the DOS com-
mand processor.

The C command can be specified several times, if you wishhtnge
several configuration parameters:

TLIB ¢ keyflag_0O c logflag_0 e myfile.c
(means disable keyword and revision history log insertiben extract
myfile.

Even the fNCLUDE’ directive is allowed, so you can use it to specify a
large number of configuration parameters, like:this

TLIB c include_special.cfg e myfile.c

The only things allowed in the configuration file which yoarmot specify
with the C command are thef“” and “endif ” directives (this restriction

can be circumvented by putting the / endif block in a file and loading
it with the C command and the¢lude " directive).

253

Detailed configuration parameter descriptions

EXTENSION extl ext2 ...

The Extension configuration parameter is used to tell TLIB what file ex-
tensions you will be using. If you configure TLIB with the TRI
Configuration Wizard, and tell it the source file types thatl will be us-
ing, it will correctly configure the Extension pamater for you.

Example:

EXTENSION c,h,asm,pas,,bat,cmd

Note #1: there must be no dots, spaces or wildsciarthe list.

Note #2: the double comma aftegds” indicates that some of your files
may have no extension at all (e.gnakefile ”).

If you do not configure EXTENSION (or if you configure it incorrectly),
then TLIB's L, C and O wild-card search modes will not work endome
circumstances; see note #5, below, for detailgo(if care).

Note #3: if you configureDEFEXT (“default extension”), then that default
extension will also serve as your fIEXTENSION setting.

Note #4: The next 5 paragraphs are a description of why TLI&dseghe
EXTENSIONconfiguration parameter (you can skip this if ymn't care):

TLIB needs the EXTENSION configuration parameter when performing
wild-card searches of library or lock files (with the L, C a@dsearch
modes), so that it can deduce the names of the source filestfre names
of the library or lock files when you give a wild-card specétion which
does not already give the extension.

For example, suppose thatiBEXT 2$????? " is configured (a common
setting). Then if you store a source file calletvFILE.PAS into a TLIB Ii-
brary, the library will be namedyFILE.P$S .

Now, if you do the command,TLIB E *.PAS ", TLIB actually searches
for library files named+*.p$s (because the default search mode for the E
command is “L"). However, TLIB can tell from the ldicard specification
that you entered that the extracted files should have #wes” extension,

254

and it does not need the EXTENSION configuration parametdigure
out how to name the extracted files. When it finds the librile “ MY-
FILE.P$S ", TLIB will deduce the first part of the source file name from
the name of the library file, and will deduce theAs” extension from
your original wild-card specification.

However, if you give the commandtiB E MYFILE.* ”, then when TLIB
finds the TLIB library namedmMyYFILE.P$S, it will not know how to name
the extracted file. More precisely, the second charactdéheffile exten-
sion cannot be deduced from either the name of the libraeydil the
original wild-card specification. The extension could s, .PBs, .
PCS or whatever.

So, to resolve this ambiguity, TLIB consults ttEEFEXTand EXTENSION
configuration parameters: the first extension found whigktches will be
used. In this case, it would be the first extension found irictvithe 1st
character isP” and the third character is™.

DETABE <Y/N/Maybe>

The detabE (DE-TAB on Extract) parameter determines whether tabs in
the library file will be expanded to blanks in the source filering an E
(extract) command. Setting this t¥ will slow down these commands
slightly (about 8%).

The default isDetabE M (“maybe,” which means do not expand tabs un-
less Entabu Y was configured when the TLIB library file was created).
Example:

detabE N

By the way, TLIB is “case-insensitive,” which means that eppase and
lower-case are interchangeable in most contexts. So youspagify
“detabe n " Or even ‘dEtAbE N " with the same effect.

Also, TLIB allows you to substitute an underscore, equah sigtab char-
acter for the blank which normally follows the name of the faguration
parameter. So you can specifyetabE_N " or “detabE=N " with the same
effect. Using an underscore instead of a blank may be ptaterahen
passing parameters to batch files, sincéwill be passed unmolested, but

255

quotes and equal signs are removed from batch file paraméiethe
command processor.

Note that only 8-space tabs are supported by TLIB. If you uberotab
stops, you shoulahot set DetabE, EntabU, CmprEntab Or CmprDetab tO
“Y” in your configuration file.

Also, note that tab conversions are not supported for filbghvcontain
lines that are longer than 254 characters, nor FIETYPE Binary li-
braries.

The usual setting is the defaulDETABE MAYBEOr just “DETABE R,
which means that tabs will be expanded when the source fégtiscted if
and only if blanks were converted to tabs when the file wasest¢which

is determined by how the&NTABUconfiguration parameter was set at the
time the library file was created). (This avoids an anomalsiuation in
which changing theENTABUand DETABE configuration settings could
cause TLIB to find “changes” even in a freshly-axted file.)

ENTABU <Y/N>

The entabU parameter is somewhat analogous to the detabE parameter,
except that it determines whether blanks will be compresseédbs when
adding versions to the library file (with U and N commandshwever,
there is a subtle difference between commands which crelitheaay file

(e.g., N) and those which merely add another version to ittft@se com-
mands which add versions to an existing library file, theueabf entabU
used is the one that was set when the library file was creadtiger than

the current value. (The third byte of the library file will be' if entabU

was N (false) when the library file was created.)

Note that tab conversions are not supported for files whimhtain lines
that are longer than 254 characters, noFficeTYPE Binary libraries.

Default is N (no, do not compress blanks to tabs in the libféey. Setting
this to Y will reduce the memory requirements oiBLand make some li-
brary files significantly smaller. Here we leavaitthe default value:

entabU N

256

PATH <directory/folder path>

The path parameter specifies the default path for libraries. It carober-

ridden by TLIB'scP (path) command. Default is=", which means the
same directory as the source file. If you want library filesatways be in
the current directory (even when the source file is spetifigh a differ-

ent subdirectory or drive), you can specify " for the path.

You can, if you wish, keep your library files in the same disiedtory as
your source files. More often, however, library files arerst in a differ-
ent hard disk directory, or perhaps on a network file sereerefven a
diskette).

TLIB provides the PATHparameter for this situation: it allows you to spec-
ify the path (drive and/or subdirectory) in which your libydiles reside.
The most common form specifies the directory in which TLIB2ge the
TLIB library files:

PATH d:\ pat h\

The CP command can be used to override #agHconfiguration parame-
ter, to specify a different subdirectory, using the usual @ath
specifications (see also p. 42). For example:

TLIB CP B:\LIBRARY\ U D:MYFILE.TXT

TLIB will update the appropriate library file in directorg:\LIBRARY\
with the latest version @:MYFILE.TXT .

Note that if you neither configure theaTHparameter nor use the CP com-
mand to specify a library file path, then TLIB will expect thierary file to

be in the same directory as the source file. This is equitdtenonfigur-
ing:

PATH =

The CP command can also be used to specify the completeyifilar
name, rather than allowing the library file name to be deteeah by the
name of the source file. The file name must contain (or befedid by) a
“.” (period), since this is how TLIB distinguishes the fileame from the
name of a directory.

257

This form of the CP command is seldom used, since it requirasytou
use a separate CP command for each library file. You will gahefind it

easier to let TLIB determine the library file name from theus® file

name, instead of using this form of the CP command. Nevartiselhere
are a couple of examples:

TLIB CP MYLIB.XYZ

The library file isMYLIB.XYZ , in the same directory as the source file.

TLIB CP C:\LIBS\MYLIB.

The library file ismyLIB (with no extension), in directoxy\LIBS

The pATHparameter and CP command have a third form, to handle a par-
ticular problem faced by some users. The problem is thistwhba/ou do

if you have two different source files with the same name lfi¢iint ex-
tensions, and you want to have a library file for each of thamB would
normally try to use the same library file for both of them. @grammers
sometimes face this: for example, they may need to have atepiorary

files forfile.c andfile.h

The simplest solution is to use thebExt (and LokExt) configuration pa-
rameters (see p. 262).

An equivalent solution is to use the “ext’ form of the PATHparameter or
CP command to change the library file naming convention. sjjoe
marks (*?”) can be used as wild cards in the new library file extenston,
represent characters from the source file's extansi

Examples:
TLIB CP *.LIB
changes the library file extension.tas

TLIB CP C:\LIBS*.LIB

combines forms 1 and 3 of the CP command, to specify both atdime
for library files €:\LIBS), and a new library file extension.

TLIB CP *.?$? E FILE.C E FILE.H U FILE.BAT

258

extracts the latest version ¢fiLE.c from a library file namedFILE.C$,
extracts the latest version a¢fiLE.H from a library file namedFILE.H$,
and updates a library file hamedILE.B$T with the latest version of
FILE.BAT .

TLIB CP *.?$ N FILE.C
creates a library file calleelLE.c$ for the source fil€ILE.C .

Note:the LIBEXT and LOKEXTconfiguration parameters provide a simpler
mechanism for selecting the naming conventions for libeargt lock files.
See p. 262.

If you are using check-in/out library locking, then thereaiourth varia-
tion of the PATH parameter and CP command available. (check-in/out
locking is used for multiple-programmer projects; it is kiped starting
onp. 97.)

Along with both the second and third forms of the CP commanod, gan

specify an alternate extension or path for the lock file.sTisionly mean-
ingful if you have check-in/out locking enabled. The loclefextension
and/or path is separated from that of the library file withask character

).

There are several circumstances under which you would nesgdcify
the extension or path of the lock file:

1) If you have different files with the same names but diffgérextensions
(e.g., file.c and file.h), then you would need to changmth the li-
brary file extension and the lock file extension to dependrughe source
file extension.

2) If you keep your TLIB library files on an WORM (write-onceptical)
disk drive, such as the IBM 3363, then keeping lock files omavention-
al (magnetic) disk drive would reduce the consumption of VlWORorage.
TLIB is ideally suited for use with WORM drives, since libyafiles are
only appended, not replaced, when a new version is added.dtier ver-
sion control systems, the entire library file is replacedasting an
extravagant amount of WORM disk storage.

3) If you keep your TLIB library files in a network file servelirectory for
which most users are not allowed delete access, then it Brdayeous to

259

put the lock files in a different directory so that TLIB canlete useless
lock files when a version is checked-in. (TLIB's check-ut/docking
mechanism will still function correctly even if it cannot ld&e obsolete
lock files, but the obsolete lock files will neestity clutter your disk.)

4) In highly “controlled” environments, programmers cantragt and
check-out modules, but might not be allowed to do “updategrapons.
Instead, the programmers must send the files to a “systemriém” to be
examined and checked-in. To support this environment, itirary files
can be kept in a network file server directory to which onlg gystem li-
brarian has write access, but the lock files would be keptdirectory to
which the programmers have both read and write access. yifesof con-
trol might be required by the configuration management gtamsome
U.S. government contracts (see also pp. 244 ang 105

Configuration file example:
PATH D:\LIBSVD:\LOCKS\

configures TLIB to put its library files inD:\LIBS\ , and its lock files in
D:\LOCKS)\ .

“CP” command examples:

TLIB CP C:\LIBS*.?$?/?"? U A:FILE.PAS

checks in and updates the source fileFILE.;PAS to library file
C:\LIBS\FILE.P$S , with lock file cC:\LIBS\FILEPAS . The PATH
LIBEXT andLOKEXT paramters are overridden.

TLIB CP D:\LIBS*.?$?/C:\LOCKS*.?"? U A:FILE.C

checks in & wupdates source fileAFILEC to library file
D:\LIBS\FILE.C$, with lock file C:\LOCKS\FILE.PAS

A path specified as=" is special. It indicates that the library (and/or lock)
files are to be found in the same directory as the source #esn if you
have specified a source file which is not in the current dosc Note that

260

this differs subtly from the default, which is\"”, which means the current
directory; the two library path specifications indicatéfelient directories
when the user specifies a source file with an explicit pdtht(ts, a file not
in the current directory).

Using the PATHconfiguration parameter or CP command, you can specify
several library directories separated by semicolons, ddé Will check
each directory in turn for your TLIB library file(s

This is useful when you use more than one directory to stove YaIB li-
braries. One common use is to let you keep a different dirgacddTLIB
libraries for each program or project, plus one or more “camirdirecto-
ries of shared modules. For example:

PATH f:\deptlibs\;f:\corplibs\

TLIB will first look for a library file in directory f:\deptlibs , and then
(if it wasn't found), irf:\corplibs\

Another example:

PATH f:\deptlibs\;=;.\;..\

TLIB will first look in the f\deptlibs\ directory. If the library file is
not found there, TLIB will check the directory containingetisource file
(=). If the library is not there, either, TLIB will try the cumé directory
(\), which may or may not be different from the directory coniag the
source file. Finally, if a library file still has not been fod, TLIB will
check the “parent” directory.().

If you are using check-in/out locking (p. 265), and if you gédeck files in
different directories from the library files, you must sifgdhe lock file
directories, too. The lock directories are in 1:1 corresfsorte with the li-
brary directories; if one or more of the lock directories msitbed, then the
corresponding library directory is used, insteaat. €&xample:

PATH f:\deptlibs\;f:\corpVf:\deptloks\
is equivalent to:

PATH f:\deptlibs\;f:\corpV/f:\deptloks\;f:corp\

261

With either of thesePATHs, if the library was found inf:\deptlibs , then
the lock file will be placed in\deptloks , but if the library was found in
fAcorp , then the lock file will also be itacorp

LIBEXT <extension>

The libext parameter is used to specify a naming convention for TLIB li-
brary files. It can be overridden by theéxt " form of TLIB's CP (path)
command. The default isTtB”, which means that library files will have
the same name as the corresponding source files, excephéhaxtension
will be .TLB. If you will need to maintain TLIB libraries for two source
files with the same name but different extensions (eftle,c and
fle.h), then the default naming convention will not work, sincettho
source file names would “map to” the same library file nameuhould
use theLibExt parameter to make the library file's extension depend upon
the source file's extension: if you specify &’‘in the <extension> then
the corresponding letter from the source file extensioh bélused in the
library file extension. For example, if you configu

LibExt 7$?2?277?
then for source file quarklec , the library file would be named

quarkle.c$; for source file gronk.pas , the library file would be named
gronk.p$s , etc.. This is the most common settingfi@EXT .

Note: No not specify LIBEXT or LOKEXTwithin an IF /ENDIF block in
your configuration file.

Note to users of Opus Maké&pr some additional advice on using TLIB's
LibExt configuration parameter, please refer to the descriptibthe

TLIBSUFFIX macro in your Opus Make manual (look for “tlibsuffix” in the
index).

LOKEXT <extension>

The lokext parameter is used to specify a haming convention for TLIB
lock files. It is exactly the same thing as LibExt, exceptttivaffects the

262

naming of lock files instead of library files. The defaultlofile extension
is “LOK'. If you configure

then for source file quarklec , the lock file would be named
quarkle.c® ; for source file gronk.pas , the lock file would be named
gronk.p?s , efc..

CMTEXT <extension>

The cmtext parameter is used to specify a nhaming convention for com-
ment files. It allows the use of a shortcut form when tellingHd to read
version comments from a text file. The format of the CmtExtapeeter is
the same thing as for LibExt and LokExt, but it affects the magnof com-
ment files instead of library files and lock filékhe default is

cmtext cmt

Example:suppose you configure
CmtExt ?CM

...and issue the command

tlib u gronk.pas @

then TLIB would expect the comments to be in ardenedyronk.pcm

DEFEXT <extension>

The defext parameter is used to specify default file name extension for
your source files. For instance, a COBOL programmer miglet ssurce
files which all end in the extensioncos”. He could avoid having to al-
ways type “‘coB” when telling TLIB the name of a text file by adding the
following line to his TLIB configuration file:

DefExt COB

263

Similarly, a Pascal programmer could configure:

DefExt PAS

You can still specify an explicit file name extension wheeeyou wish,
and if you need to specify a text file which has no extensioallajust end
the name with a period (*.”).

For example, if you configure the default extensagriDefExt PAS

MYFILE.C means MYFILE.C
MYFILE means MYFILE.PAS
MYFILE.PAS means MYFILE.PAS
MYFILE. means MYFILE

Our thanks to Mr. Phil Gerber for suggesting tleiatare.

INCLUDE <filename>

The include parameter allows configuration files to “call” one another
This is handy if you need to have several different configamafiles but
don't want to duplicate most of the configuration file corite For in-
stance, you might want to change just the defdrkty path, like this:

REM - just like “regular” TLIB configuration excep t
REM - use Tom's private directory for TLIB librari es.
INCLUDE G:\REGULAR.CFG

PATH c:\tlib\

One common use for the include parameter is in a networkeidogment,
where each workstation (or each “project” directory on dipalar work-
station) might needalmostthe same configuration parameters as every
other. You could set thelibcfg environment variable to point to a “stan-
dard” configuration file, et tlibcfg=f:\standard.cfg ", Then each
workstation (or project directory) for which configuratichanges are re-
quired could contain a shortlib.cfg file which begins, include
f:\standard.cfg ", and then changes whatever configuration parameters
need to be altered.

264

You can nestINCLUDE] configuration files to a depth of 3 (or 4, if you
count the main configuration file).

LOCKING <Y/N/B/W>

Thelocking parameter changes the behavior of the E (extract) and U (up-
date) commands. When locking is enabled, the E command sdhse
library to be “checked-out” to the current user; if the likyras already
checked-out to someone else, the E command will fail. Whekihg is
enabled, the U command will cause the library to be “checlaakin” af-

ter it is updated with the new version; the library must hagerbalready
checked-out to the current user, otherwise the rdnsand will fail.

Note: even if the update aborted because there were no changee to th
source file, the library will still be checked baick See pp. 97 -104.

If you enable locking, you'll also want to use tlrROMPT HELP and COM-
MANDSarameters to customize the user interface (p. 329

Default for the locking parameter is N, check-in/out loagkiisabled. You
can enable it like this:

locking Y

TLIB 5.0 added support for two new locking modesweak’ and
“Branch/level ”. They are for use whern.oCKING Y(full locking) is too
constraining because you need to be able to have multiplgraomoners
working on a single module at the same time. S¥éeak Locking and
Branch/Level Locking(p. 98) for details.

Warning: “LOCKING B (branch/level locking) should only be used with
project levels for whichs=N (or p=somethiny)has been configured in the

LEVEL configuration parameter, since only the current projeatliavill be
locked.

ID <nhame>

265

The ID parameter specifies the user name, which is needed to irplem
check-in/out locking. The configured ID overrides the DOsst fii-

bid= namé& command, and can be overridden by TLIB's CW (who)
command. Note that there musbt be spaces surrounding the”“in
“set tlibid= namé. See pp. 89 & 100.

Example:

id Dave

LOGUSER<Y/N>

The loguser parameter specifies whether or not the user id should be in-
cluded in the version definition comment lines. The defaslthow
LOGUSER Y which is changed from TLIB 4.12.

There's probably no good reason to change it.

loguser Y

LOGTIME <Y/N>

The logtime parameter can be set to N if you want only the date of the
source file to be included in each version definition comtrlere. Nor-
mally, both date and time are included. Set logtime to N if gounot want
the time included. The defaultis Y.

Normally, you should not configureogTime N unless you also configure
OldDate N, lest TLIB be unable to correctly set the timestamp of exedc
source files. If botholdDate Y and LogTime N are configured, TLIB will
create the files with the proper (old) date, btitree of 0:00.

Also, you should not configuraogTime N if you want to be able to re-
trieve old versions by date/time (p. 241).

logtime Y

266

OLDDATE<Y/N>

When TLIB extracts a source file from its library file (usinige E com-
mand), the source file is normally created with the origidale and time
that it had when it was added to the library.

If you prefer that TLIB re-create source files with the cunrelate and
time, use theldDate parameter. If you configuredidDate N , then TLIB

will create extracted source files with the date and timaséhow.” You

may wish to do this, for instance, so that MAKE will correctbuild ob-
ject files which depend upon the extracted souites. f

The defaultis Y (yes), create extracted files tfith original (old) date:

olddate Y

See also pp. 276, 358 and 366.

LOGWIDTH<20-254>

The logwidth parameter specifies the maximum length of a version com-
ment line. Default is 79, for display on an 80-column monitéou might
want to use a smaller value to avoid truncation if you are gitagflag to
insert the version log into your source file, sitice version comment lines
will be truncated as needed to fit between therefpand logsuffix.

Note that the first comment line also contains the file nadee, time
and/or user-ID, so there may not be much room left for commentthe
first comment line if logwidth is small. The example logpxedind logsuf-
fix leave columns 2 through 78 available for the version cantriine, so
we'll set logwidth to 77 (the example is on p. 224)

logwidth 77

See als@WIDTH, p. 284.

267

LOGFLAG<1-254>" <string>"
LOGPREFIX <1-80>," <string>"
LOGSUFFIX <20-254>" <string>"

The logFlag, logPrefix and logSuffix configuration parameters are de-
scribed under “Revision History Logging,” p. 222.

KEYFLAG <1-254>" <string>"

ThekeyFlag parameter is described under “Keywords,” p. 212.

REPLACE <Y/N/Q/A>

The replace parameter specifies whether or not an extract (E, EB, etc.)
command will replace the source file if it already exists.fddt is Q
(query user before replacing). If you run TLIB from within [3Obatch
files and don't want TLIB asking questions at unpredictaiphes, you can
specify N (no, abort the command if the source file alreadgtex Chang-

ing this parameter to Y is dangerous, since you could actadlgrdelete
your latest source code file if you used the wrdh{B command. We rec-
ommend that you leave this set to Q (the default), or set it {@bort if

file already exists), like this:

replace N

TLIB 5.50 supports four differenREPLACEModes when extracting files.
The fourth, REPLACE ABSOLUTEL{or REPLACE Awas new to TLIB 5.0.
REPLACE Ais like REPLACE Yexcept that there is no warning when it is

used while processing multiple commands using wild-cartiss is adan-
gerousconfiguration option; do not use it unless youlyeeed to.

The REPLACE Yoption is also dangerous, but if you extract multiple files
using wild-cards or a file-list, it will give youn@ chance to bail out:

Warning! "REPLACE Y" configuration parameter acti ve! Continue?

REPLACE Asuppresses even this warning.

268

The default is stilREPLACE Q, which queries you before replacing files.

Note that the REPLACEconfiguration parameter interacts with two other
configuration parameterREPLROBRaNdQUERIES.

QUERIES <Y/N>

The Queries parameter lets you prevent TLIB from prompting you with
Yes/No questions. ConfigurinQUERIES Nprevents TLIB from pausing to
ask such questions. More specifically, it effectively fsa@ “No” answer
to all such questions.

This feature is intended for use in situations where it isapgropriate to
ask the user a question (e.g., in some batch applicationdienWwLIB is
being driven by another program).

Since TLIB's yes/no questions are generally used for “Thightrbe dan-
gerous, are you sure?” kinds of situations, forcing a “No%wer rather
than a “Yes” answer) is the conservative choice.

When QUERIES Nis configured, the yes/no questions will still be dis-
played, but the user will get no chance to anstvemt

Note the relationship betweeQUERIES Nand the REPLACEconfiguration
parameter. If you configur@UERIES N then REPLACE {the default) and

REPLACE Nare almost equivalent: the only difference is that WRBPLACE
Qconfigured, the question:

filenamealready exists. Replace it?

...will still be displayed (though you won't get a chance tewser it), but
with REPLACE Nconfigured, the question will be suppressed altogether.
(See the description &EPLACE, p. 268.)

SET nameunquoted-string

269

You can usesET configuration parameters to define pseudo-environment
variables, which you can reference in the TLIB configurdiitavia the %
names(or %!namesor %!' nameq syntax, just like real environment vari-
ables. The syntax is the same as the DOS and G&/2 ¢ommand:

SET nane=string

The SET configuration parameter overrides any normal environmanit
able setting for the same name, and the nhame ésicasnsitive.

There is no default for this configuration paramete

See also “environment variables...” (p. 80), and theT parameter
(below).

LET name<expression>

The LET configuration parameter is a variant of tteeT parameter. The
difference is thatLET evaluates the right hand side of the assignment as an
expression before assigning it. The syntax is:

LET name= <expr essi on>
where <expression>is an expression consisting of literal integers, short
literal strings, operators, and parentheses. Literalgdrcan be surrounded

by either ' single (apostrophe) or double quote marks, and can be up
to 80 characters long (including the quote marks).

The following unary operators are supported:

operator result type operation
- integer negate an integer

NOT Oorl true if operand is zero

LC string convert a string to lower-case

uc string convert a string to upper-case

UNQ string “unquote” - remove the quotes from a string
LEN integer length of a string (including quotes, if any
Siz integer size of a file, or -1 if missing

NAM string “truename” - expand file name into full path

270

The following binary operators are supported:

operator result type operation

+ integer addition of two integers
integer subtraction
integer multiplication

/ integer division
MOD integer remainder
AND Oorl “1” if both operands are non-zero

OR Oorl “1” if either operand is non-zero

< Oorl numeric "less than" test

<= Oorl numeric "less than or equal” test

> Oorl numeric "greater than" test

>= Oorl numeric "greater than or equal” test
== Oorl numeric equality test

<> Oorl numeric inequality test
EQI Oorl string equality test (case-insensitive)
EQ Oorl string equality test (case-sensitive)
NEI Oor1l string inequality test (case-insensitive)
NE Oor1l string inequality test (case-sensitive)

: string string concatination
SST string substring
SPL string “split” - get specified part(s) of a path\nam

Evaluation of binary operators is strictly left-to-riglaind all binary opera-

tors have the same precedence. All unary operators have ame s
precedence, too, but unary operators have higher precedkan binary

operators.

Note that multiplication and division doot have higher precedence than
addition, subtraction, and the compare operatdras;Tfor example:

Expression Means Evaluates to
1+2*3 (1+2)*3 9 (not 7)

1<2*3 (1<2)*3 3(not 1)

-1+2 (-1)+2 1(not -3)

Strings and integers are generally interchangable. You foairinstance,
concatinate an integer to a string, and if a string containsuaneric char-

271

acters (and perhaps a leading minus sign) then you can usgrihg in
arithmetic expressions as an integer. TLIB will convertoausatically be-
tween strings and integers, as necessary.

To force conversion of a number to a string, canest the number to a O-
length string, like this:

let quoted120=". (12*10)

The result of the concatination has the quote-type of thehiafid operand
(apostrophes, in this example). To force conversion of iagtio a num-
ber, add zero to it or multiply it by 1, as in tieisample:

let numeric120=0 + ('12'.'0")

To include a quote mark in a string, quote it with the otherdkai quote
mark. For example, the following example prints the same timice. Note
that the expression assigned tooTTOCONtains both an apostrophe and
two double quote marks. (ThenQoperator and thesAy configuration pa-
rameter are explained below.)

let motto=UNQ ("Picard/Riker in '96." . ' "Make it so!™)
say %motto%
say Picard/Riker in '96. "Make it so!"

Most of the operators have obvious functions. However, adkthe oper-
ators need some explanation.

The UNQoperator "unquotes” a string. The result is still a stringf, With-
out the quote marks. Since every literal string includes gheounding
guote marks as part of the string, if you want a string withihet quote
marks then you must use theQ operator.

The LEN operator returns the length of a string, including the quwoéeks,
if any. If you want the length without the quote marks, thee UEN UNQ
(expression). For example:

let x=12345
let y=(len unq '%x%") - 1
say X=%x%, Log10(x)=%y%.something

ThessT ("substring™) operator returns a specified poridm string.

272

The left operand ofssT is the input string. The right operand is a string
containing a pair of integers, separated by a colon, liké",@r else a sin-
gle integer. The first (or only) number is the subscript & fiist character
to be returned; the characters are numbered from the lefingtavith O,
and also from the right starting with -1. The second numidear(y) is the
desired maximum length of the result.

Quote marks are not automatically included in the resuliv@e of the
fact that, using thessT operator, you can easily create strings that have a
quote mark at only one end of the string.

Examples:

"abcdef" SST '1:2' =ab
"abcdef" SST '-7:2' =ab
"abcdef" SST '0:3' ="ab
(UNQ "abcdef") SST '0:2' =ab

" . ("abcdef" SST '1:2") ='ab’
(UNQ "abcdef") SST '1:2' =bc
(UNQ "abcdef") SST 1 = bedef
(UNQ "abcdef") SST '2:2' =cd
(UNQ "abcdef") SST 2 = cdef
(UNQ "abcdef") SST '2:999' = cdef
(UNQ "abcdef") SST -2 ef

(UNQ "abcdef") SST '-2:1'

The NAM("truename™) operator expands a file name into fully-cfiedi
path and name. For example, if your current dimgac:\work\hdr\ then:

NAM "myfile.x" = "c:\work\hdr\imy file.x"
nam "..\myfile.x" = "c:\work\myfile X"

Beware that some network software has bugs that prevenksepera-
tor from working correctly for files on network g&s.

The spL (split path\filename) operator splits a DOS or OS/2 direcfmath
into parts, at the "\"s, and returns the specified parts. difinve letter or
"\server\volume\" part is part number 0. The rest of thetpare num-
bered two ways: with negative numbers, from right to leftdanith
positive numbers, from left to right. Leading and trailingshes are re-
moved, except on part 0. If a range of parts is specified, tten
intervening slashes are included.

273

The left operand ofspPL is a string containing the path to be split. The
right operand is a string containing a pair of integers, ssed by a colon,
like "0:1". As a shorthand, if both numbers are the same (onky part of
the path\filename is desired), you can just specify a simgkeger for the
right operand. E.g., specifying 'O’ for the right operanthis same as spec-
ifying '0:0'".

Examples:

"d:\aaa\bbb\ccc" SPL '0:0' ="d:\"

"d:\aaa\bbb\ccc" SPL '0' ="d:\"

"d:\aaa\bbb\ccc" SPL 0 ="d:\"

"d:\aaa\bbb\ccc" SPL "-1:-1" ="ccc"

"d:\aaa\bbb\ccc" SPL -1 ="ccc"

"d:\aaa\bbb\ccc" SPL 3 ="ccc"

‘d:\aaa\bbb\ccc' SPL 3 ='ccc'

UNQ (‘'d:\aaa\bbb\ccc' SPL 3) =ccc

(UNQ 'd:\aaa\bbb\ccc') SPL 3 =ccc

(UC UNQ 'd:\aaa\bbb\ccc') SPL 3 =CCC

"d:\aaa\bbb\ccc" SPL -3 ="aaa"

"\aaa\bbb\ccc" SPL "0" ="

"aaa\bbb\ccc" SPL 0 ="

"d:\aaa\bbb\ccc\" SPL 1 ="aaa"

"d:\aaa\bbb\ccc\" SPL -2 ="bbb"

"d:\aaa\bbb\ccc\" SPL 2 ="bbb"

"d:\aaa\bbb\ccc\" SPL '2:1' ="

"d:\aaa\bbb\ccc\" SPL '1:2' = "aaa\bb b"
"d:\aaa\bbb\ccc\" SPL '-1:-2' ="

"d:\aaa\bbb\ccc\" SPL '-2:-1' ="bbb\cc c"
"\servr\sys\aaa\bbb\ccc\" SPL '-2:-1' = "bbb\cc c"
"d:\aaa\bbb\ccc\" SPL '0:-1' ="d:\aaa \bbb\ccc"
"d:\aaa\bbb\ccc\" SPL '0:-2' ="d:\aaa \bbb"
"d:\aaa\bbb\ccc\" SPL '0:1' ="d:\aaa "
"\srvrisys\aaa\bbb\ccc\" SPL 0 ="\\srvr \sys\"
"\srvr\sys\aaa\bbb\ccc\" SPL '0:-3' = "\\srvr \sys\aaa"
"\\srvr\sys\aaa\bbb\ccc\" SPL -3 ="aaa"

"\\srvr\sys\aaa\bbb\ccc\" SPL -1 ="ccc"

"d:\aaa\bbb\ccc\" SPL '2:-1' = "bbb\cc c"
"d:\aaa\bbb\ccc\ddd" SPL '2:-1' = "bbb\cc c\ddd"

"d:\aaa\bbb\" SPL '2:-1' = "bbb"
"d:\aaa" SPL '2:-1' —m

SETFTIMEW<Y/N>

The SETFTIMEwconfiguration parameter is mainly for use when running
TLIB under MS-DOS in an OS/2 VDM. ConfiguringETFTIMEW Ytells
TLIB that a file must be open with write access if its date#its to be
changed.

274

SETFTIMEW N - normal
SETFTIMEW Y -w rite access is required to set a file's date/time

Note: TLIB will tell you if you should configure th parameter.

FORCEU<Y/N>

TheforceU parameter specifies whether a U (update) command will be al-
lowed to complete even if there have been no changes to theeséle.
Default isN (no, abort the command if there have been no @gng

forceU N

TOUCHU<Y/N>

The touchU parameter specifies whether a U (update) command will
cause the library file's date/time to be changed to the numate/time
even when the operation aborts with the “No changes” messkHge
TOUCHUS N, then the date/time will not be changed unless the librdey fi
is actually extended with a new version.TOUCHUS Y, then the date/time
will be updated even if there were no changes in the currersiom (but
the library file's archive attribute will be set only if a nexgrsion was ac-
tually added).

If you intend to use the F (fast Update) command, or if you ugeKi to
update your libraries, you will want to leaveoUuCHset to Y (the default).
Otherwise, you can set it tol (no, don't set date/time unless the library file
was actually changed) without ill effects. Here specify the default:

touchU Y

EQUALDATE<Y/N>
The EqualDate parameter affects the date/time-stamp of a library fileraft

has been updated. Normally, the date/time is set to “nowg tifme when
the library was updated). However, if you configuEQUALDATE Ythen

275

the date of the library will be the latest of: (1) the old librdile date, and
(2) the source file date.

This normally causes the library file date to be exactly thens as the
source file's date (since you don't usually update a libfisgywith an old
source file).

This configuration parameter is provided mainly for netwaoisers who
use MAKE to extract the latest version of the source code whensome-
one else has added a new version to the library, but who sth v use
the F (fast update) command to update their library files. d&ting
EQUALDATE Yand OLDDATE YYyou ensure that the source and library file
dates are equal, so that both kinds of operatidthsvark properly.

UPDATENEWCY/N>

The UpdateNewparameter can be set if you would like to have one com-
bined command do the functions of both U (update) and N (ndwpu
configure UpdateNew Y, then the U command will not fail due to a nonex-
istent library file; instead, it will create the library &) as if you had done
the N command instead of U. Default i¢(the U command reports an er-
ror if the library file doesn't exist).

UpdateNew N

ADDCTRLZ<Y/N>

The addctrlZ parameter specifies whether or not TLIB will add a Ctrl-Z
(end-of-file) character to the end of text files. This paeten affects TLIB,
CMPR and DIFF3.

This parameter defaults tol (no, do not add the ctrl-Z), which is fine for
most users. However, a few older programs may require th& cifr you
use such a program, configure:

addctriZz Y

276

FIXKEYWD <Y/N>

Whenever you extract a file containing keywords or a revisiastory,
TLIB inserts the correct, up-to-date keyword or revisiostbry log. How-
ever, when you store a new version with the U (update) or N (liteary)

command, it is optional whether TLIB will modify your souréite to up-
date the keyword or revision history information. ThHexKeyWd

parameter lets you tell TLIB whether you want tthise.

By default, when you store a source file into a TLIB librarthvthe U or
N command, TLIB will also “fix up™ any keyword information aevision
history log in your source file, to make it reflébe new version number.

In TLIB 5, this now works even with multipass library files ich was
not the case in TLIB 4.12). However, it is neceidgatower than with sin-
gle-pass library files, since for single-pass librariedB tan write out the
“fixed” source file from RAM, but for multipass libraries TB must do a
full re-extract.

For files of modest size, this is fast and helpful, ensuriveg fyour embed-
ded keyword information is correct.

Having correct keywords is a real advantage, not just arhatistone,
since TLIB 5's keyword-based version number checking méaatsincor-
rect %v keywords will cause warning messages to be displayed, as®th
warnings may be misleading if the keywords are incorrechigTkey-
word-based version number checking” is very useful: it kelpu avoid
lost changes even when locking is disabled or someone dshiterlock-
ing protections; see p. .)

Even if FIXKEYWD Yis configured, the fix-up is not done unless it is nec-
essary. If there are no keywords and no revision history hothé source
file, or if KEYFLAGand LOGFLAGare not configured, or if the source file
will be deleted anyhow because you've configumegEl ETESRC Ythen the
fix-up will not be done.

When the fix-up is done, however, it slows down the U or N comdbe-
cause TLIB must re-write your source file. The slowdown igtdifor files
of modest size, but it may be substantial for large files gsitored in mul-
tipass TLIB libraries.

To save time by preventing TLIB from fixing your keywords,uyoan con-
figure FIXKEYWD NHowever, if you use thexwv keyword, this is likely to

277

result in bogus warning messages when you do another U cocthihoan
store another version, due to thesversion number in your source file be-
ing incorrect.

The default isIXKEYWD Y (note the change from TLIB 4.12).

See keywords (p. 212), revision history log (p. 2225TTR(p. 287), and
TOUCHSOUR. 288).

DELETESRC<Y/N>

The DeleteSrcparameter can be set to Y if you want the source file to be
automatically erased after the U (update) command congletdess an
error occurs while updating the library file. Note that ieth) command
aborts because there were no changes, the soutstiliie deleted.

The Deletesrc parameter affects only the behavior of the U (update) and
N (new library) commands without the “B” (browse mode) or “Keep
locked) options. The UK and UF commands are unaffected. Hiaudt

for DeleteSrc iSN, do not erase the source file.

This configuration parameter is unchanged from TLIB 4.1%;ept that
the N (new-library) command now respects it, just like the update)
command.

Here we leave it set to the default:

DeleteSrc N

DATAPATH<Y/N>

The DataPath parameter should be set to Y if you use a “data path” resi-
dent extension to DOS, such as the one supplied with Nowéditevare or
the DOSAPPEND command. A data path extension lets you spedift af
default directories for data files, just as the regular DQ&th” command
lets you specify a list of default directories foograms.

278

Many data path extension utilities work only on input datadi This can
be a nuisance for TLIB, since TLIB will sometimes attempt frep a file
first for input, then later for output or appending. If thiefexists in anoth-
er directory, but not in the current one, an open for input @ucceed,
but not an open for appending. Also, TLIB sometimes triesgeroa file
for input, in order to verify that the file does not alreadystxbefore try-
ing to create it; a data path extension can interfath this test.

If you use a “data path” DOS resident extension, then you canfigure
TLIB to take this into account when opening files. Simply figare “DAT-
APATH Y. This causes TLIB to always specify an explicit path when
opening files (e.g., \fname.ext " instead of just fname.ext "), which
often has the salutary effect of preventing data path exieagrom work-
ing their magic. Here, we leave it to the default.

DataPath N

QUIET <Y/N>

Configuring “QUIET Y’ will somewhat reduce TLIB's verbosity. It still
won't satisfy the ex-Unix people (most of whom would prefesee noth-
ing but error messages), but it does cut the “nieigel” somewhat.

Note that specifying-4 " as the first parameter to TLIB has the same ef-
fect, except that - ” additionally suppresses the copyright banner. See
also p. .

The default is “not quiet”:

QUIETN

READONLY<Y/N>

The ReadOnly parameter instructs TLIB to keep the library files' “read-
only” DOS file attribute set (except during an Update). Toén help to
prevent accidental erasure of the library filese Tefault is N, do not keep
library files as read-only. Here we leave it sethte default.

ReadOnly N

279

Note that the DOSattrib command can be used to manually set or reset
the read-only file attribute. For example, ifIBEXT ?$?” is configured,
then the following command will make all the TLIB library éi in the
current directory read-only, by setting the reat+attribute “on”:

attrib +r *.2%*

Similarly, this command will reset the read-onlirigtites to “off":

attrib -r *,2$*

ROLOCKS<Y/N>

As described above, if you want TLIB libraries to be storedeed-only
files, you can use the ReadOnly option. However, TLIB's Kloles
(used for check-in/out locking) are not normally read-om@yen if READ-
ONLY Y is configured.

One of our customers needed to have the lock files read-tmly,so we
added thé&roLocks configuration parameter.

If you want lock files to be kept read-only (to avoid acciddrdeletion),
configure:

locking Y
readonly Y
rolocks Y

Note that RoLocks has no effect unlessOCKING Yand READONLY ‘are
also configured.

READONLYB<Y/N/W>
The ReadOnlyB parameter tells TLIB whether to set the “read-only” file

attribute for “browse mode” source files. If you configuREADONLYB Y
then browse-mode files will be set to read-only after an EReand,;

280

likewise, after you check-infupdate a file with the U commait will be
changed to read-only, since you no longer have the file aekciut for
modification. This is the most popular way to tell the ditface between
files which you have checked-out for modification and thedech were
extracted in browse mode.

This parameter is only useful if you are using check-in/&heat locking,
primarily in networked environments (using the Network §en of
TLIB).

A disadvantage of this approach is that you'll have to uséd@& “attrib
-r" command to clear the read-only attribute before you cateté a
browse-mode file.

In some cases, you might want to configurREADONLYB W'read-only
browse mode files only in Work directory"), to make browseeha files
read-only in your work directories, but leave referenceiespn project
level reference directories writablREADONLYB V¢ for users who have a
network that does not permit them to make fileshenserver read-only (or
which does not allow other users to make them writable agdim@ most
common example is a Unix-based file server, but one usertepaving
this problem with a Windows-NT 4.00 server used with NT 3.5drksgta-
tions.

See alsoREADONLYT REPLROBR

If you are using a local area network, and if your text edit@rng you
when itloadsa read-only file (rather than whengaveshe file), then you
should use this configuration parameter. Otherwise, yoy pnafer using
the %l keyword to warn you when you start to edit a file which is not
checked-out (see p. 216).

Note that TLIB's T (test lock status) command also providegasy way
to determine which files you have checked-out for modifmat(see p.
102).

See also thReplRoBr configuration parameter, below.

The default is N, do not make the browse-mode source filed-osdy.
Here we leave it set to the default.

ReadOnlyB N

281

Note: The READONLYEonfiguration parameter is unchanged from TLIB
4.12, except thaREADONLYB Y¥s now disabled unlessOCKINGis also en-
abled, and except that the N (new-library) command now mEspe
READONLYpjust like the U (update) command does.

REPLROBR<Y/N/Q/W>

The ReplRoBr parameter, “replace read-only browse,” is used with the
READONLYBparameter, to tell TLIB to let subsequent extracts replaeel+
only source files, (or, with the Q or W settings, read/writes which are
not already checked-out to the current user ID).

The possible settings are:

REPLROBR Yes (normal setting for network users)
REPLROBR No (the default)

REPLROBR Querywritable

REPLROBR Writable (dangerous!)

This parameter is useful if you are using check-in/chedklocking, and
you have configuredREADONLYB Yo use the DOS read-only attribute to
distinguish between browse-mode files and those which yaweh
checked-out for modification. IIREPLROBR Ys configured, then you can
easily refresh the browse mode source files in your workctting, to en-
sure (for example) that you are compiling with kst versions.

Note that a browse mode extract (EB) will not replace a filachhs al-
ready checked-out for modification.

The default is N, do not allow replacement of read-only sediles. Here
we leave it set to the default.

ReplRoBr N

Note: under certain circumstances configurirREPLROBR Yallows ex-
tracts to replace read-only files even when locking is dedbnotably
when locking has been manually disabled via theddfigure) command.

The other two settings (Q or W) are special-purpose chowedlow re-

placement of read/write source files if they aren't cheebetllocked by
the current usep .

282

Normally, for silent replacement of browse-mode files, yeould config-
ure READONLYB Yand REPLROBR yand then TLIB's £" (and “EBF’)
commands will silently replace those files that have thel+vealy attribute
set, and that are not checked-out to the curresrtmis

“REPLROBR Querywritable " (Or “REPLROBR %) is similar to REPLROBR

v, but if a source file that the user doesn't have checkedeolutd is
writable, the user is asked whether or not he wants to re@aead/write
source file READONLYB Ynust be configured to use this option. Read-only
source files are silently replaced, just as WREPLROBR Y is configured.

“REPLROBR Writable ” (Or just “REPLROBR Yy lets TLIB replace writable
browse-mode files without complaint, wheREADONLYB Ns also config-
ured.

If for some reason you don't want to configuREADONLYB ,Yyou can
configure REPLROBR Wwritable), and TLIB's extract commands will
silently replace files that you don't have checketl-even if those files are
not read-only.

(It is also possible to force silent replacement when eftrgdf you con-
figure REPLACE Yor REPLACE A but that is even more dangerous than
REPLROBR Wand we strongly recommend against it.)

Beware: if you configure REPLROBR Wthen TLIB's determination of
whether or not it can silently replace a file is made soleltloa basis of
whether or noyou have the file checked-out. Plus, if you have configured
LOCKING B(per-project-level locking), then the determination cobnsid-
ers locks at the current project level. TLIB's check-in/dotking
mechanism does not keep track of which computer or diredtoeyfiles
have been extracted into, so if you configuREPLROBR \&nd you use a
different user ID, or if you've configured LOCKING Band have a file
checked-out at a different project level, you may accidgntaeplace
checked-out files! Therefor, if you configurBREPLROBR Wit is critically
importantthat you only use one usep when working in a given work di-
rectory, and that you also use a different work directorydach project
level if you configure.OCKING B (per-project-level locking).

This table relates th&EPLROBRANd READONLYBetting combinations that
make sense together:

REPLROBRIS READONLYBmustbe Silentreplacement?
N any No
Y Y orw if read-only & not locked by you

283

REPLROBRIS READONLYBmustbe Silentreplacement?
Q Y orw if read-only & not locked by you
W N if not locked by you

For most users of multi-user editions of TLIBREPLROBR Yand READ-
ONLYB Y are the best choices.

SHEIGHT <12-66>
SWIDTH <80-132>

The SHeight and SWidth parameters are used to specify the size of your
screen. If the display screen on your computer is not 25 ligs80
columns, then you may wish to set these two parensiet

The SWidth parameter tells command-line versions of TLIB how many
lines to display at a time when showing you delta or versidarination.
Note that theLogWidth parameter (p. 267) should usually be set to (at
most) SWidth minus one.

The SHeight parameter tells TLIB how long a message can be without be-
ing split (wrapped) to occupy more than one line.

TLIB 5.0 extended these configuration parameters by adtfiagbility to
determine the dimensions automatically/dynamically orstiRCs. If you
configure SHEIGHT 0(zero) and/orswiDTH q then TLIB will interrogate
DOS (or OS/2) for the current screen size and hiseppropriate value(s).

This is not the default, however; the default it 80x25.

If another program (e.g., an editor macro) needs to pars&'$ldutput,
you can configureswiDTHto a very large number (up to 32765), to pre-
vent TLIB from splitting (wrapping) its messages onto npliilines. This
makes it much easier for another program, which is readin@Floutput,

to tell where one message ends and the next begins.

These are the default settings:

SHeight 25
SWidth 80

284

VALIDATE <Y/N>

The Validate parameter can be used to relax a file naming rule which
TLIB otherwise enforces. Normally, TLIB validates the exd@n of every
file name which you specify, to ensure that it is a source (#led not a
TLIB library file or lock file). If you specify aibrary file, it is an error.

So that it can tell the difference between source files abicty files by
examining their names, TLIB will not normally let you storesaurce file
with the same 3-letter extension as the correspondingriidiie. For ex-
ample, if you haveLIBEXT 2$? configured, then you are prevented from
using a source file name with &™ as the second character of its exten-
sion.

For most users, this is helpful. However, a few customersi rieegive
their library files and lock files the same names and extrsias their
source files (but in different directories, of course!). do this, you must
disable the validation of file extensions, by configurimgLIDATE N. The
default is:

Validate Y

Example:

VALIDATE N

PATH F:\LIBSVF:\LOCKS\

SLASHCONT<Y/N/M>

For users who habitually enter multi-line comments whenisgonew ver-
sions of source files via the U or N command, tBlashCont parameter
can be used to remove the necessity of putting a backslaste antd of
each to-be-continued comment line. If you configuse ASHCONT ‘Mor
“SLASHCONT ' then comments are terminated by a null comment line
(i.e., just presENTER.

Note that this makes an exception to the genekalthat pressingNTERat
any prompt aborts the current operation: although justgimgENTERat

285

the first “Comment line? " prompt will still abort the operation, pressing
ENTERat subsequent comment line prompts will cause the operation
complete and the library to be updated.

If you configure ‘SLASHCONT No(or “SLASHCONT N then you will al-
ways be prompted for additional comment lines (with the tas¢ to be
followed by a blank line) regardless of whether or not youcsed a
comment on the DOS command line.

You can configure SLASHCONT Maybk (Or just “SLASHCONT W1 if you
don't want to have to enter a backslash at the end of to-b&rcaa com-
ments, except for comments specified on the comrtinad

Like SLASHCONT Ythe default), this lets you runttis U” or “TLIB N”
with a comment on the DOS (or OS/2 or NT) command line, and ot b
prompted for additional comments for each file (unless ti@mand-line
comment ends in\").

However, like SLASHCONT Nthis lets you interactively enter multi-line
comments which are terminated by a blank line rather thadingeback-
slashes at the ends of every line except the tast o

There are three cases:

1) You specified a comment on the command line, with no batkatahe
end.You'll be prompted for additional comments only $i ASHCONT Ns
configured.

2) You specified a comment on the command line, with a backalatbte
end. You'll be prompted for additional comments regardless oW ho
SLASHCONTIs configured. (But if SLASHCONT Ns configured, the back-
slash becomes part of the first comment line.)

3) You did not specify a comment on the command WMuwel'll be prompt-
ed for additional comments regardless of how SLASHCONT is
configured.

Similarly, there are three cases when enteringtiathdi comments:
1) You entered a comment line with no backslash a¢migelf SLASHCONT
N or SLASHCONT Ns configured, then you'll be prompted for additional

comment lines. But ifSLASHCONT Ythe default) is configured, this will
be taken as the last comment line, andutte N command wiill finish.

286

2) You entered a comment line with a backslash at the &'l be
prompted for additional comments regardless of hewASHCONTS con-
figured. (But if SLASHCONT Nor SLASHCONTMis configured, the
backslash will become part of the comment line.)

3) You entered a blank lindf SLASHCONT Ythe default) is configured,
this aborts the update. IELASHCONT Nor SLASHCONT MNs configured,
then this aborts the update only if this is the first/only coemt line; other-
wise, it terminates comment-entry, and causes ther N command to
finish.

Summary:
default
SLASHCONT<Y/N/M> Yes No Maybe
Requires "\" to continue interactive comment¥®s no no
Allows mass wild-card updates w/o prompts?/es no yes

We suspect that most users will prefetASHCONT Ythe default, “yes”)
or SLASHCONT M‘maybe”), rather thansSLASHCONT N“no”). Here we
configure TLIB so that the backslashes need nartered:

SlashCont M

AATTR <Set/Preserve/Reset>

The AAttr parameter affects how TLIB sets the DOS “archive attribute”
(a.k.a. “"A” attribute) for your source files when you use ther N com-
mand to store the source files into their TLIB dibes.

The “archive attribute” might better have been called the€us-to-be-
archived attribute.” It is a file attribute which DOS setsewha file is mod-
ified, so that BACKUP can tell that the file needs to be backgd
BACKUP resets the archive attribute after backipghe file.

Under DOS 3.2 or later, you can examine or change the archiikbuae
for one or more files by using the DO&tttib " command; see your DOS
manual.

The TLIB AATTR configuration parameter can be set three ways:

287

AATTR SETCauses your source file's archive attribute to usually ffiie le
alone, except that it will be set if TLIB modifi@eyword or revision histo-
ry information in the file because you'd configurexkKEYWD Y .

AATTR PRESERVECauses the source file's archive attribute to ydvie left
alone, regardless of tlXKEYWD configuration parameter.

AATTR RESETCauses the source file's archive attribute to always be
cleared after a successful update of the library via a U oridrnand. The
rationale for this mode is that storing your source code theo TLIB li-
brary is similar to backing up the source file with DOS's BAGK
command, so there is no need to back up the source file if itB Tibrary

file will also be backed up.

The default is:

AATTR SET

TOUCHSOURN/Y/M/R>

The TouchSour ("touch source") parameter controls the file date with
which a source file is left after an update¢r N command). (To “touch”
the source file is to set its last-modified daieé&istamp to “now.”)

There are four choices:

TOUCHSOUR No Never touch the source file; preserve its
date/time stamp even if TLIB modified it to
update keywords or a revision history log.
(This is the default.)

TOUCHSOUR Yes Touch the source file if the library was
successfully updated, regardless of whether or
not TLIB modified the source file.

TOUCHSOUR Modified Touch the source file only if TLIB modified it
to update keywords or a revision history log
(with FIXKEYWD Y configured), or to remove
an embedded comment line (WIitlCMTFLAG
configured).

288

TOUCHSOUR Revhist Touch source only if a revision history log was
inserted (due taFIXKEYWD Y or a comment
line was removed (witlcMTFLAGconfigured);
i.e., if the line numbers changed. (This is
useful for keeping source files "in synch™ with
debugger line numbers).

Note that this affects the date/time stored in the TLIB ligrle, as well

as the date/time of the actual source file. However, it dagsaffect the
date/time of any reference copy of the source file which TtiBates due
to the r=y option on theLEVEL configuration parameter; reference copies
are always created with the current date/ time (which may Benvasec-
onds newer than that of the source file in your work directayen if
TOUCHSOUR Ys configured).

Related parameters:

AATTR Set/Preserve/Reset (p. 287)
FIXKEYWD Yes/No (p. 277)

CMTFLAG<number,1-80> <quoted-string>
CMTSUFFIX <number,1-253> <quoted-string>

These two configuration parameters support TLIB's abitityake a com-
ment from the top of the source file and use it as a supplerh@&hid
comment line when you use the U (update) command to store avaew
sion of your source file into the corresponding TLIB librafile. This
supplemental comment is added to the end of the regular TaiBneents.
You must still enter the regular comments (either intevady, via the
DOS command line, or from a comment file).

This feature is primarily intended to help support the M (@naite
changes”) command, which uses it to record DIFF3-mergetiést in the
TLIB comments. However, you can also use it foreoturposes.

To use this feature, you must configu@entFlag, which tells TLIB how to

recognize the special comment line. The syntax for therFLAGconfigu-
ration parameter is similar to thatl@fGFLAG

CMTFLAG <first- col um>, <quot ed- stri ng>

289

Example (C++):

cmtflag 1,"//CMT:"

This would tell TLIB to look for a C++ comment beginning withet string
“CcMT”. Thus, if you wanted to insert the supplemental comment,
“[MERGED_3.5_& 6, base=3.3] ", you could put the following comment
on the first line of your source file, startingthre leftmost column:

/ICMT:[MERGED_3.5_+_6, base=3.3]

If you wanted to indent the comment by two spaces, you cowle ftan-
figured:

cmtflag 3,"//CMT:"

Note that the first column is column 1; there is no column Owlay that
TLIB counts columns. Also, you may not use DOS redirectioarabters
(<>|) in the quoted string, since it will appear on DIFF3 commaindd in
MIGRATE2.BAT after M (migrate) commands.

Some programming languages do not support comments thegranmat-
ed automatically at the end of the line. For these langualdB, provides
the CmtSuffix configuration parameter, which works much like theG-
SUFFIX configuration parameter:

CMTSUFFIX <mi ni mum starting- col um>, <quot ed- string>

Example (Pascal):

cmtflag 1,"{CMT:"
cmtsuffix 1,"}"

If you configure cMTSUFFIX then TLIB will compare the end of your
comment line with the configured string (nhormally a “closemment”

marker), and remove the close-comment marker from end ostipple-

mental comment. Thus, if you wanted to insert the suppleati@oimment

“[MERGED_3.5_& 6, base=3.3] ", you could put the following comment
on the first line of your source file, startingtire leftmost column:

{CMT:[MERGED_3.5_+_6,_base=3.3]}

290

Note that TLIB removes leading and trailing blanks from thp@emental
comment before storing it, so you could also put the follajvd@mment
on the first line of your source file, with exacthe same effect:

{CMT: [MERGED_3.5_+_6,_base=3.3]}

The <minimum-starting-column>specifies a minimum column number
for the suffix (close-comment); it should normédilg configured to 1.

This version of TLIB only supports a single-line supplenamomment to
be taken from the top of the source file. Future versions dBTinay al-
low multiple lines.

Note #1:If you use this feature, then it is not advisable to configure
FIXKEYWD Nsince doing so will prevent TLIB from removing the then-ob-
solete supplemental comment line from your source fileraffglating the
TLIB library with the new version.

Note #2: Although the CMTFLAGand CMTSUFFIX parameter names are
(like all TLIB configuration parameter names) case-ingares the quoted
strings are not. The strings must match exactly, or TLIB wit recognize
them. Thus, ficMT: " does not match/femt: ”

CZTRUNC<Y/N>

This rarely-used configuration parameter can be set to UéB Truncate
and store ASCII text files which contain ctrl-Z (eof-file) characters.

CZTrunc affects what happens when TLIB is doing a U (update) com-
mand for a text file and it encounters a Ctrl-Z in the file whiis not
within 128 bytes of the end of the file. [EzZTRUNC Ns configured then
TLIB will abort the update (this is the default). IEZTRUNC Yis config-
ured, then TLIB will go ahead and update the library with thentated
file (after displaying a dire warning).

The default is:

CZTRUNC N

201

AUTOSET<file-name>

The rarely-used\utoSet configuration parameter lets you change the path
or name of the autoset file, or to disable the autoset faciitogether.
(The autoset file, if it exists, is used by TLIB to define pdetenviron-
ment variables; see p. 83, for details.)

For instance, if you wanted\UTOSET.BAT(in the current directory) to be
your autoset file in both DOS and OS/2 (rather than usiyyOSET.CMD
under OS/2), then you could configureSTOSET AUTOSET.BAT.

To disable the autoset facility, configuxeTOSETwith no file name.

Note that the AuTOSETconfiguration parameter must be specified before
any smamesreferences in your configuration file. After the firsthames
reference, theUTOSET configuration parameter is illegal.

Default is “AUTOSET autosetbat ” (under DOS), or AUTOSET au-
toset.cmd " (in OS/2 protected mode).

OLDNAME<Y/N>

The OldName configuration parameter is obsolete.

ONETHREADXY/N>

The oNETHREADparameter (formerly used for performance tuning under
0S/2) is now obsolete.

SLICKEPSI <Y/N/Maybe>

The SlickEpsi configuration parameter is for users of editors which sup-
port a “concurrent process buffer,” such as MicroEdgdiskEditunder

292

0S/2 and Windows-NT, and LugaruEpsilon editor under MS-DOS and
0s/2.

Users of SlickEdit 2.2 or later, or of Epsilon, should not figare this,
since TLIB can automatically adjust the default to the catrisetting (by
examining the SLKRUNSand EPSRUNSenvironment variables). Users of
SlickEdit 2.1 for OS/2 should configure this tBLICKEPSI Y, or else set
up SlickEdit to define theEPSRUNSNvironment variable, by defining the
sLICcK environment variable like this:

set SLICK=-#"set EPSRUNS=1"

You may be wondering, “what is a concurrent prodegter?”

The “concurrent process buffer” provided by SlickEdit anpslon is a
unique and wonderful feature. It provides a regular opegatiystem com-
mand-line prompin an editor window, even while you edit other files.

The compiler can be grinding away, finding more compile exreven as
the editor parses the error messages to find errors and Uefiydhem!
You needn't wait for the build to complete before you statinfy the er-
rors which the compiler finds.

Plus, since the input and output is being “logged” into artadbuffer,
you can easily scroll back to find old error messages or comgsizor use
copy/cut/paste to edit and re-enter them. Verynift

However, there are some limitations. One is that the outjout forograms
that “draw” on the screen simply doesn't look right. Thintg Icarriage

returns and backspace characters are discarded or didpiaypsoperly.

For instance, both SlickEdit and Epsilon break lines at-faxed characters
in the concurrent process buffer, and ignore cgeri@turns.

This is a problem for TLIB, since TLIB sometimes uses caeiagturns or
backspace characters to make the display moretatga

So, if you configuresLICKEPSI Y, then TLIB adjusts such messages to be
more suitable for when TLIB is run in a concurrpridcess buffer.

Another problem is that (under some operating systems)dhereoncur-

rent process buffers may not be able to run programs whictepacc
character-at-a-time input. The Windows-NT version of Igidit has this

293

problem. So, whersLICKEPSI Y is configured, TLIB does only line-at-a-
time input from standard-input.

Note that running TLIB in an editor's concurrent procesddauputs you
“in” your editor while entering TLIB comments (which is sotheng we're
planning to add to TLIB in a more conventional fasheventually).

The default setting iSSLICKEDIT Maybe, which means that the setting is
automatically set according to whether or not TLIB detemsithat it is
being run under SlickEdit or Epsilon.

FILETYPE <Auto/Text/Binary/EOFtol/Runlen>

The FileType configuration parameter selects between four possible li-
brary file formats.

The normal (text) format is especially well suited for sgggaf ASCII text
files (such as program source code files). The “EOFtol” fatis just like
text format, except that the file can contain enaebictrl-Z characters.

The two binary formats, “binary” and “runlen,” can staxaytype of file;
use them for object module libraries, spreadsheet file&g dase files,
non-ASCIl word processor files, etc..The difference beméhem is that
“runlen” format uses runlength-compression to preprotlesdiles before
generating the deltas. For sparse files it may substantrajprove perfor-
mance and reduce the size of the TLIB library files

If FileType is configured to the default, “Auto,” then it exénes the file
before storing the first version, and selects an apprapf@mat automati-
cally. However, you might want to use conditional configioa

parameters (p. 321) to select which files are to be kept imaty” or

“runlen” format libraries. For example:

REM - most library files are text format

filetype auto

IF * WK*
REM - Lotus spreadsheets require binary-or runle n format
filetype runlen

ENDIF

294

When binary or runlen format is selected, three other coméitjon param-
eters are ignoredENTABY DETABEand ADDCTRLzare only meaningful for
text files (except that AddCtrlZ will still affect the formaf your journal
file, if any).

You can storeanykind of file in binary and runlen format libraries. They
are highly useful for data base files, object module litesriword proces-
sor files (for word processors which utilize non-text fots)aetc.. Binary
format works well with any file which goes through repeatesisions in
which changes are fairly localized. However, TLIB's “reeis history log”
and “keyword” features, which allow version-specific infwation to be
automatically updated in your source file, are not suppbite binary for-
mat library files. Also, “delta review” does not work welf {fou enter *»”

at the ‘Comment line? ” prompt to view a delta, you'll probably see gib-
berish).

If you program in dBase, Clipper, FoxBase, etc., you'll @iolly want to
keep your data base structures under version control wittB Tlusing
filetype binary , Or filetype runlen of course). To facilitate this, Mr.
Michael Magen has kindly given us permission to distributpragram
called copysTEXwhich he wrote to extract the structure fromsF files.
It is rather large (because it is written in Clipper), so weeaot included
it with TLIB, but if you need a copy, please contact us, andlvee' happy
to send it to you. (An alternative, if you have FoxDoc, nee $NBy Wal-
ter J. Kennamer, is to store the “data dictionary file” whictcreates,
instead of storing the individual data base structure;ftEN$AP or FoxDoc
can re-create the emptyBF structure files from the data dictionary file.
Mr. Kennamer's address is 1801 E. 12th St., Apt. 1118, Clenkl OH
44114.)

You can use binary format libraries foEXe and .0BJ files, too. Howev-
er, minor source code changes often cause wide-rangingctofije
changes in such files, so the calculated “deltas” will oftenvery large.
When you add a new revision to a library afxe files, you can expect to
the library to grow by 50-90% of the size of th&xe file (unless the
change is extremely minor).

TLIB's binary file support works like this: When you creatdiaary for-
mat library (with the N command), TLIB will do a statisticahalysis of
the file, trying to find a good set of “delimiter” bytes whichill make it
possible to break the file into variable-length “recordd” manageable
size. These delimiters are used by TLIB like carriage-retime-feeds in a
text file (which divide the text file into lines). The choseat of delimiters
is stored in the TLIB library. The analysis is rather timeasaming, and it

295

makes the N command run a bit slower for binarynfatrlibraries. Howev-
er, the analysis is only done when a library is created, notrwi is

updated.

The “runlen” format is just like the “binary” filetype formiaexcept that
TLIB first does a simple “run-length” compression step efanalyzing
or storing the file. For “sparse” files, such as databadas, dan greatly
improve performance and storage efficiency.

The FILETYPE configuration parameter only affects the creation of new li
brary files.

There is no way to directly change the format of an existitgaliy file
from binary to text or vice versa, but if you need to converé @am more
TLIB libraries from FileType Binary to FileType Text, or \@eversa, you
can use the TLIB-to-TLIB conversion utilityTLIBTLIB.PL , which can be
found in the CONVERT.zIP archive on your TLIB diskette (which also in-
cludes conversion utilities from various other version toolnsystems to
TLIB). TLIBTLIB.PL converts from one format to the other by running
TLIB to extract each version from the old library and thenrstit in the
new library. That is, it automates the tedious process odtiorg a new
TLIB library containing all the versions and comments thatevin the old
one. It is slow, but it works. See theNERT.TXT file for instructions.

Note that TLIB is not dependent upon the analysis phase deglle
“good” set of delimiters; however, a good set of delimitend wnprove
the efficiency with which “deltas” are calculatedidastored.

Having determined the delimiters, TLIB can process a birfiggyas a se-
guence of variable-length records, much as it handles thabla-length
lines in a text file, except that the library format is a biffeient. Instead
of “.c” and “.I " lines, it contains ‘'c”, *.J " and “.K " records, which are
stored in a “length byte + data” format rather than as cagrisgurn/line-

feed delimited lines.

It is easy to tell whether a TLIB library is the (regular) tégtrmat or the
(new) binary format. Binary TLIB libraries begin withvc ”. Text format
libraries begin with ‘vt ” if blank-to-tab compression is not enabled. Text
format libraries for which blank-to-tab compression is leed (i.e.,
“ENTABU ¥ was configured when the library was created) begin with ei-
ther“v_"or"“\v ”. (See also p. 371.)

296

Version tracking & named project levels

TRACK <Y/N/Maybe>

The Track parameter enables and disables version tracking; it is altym
specified within aniF /ENDIF block (p. 321). ConfigureTRACK Yto en-
able version tracking, omMRACK Nto disable it. ConfigureTRACK MAYBE
(or just “TRACK HKj) to enable it only for those files that are already being
tracked.

Suggestionit is advisable to configure TLIB to track only certain files
(like your source files). So, you should add something Ik following to
the TLIB configuration file (you can either add it manually fwy running
TLIBCONF):

TRACK N

IF *.C,*.H,*.ASM,*.BAT,MAKEFILE.*
TRACKY

ENDIF

If you configure TRACK Maybe then TLIB will behave as ifTRACK Ywas
configured for those files which are already listed in therent project
level (or a predecessor level), but it will behave agACK Nwas config-
ured for those files not currently being tracked.

Also, if TRACK Maybeis configured, those modules already listed in the
working directory tracking file but not in the project-ldveacking file will
continue to be tracked only in the working directory trackiiile (as if
a=N were configured in theevEL parameter for the current project level).
Note that the TRACKand REFSUBDIRparameters (unlike theEvVEL and
PROJLEVparameters) can be specified withim/ENDIF blocks, so that you
can have differemRACK or REFSUBDIR settings for different files.

The default is:

TRACK N

See also p. 138.

297

CREATETF<Y/N>

The CreateTF parameter is used to tell TLIB to automatically create miss-
ing project-level tracking files (“createtf” is short forcrfeate tracking
file”). You can configure CREATETF Yif you would like TLIB to create
project level tracking files automatically. However, yowsh still create
the required reference directories manually.

The default iSCREATETF Nwhich means that TLIB will only automatical-
ly create the working directory tracking file, not the prdi¢evel tracking
files).

We anticipate that most programmers will want to leave thids the de-
fault (CREATETF i) to avoid accidental creation of extraneous tracking
files in the event that the EVELs are incorrectly configured. However, if
you are the “system librarian” (the version control adnti@itor / guru) at
your company, you may wish to configureREATETF Yto simplify setting

up new project levels.

If CREATETF Yis not configured and TLIB fails to find a needed project-
level tracking file, it displays a helpful error message ethsuggests con-
figuring CREATETF V.

The default is:

CREATETF N

AUTOBRNCHY/N/Q>

The AutoBrnch parameter controls TLIB's automatic branch creation fea-
ture (p. 107), in which TLIB will automatically create a newabch when
you update a library with a new version of a file, but (accogdio the
record in the work directory tracking file) you didn't starith what is now
the latest version.

Eariler versions of TLIB would just just go ahead and credite nhew
branch version. ConfigureUTOBRNCH Yto restore TLIB to this behavior.

If you want TLIB to ask you before creating a new branch versibhen
leave it configured to the defauklyTOBRNCH Q.

298

If you want TLIB to issue an error message and skip the filentbonfig-
Ure AUTOBRNCH N.

Note that this configuration parameter will not force evbityg to be
stored as trunk versions. If that is the behavior you wamn tyou proba-

bly should just disable version tracking altogether, oreet®nfigure
PROJLEV *,

The default is:

AUTOBRNCH Q

PROJLEV hame

The ProjLev configuration parameter is used to select the name of your
current project level, which must be defined inLaveL configuration pa-
rameter unless you use one of the special pre-at:fiames,*” or “=".

If you configure PROJLEV =(and TRACK Y, then TLIB's E (extract) com-
mand will consult the current work directory tracking file tletermine
which is the “current” version for extracting. That istLiB E” will re-
trieve the version number indicated in the localIBWORK.TRK which is
the version you most recently stored or retrieved (but wilischot neces-
sarily the latest trunk version). This can be used to managa-sustom
software, but it is probably inappropriate unless you woltna, with
locking disabled.

If you do not configure PROJLEV, or if you configure it with noname
specified, then the TLIB E (extract) command will alwaysimste the lat-
est trunk version (rather than the version number in yourkwbrectory
tracking file). This makesTLIB E fileext " equivalent to “TLIB ES
fleext * ". This has the advantage of simplicity, and it is often thetbe
choice for small projects, in which there is only one “cutfelevel of
code.

Configuring PROJLEV *is similar, except that it also disables TLIB's auto-

matic branching feature. In other words, it makasiB U fileext "
equivalent to fLIB US file.ext * ", See pp. 107 and 298).

299

For large projects with many programmers, it is usually dretb use
named project levels.

The default PROJLEVIS hone, which means that TLIB will always extract
the latest trunk version (unless you specify a particulasie@ number,
e.g. via the ES command).

See also pp. 139, 143 and 107.

Note: when your work directory is the reference directonydae of your
configured projectLEVELS, then TLIB will detect that fact and automati-
cally change or set your currerfROJLEVto be the name of thatEVEL.
SeeWORKDIR(p. 304).

LEVEL n= named= pathp= namei= names= {Old/New/Q/Changed}
a={Y/N/Q}r= {Y/N}b= ni= {Y/N}w={Y/N}

The Level configuration parameter is used to tell TLIB about your ndme
project levels. It is described in detail under “Configgrivour Project
Levels,” p. 141.

Note: though theLEVEL parameter is shown here on two lines, it must be
all on one line (of at most 254 characters) in ybuiB configuration file.

TREEDIRS <Y/N>

TreeDirs enables and disables tracking of “relative subdirectdriEs-
able this by configuringTREEDIRS Yif you want TLIB to track a “tree” of
related subdirectories as one logical unit.

There will be only one version tracking file for the entiree¢” of directo-
ries, and each “key” in the tracking file will contain a rélat path along
with the file name and extension for source files which residthe “low-
er” subdirectories. See al8@RKDIRaNdDOTDOTOK below).

300

Restriction #1:

When TREEDIRS Yis configured, TLIB 5.50 also checks to be sure that
your configured LEVELS are do not have reference directories which are
subdirectories of one another.

If you have configuredTREEDIRS Y, you must not have configured the
main reference directory for any of your configuredveLs be a subdirec-
tory of the reference directory for any other configuredveEL. Such a
directory would simultaneously be a reference directorytfeo different
LEVELs at the same time, which TLIB does not allow. For examplefdhe
lowing combination is not allowed:

treedirs y
level n=abc d=f:\def\abc\
level n=def d=f:\def\

If you don't configureREEDIRS Y , then this restriction does not apply.

Restriction #2:

Do not configure TREEDIRS Yin combination with REFSUBDIR (except
for REFSUBDIR nul , see p. 166).

The default is:

TREEDIRS N

See also pp. 61,66 ,111,127,139, 165 &38@5.

TOPRELATI <Y/N/Maybe>

The TOPRELATI (“top relative”) parameter affects the wagtiLIB in-
terprets path\file (“relative” or “unrooted”) specifications under some
circumstances, when you are working in a subdirectory othan the
main work directory antlREEDIRS Y is configured.

The question that the TOPRELATI paramter answers is, howulgho
path\ be interpreted: is it relative to the main (top) work dirggto

301

(WORKDIR, or is it relative to the current subdirectory? The TOPRHEILA
("top-relative") parameter enables you to tell TLIB how taerpret such
file names.

Prior to TLIB 5.00m (circa August, 1993), it was assumed thlasuch
paths were relative to the current directory. However, ghisvented cor-
rect operation with file lists and snapshot files that imgd the relative
subdirectories, since TLIB would erroneously interprettspaths as being
relative to the current directory, rather than relativette tnain work di-
rectory.

The three possible settings are:

TOPRELATI Y names are relative to WORKDIR
TOPRELATIN names are relative to current directory (like T
LIB 5.00L)

TOPRELATI Maybe Names are relative to current directory except
when the
names are read from a TLIB snapshot (version
label) file.
This is the default.

Note: The TOPRELATI parameter has no effect unle$®EEDIRS Yis also
configuredand the current directory is not WORKDIR.

Sometimes you may need to build batch files in which tt@PRELATI pa-
rameter is adjusted for a single file. For greater convezgeim such
situations, TLIB also supports ther command-line option, to force
TOPRELATI Y for the remainder of the current command-line, only. The
-r option should be specified before the command you wish itffieca
But if you use it in combination with theq ("quiet”) or -d ("debug") op-
tion, then specify the after theq or-d .

You can specify-r or -r1 to force TOPRELATI Y, when source file paths
are relative to the main work directory (insteadedétive to the current di-
rectory).

You can also specifyro to force TOPRELATI N if the source file paths
are relative to the current directory rather thmthe work directory.

302

Like the TOPRELATI configuration parameter, the option does not af-
fect the operation of TLIB unlessTREEDIRS Y is configured and the
current directory is unequal to the work directory.

Note: The -r option is intended only for use with individual file names,
not with wild-card specifications.

DOTDOTOKY/N>

If you configure TREEDIRS Y, TLIB 5.50 does some “sanity-checking”
when it determines the “relative subdirectories” used atltrfile indices:
the source file must be in your current work directory, or bditectory of
it. If not, an error is reported.

There are two variants of the error:
a) the source file is not even on the same drih@sonfiguredvORKDIR

b) the source file is on the same drive, but notirbRKDIROr its subdirec-
tories.

The first case (wrong drive) always generates eor.er

However, the second case (right drive, wrong directory) el tolerated
by TLIB if you configure:

DOTDOTOK'Y

The poTpoToKconfiguration parameter simply determines whether TLIB
will, if necessary, use double-dot pseudo-directorieh@ettacked relative
directory specifications, thereby allowing source filesbie anywhere on
the drive.

Thus, for example, if yourwORKDIRWas C:\WORK\ and you configured
DOTDOTOK Y then TLIB could track CATEST\BIG.DOC as
\TEST\BIG.DOC .

The default isboTDOTOK Kdouble-dots are not okay). This is appropriate
for most users.

303

Note #1:The boTDOTORarameter has no effect unlesgEEDIRS Yis al-
so configured.

Note #2:“DOTDOTOKis pronounced “dot dot okay.”

WORKDIRpath

You can use th&VorkDir parameter to tell TLIB which directory is your
“working directory.” Or, if you've also configuredTREEDIRS Y, then
WORKDIRcan be used to tell TLIB which directory is the “root” of a “&’e
of working directories.

Most users do not need to configukgORKDIRsince the default setting is
usually adequate.

When TREEDIRS Nis configured, the default foWwORKDIRs simply the
current directory (£).

However, if TREEDIRS Yis configured, then the default fovORKDIRS ei-
ther the current directory or one of the “parent” directsri€he algorithm
for determining the defaultvoRKDIRVhen TREEDIRS Yis configured is as
follows:

1) First, TLIB examines theLEVEL configuration parameters (if any),
looking for a project level which has as its reference doeckither the
current directory or one one of the current directory's padéirectories. If
one is found, then that directory becomes twoRKDIR(and the current
PROJLEVsetting is overridden).

Note: When you are working in the reference directory for a projecel,
and locking is enabled, you manpt check-out/lock modules. You can ex-
tract for browse (EB command), but not for modifica (E command).

2) Otherwise, TLIB examines the current directang @ach of its “parent”
directories, in turn, looking for a directory which contsira TLIB-
WORK.TRKfile. (The “parent” directories are.t ", “.\\ 7, etc..) If the
current directory does not contain BLIBWORK.TRK file, but one of the
parent directories does, then then the parent directorychwicbntains
TLIBWORK.TRKbecomes the defaslORKDIR

304

3) If no TLIBWORK.TRKfile is found, neither in the current directory nor in
any of the parent directories, TLIB prompts the user to dpeshich di-
rectory is the work directory, and createsth@wORK.TRK file there.

The question asked is similar to the following:

TREEDIRS Y was configured but the main/top work di rectory
could not be deduced, because TLIBWORK.TRK was not found in
or above the current directory, ‘C:\WORK\CURRENTY . Enter
the depth of the main work directory, 0-2, where 0 is ‘C:\,

and 2 is ‘C:\WORK\CURRENT\":

To prevent TLIB from asking this question the first time itised in a new
work directory, you can create an empty (0-3 byte long) tiragkile in the
work directory with any text editor, or with the 3&ommand:

ECHO.>TLIBWORK.TRK

WORKDIRcan be set to a directory path that is at most 68 characters in
length. Note, however, that the total path+name lengthikes fs still lim-

ited to 80 characters, so having a very long WORKDIR will nestyour
ability to use long file names under Win-95 (or, withLIB2.EXE , under
OS/2 or NT).

Note: If you configureQUERIES N(to prevent TLIB from asking questions

of the user), and TLIB cannot determine the main work dimctthen
TLIB aborts rather than allowing the user to spethie work directory.

REFSUBDIR directory-name

The RefSubdir configuration parameter can be used in combination with
an IF /ENDIF block if you are not usingrTREEDIRS Ybut you nevertheless
need to keep the reference copies of your include files irffardint direc-
tory from the reference copies of your main sotites.

See “reference directories” (p. 164) for details, inclgdimhy you may
need this.

There is no default for the REFSUBDIR parameter.

305

FORCEREFR<Y/N>

The ForceRefR (force reference copy refresh) configuration parameter af
fects what TLIB does if you've configured yoweVEL parameter to keep
the reference directory up-to-date-Y), and you do a U (update) com-
mand which does not store a new version because Were no changes.

By default fORCEREFR N\ TLIB will not create a reference copy of the
source file in the reference directory (because it didréingfe the TLIB li-
brary). If you would prefer that TLIB go ahead and create thienence
copy, you can configureORCEREFR Y.

The default iSSORCEREFR N

See “reference directories” (p. 164) for more infation.

FINDIFILE <Y/N>

The Find1file configuration parameter selects one of two behaviors when
you specify a single, specific source file to TLIB (as oppbse a wild-
card specification). If you configure:

FIND1FILE Y

then TLIB will handle even exact file names as if they weredwihard
specifications (unless the N wild-card search mode sufiadded to the
command).

But if you configure:

FIND1FILE N

then TLIB will handle fully-specified file names (non-wichrd names)
without any wild-card searching.

This means (for instance) that #IND1FILE Y is configured, then when
you are using the project-oriented search modeasnd T) you cannot ex-
tract a file that is not listed in the project level(s), sintelB will be

unable to find the file. Since in project-oriented mode, theearch mode

306

is the default for thee (extract) command (i.e., the command is equiva-
lent to EA), to extract a file which is not listed in the project levéglg®u
would need to override the wild-card search mode (i.e., Bisénstead of
E).

For an example of why you might want to configurRND1FILE Y , Sup-
pose you are using tree-structured work director®&eEDIRS Y) and you
have several different files calleehakefile in various subdirectories. If
you configureFINDIFILE Y and do the command:

TLIB EI MAKEFILE

then TLIB will extract all the MAKEFILE files (into the appropriate subdi-
rectories). But ifFINDIFILE N is configured, that command will only
extract the copy afiAKEFILE that belongs in the current directory.

RELAXVERS<Y/N>
TheRelaxVers (relax version number restriction) configuraticargmeter

If you configure RELAXVERS Ythen TLIB will allow you to create ver-
sions with branch or trunk number zero, and/or to skip vasid his is
not intended for general use, but rather to allow conversioRVCS and
RCS files to TLIB, via the PVCSTLIB.EXE, RCS2TLIB.EXE, and

GNU2TLIB.EXE conversion tools (inCONVERT1.ZIP Or CONVERT2.ZIP, ON

the TLIB distribution diskette).

Note #1:Support for version number zero and skipped version numbers
was new to TLIB 5.01. If you use skipped or zero version nurspiren

your TLIB libraries will not be compatible with TLIB 5.00m and
earlier.

Note #2:To specify a zero branch version number, youst always al-
so specify the parenthesized number-of-the-branch.

For example, suppose that you had a PVCS archive from whiahowdlt
an equivalent TLIB library, usingPVCSTLIB.EXE (Or PVCSTLIB.AWK).
Suppose, also, that the PVCS archive contained PVCS braadion
number "3.2.1.0". Then the equivalent TLIB 5.50 version bemwould
be "3:2.(1)0", and youdannot abbreviate it to "3:2.0".

307

This is a special case which applies only to branch versioo @aebranch
number one, ".(1)0". For any other branch version withinnblanumber
one, the "(1)" can be omitted for brevity, so that, for exaepB:2.(1)4" is
equivalent to "3:2.4".

This restriction exists is so that we can maintain compatii@havior with
earlier TLIBs, which considered, for instance, "4.0" to mother way of
referring to version "4".

The default iIRELAXVERS N.

TRACKEXTextension

This rarely-used configuration parameter lets you to chahg extension
of the TLIBWORK.TRKVversion tracking file. Configure this only if you use
the default file extensionTkRK’ for some other purpose.

The default is:

TRACKEXT TRK

ELSEWHEREKY/N>

TLIB 5.0 added a new configuration optioBJsewhere which subtly af-
fects the operation of the EBF (refresh browseatficommand.

Normally, the EBF command will extract any named source Vileich

does not already exist in the work directory, as well as tivasieh are de-
termined to be out-of-date according to the information fire twork
directory'sTLIBWORK.TRK file.

However, one of our users devised a scheme for taking his ke, in
which the source files are not left in the working directaapd he needed
TLIB to ignore the absence of the source files, and make itsrdenation

of which files to extract solely on the basis of the inforroatiin TLIB-
WORK.TRK.

308

To tell TLIB that his source files are elsewhere donfigures:

ELSEWHERE Y

However, most users should leave this configuration par@anget to the
default,ELSEWHERE N

FNAMECASE<U/L/A>

The FNAMECASEoONfiguration parameter controls the “case” (upper-case
vs. lower-case) of file names. The 3 choices are:

FNAMECASE Upper - Force all file names to upper -case
FNAMECASE Lower - Force all file names to lower -case
FNAMECASE Auto - Behavior depends upon operati ng system

This affects the case of file names recorded in the jourtal &ind the %
n” keyword, as well as the actual names used wheatiag files.

The default iSNAMECASE A

If you have a case-sensitive network server (e.g., a Unixhmnag, you
may want to configureNAMECASE L

See alsaONGNAMESP. 77.

SAY message
WARNMessage
ABORT message

The sAY, wARNand ABORTparameters support generation of custom error
and warning messages.

Use the sAY parameter to display a message to the console (in the Win-
dows version of TLIB, the message goes in the Stiatig). For example:

say Please don't keep modules checked-out/locked f or weeks!

309

WARNS similar to SAY, except that a TLIB ERROR: in configuration
file " message will also be displayed.

ABORTIS just like wARNexcept that TLIB will halt after displaying the er-
ror message, rather than continuing.

Note that if you make your tlib.cfgsAY a message that begins witRote:

" "Warning: ", or "ERROR: " then command-line versions of TLIB will
colorize it and/or prevent it from scrolling offetscreen (according to how
the COLORIZEand ERRORPAUParameters are configured), and Windows
versions of TLIB will pop up the message in a dialogue box f@ tuser

(as well as putting it in the status log).

For example:

say Note: Please don't lock files for weeks at a t ime!

These parameters are most often usedrm/ENDIF blocks, to warn about
error conditions.

WORKDEPTHIN

The WORKDEPTEONfiguration parameter can be used to specify the mini-
mum subdirectory depth for a work directory. Foample:

WORKDEPTH 0 (the default: work directories can b einor
below the root directory)

WORKDEPTH 1 (work directories must be at least 1 level bel
ow
the root directory)

WORKDEPTH 2 (work directories must be at least 2 levels be
low
the root directory)

This is useful, for example, to prevent the accideuse of root directories
as TLIB work directories, which is important wherREEDIRS Yis config-
ured (p. 300).

310

NEWLINE <CRLF/LF/CR>

TLIB transparently handles DOS, Unix, and Mac-format ASEeMt files.
As input to TLIB (for updates), any of the three formats arevriandled
equivalently. For output (extracts), the default is DOSrfat (CR+LF),
but you can control this with theewLINE configuration parameter:

NEWLINE CRLF The default, DOS format (carriage return + linedfee
NEWLINE CR Mac format (carriage returns only)
NEWLINE LF Unix format (line feeds only)

Note: this only affects the operation of TLIB iRILETYPE TEXT mode. If
your TLIB library is in FILETYPE BINARY format, then theNEwWLINEcON-
figuration parameter is ignored, and no end-of-line tramshs are done.
Also, this only affects the handling of your text files; TLtBlibrary files
are still stored in DOS format (with CR/LF afterchdine).

There is one small side-effect to this new feature that mégcasome
users of older versions of TLIB. TLIB now handles CR/LF, L, or
CR alone in your text file as all being equivalent. Earliersiens of TLIB
handled CR/LF or CR alone as being equivalent] Bualone was handled
as a plain text character.

So, if you had a file that contained a spurious line-feed att@r some-
where, you may notice this difference in behavior, becatigeu extract
the file (TLIB E) and then immediately updatg{s uU) TLIB will report
that the file has changed! What happened is that the lineagung the
lone LF character was seen as a single line in the TLIB libeang during
the extract, but was split into two lines during the updaitgol let TLIB
store the new "changed" file, and then extract it again, ydufiwd that
your text file now has a CR+LF (or whatever you configuredtfoe NEW-
LINE parameter) in place of the LF that it had theretee

Caveat: Ctrl-Z is still recognized as an end-of-file chéeaceven in Unix-
format files. Ctrl-D is not recognized as speamshny way. So, if you have
a file that contains a ctrl-Z character and you don't wantBrtd truncate
the file at that point, you must configureILETYPE BINARY for that file
when you create the TLIB library for it.

311

ERRORPAUSK0-3>

The ERRORPAUParameter controls whether or not TLIB will pause if an
error or warning message has been displayed. Pausing aftes er warn-
ings is intended to prevent important messages from beirgglanked
because they scrolled off the screen before beiad.r

You may configur&eRRORPAUS0 one of these four settings:

ERRORPAUS 0 (disable pauses after error & warning messages)
ERRORPAUS 1 (pause if ERRORwas displayed, but not for
"Warning " or "Note "; this is the default)
ERRORPAUS 2 (pause if ERROR Or "Warning " was displayed
but not for 'Note ")
ERRORPAUS 3 (pause for ERROR, "Warning " Or "Note ")

If you want to start a long job and return later to see whetherd were
any errors, then you may prefer to configueERRORPAUS @nd simply
redirect output into a file, for later inspection. TLIB witletect the fact
that output has been redirected, and error and warning gesaill be

written to both "stderr" (usually the console) and "stdo(itie file to

which you have redirected output). If, when you return, yea srror mes-
sages on the screen, you can inspect the file with your retédeTLIB

output.

Note that theERRORPAUParameter only affects operation in "non-interac-
tive mode" (i.e., when all TLIB commands and parameters wgpexified
on the command line).

If you don't specify the TLIB commands and parameters on gmntand
line, then TLIB will operate in "interactive mode," and prptrnyou for
them. In this mode, TLIB always pauses after each screernxgfdeen if
there are no errors, and regardless oEkRORPAUSsELtiNG.

The default is ERRORPAUS ,2which pauses forERROR and 'Warning '
messages, unless you configug®ERIES Nbut leave ERRORPAUSINCON-
figured. In that case, the default BRRORPAUS (pauses disabled). (This
exception is to avoid breaking some front-end programs alitdrenacros
which configure TLIB with QUERIES Nbecause they depend upon TLIB
never prompting for user input.)

See alsoEXITPAUSE (p. 313) anadcOLORIZE (p. 313).

312

EXITPAUSE <Y/N>

The EXITPAUSE parameter can be used to make TLIB pause before exit-
ing, even if no errors have occurred. If you want TLIB to alwgyause
before exiting, you can configure:

EXITPAUSE Y

The default is:

EXITPAUSE N

See alsoERRORPAUSPH. 312.

COLORIZE <Y/N>

To help you avoid overlooking error and warning sages, command-line
versions of TLIB can "colorize" them using ANSI excape segquss. You
can control this feature with thecOLORIZE configuration parameter. By
default, if ANSI.SYS support is available, TLIB will now attempt to high-
light error and warning messages through the ugdN&1 escape segences
to selecting the colors. To disable this, configure

COLORIZEN
To force TLIB to colorize error and warning messages, withiasting
whetheransl.SYs support is available, you can configure:

COLORIZE Y

The default is to check forANSI.SYS support, and colorize only ifaN-
SI.SYS is loaded; this can be explicitly configured as:

313

COLORIZE Maybe

Note #1:. TLIB also suppresses the ANSI escape sequences imhen
SLICKEPSI mode; that is, when running in the "concurrent process buffe
of the SlickEdit and Epsilon editors. So, an alternate waprevent col-
orization is to configureSLICKEPSI Y. This will avoid warnings with
older versions of TLIB that don't support the newoLORIZEconfiguration
parameter. However, this also affects some other aspeasnsile 1/O,
since the SlickEdit and Epsilon concurrent process buffarsiot support
some operations (such as single-character-at-akiétylgoard input).

Note #2: if you want a colored DOS prompt, but TLIB's ANSI gseae-
guences interfere with it, there are three things you canodsotve the
problem:

a) You can simply disable TLIB's ANSI escape sequences, hfigixring
COLORIZE N Unfortunately, this will prevent colorization of TLIB'st®r
and warning messages.

b) To have colorized TLIB error and warning messages, anal r&tain
your colorful DOS prompt, you can set your DOS prompt envinent
variable to select the prompt color of your choice, and uslB'BLBANNER
configuration parameter to reset the screen color to whibterwTLIB
starts up.

Thus, your PROMPTsetting in AUTOEXEC.BAT(and in CONFIG.SYS, under
0S/2) might be, for example:

Rem - bright, light blue prompt
PROMPT=%$e[1;36m$d $t $p]
To yourTLIB.CFG , add:

Rem - reset screen color to normal (white) at TLIB start-up:
numbanner 1

banner1," ~[Om"

Rem - (where " ~"is the escape character, ASCII 27)

¢) You can use thecOLOROFEoONfiguration parameter to reset your screen
colors to whatever you wish following display of the col@izword ("ER-
ROR:" or "Warning:" or "Note:"). Se@OLOROFFE below.

See alsoERRORPAUSP. 312.

314

COLOROFF<string>

The coLoRoOFronfiguration parameter lets you tell TLIB what ANSI es-
cape sequence to use to resets your console color to "norafif
displaying a colorized error or warning message.

This configuration parameter does nothing in TLéB Windows, and does
nothing if COLORIZE Nis configured (which is the default under DOS if
ANSI.SYS is not loaded).

The default is COLOROFF-[0om”, where “" is the esc character, ASCII
27.

MAKEDIRS <Y/N>

The MAKEDIRSconfiguration parameter is used to tell TLIB to automati-
cally create missing directories, as necessanmyadst circumstances.

To tell TLIB to create directories, configure:
MAKEDIRS Maybe

or

MAKEDIRS M

A few networks and operating systems may have bugs whichedaasr-

rect error codes to be returned under various circumstasael as when
a file cannot be created because the directory is missinglAKEDIRS M
does not work for you, and you suspect that this might be theawe, then
you can try configuring:

MAKEDIRS Y

Configuring MAKEDIRS Ycauses TLIB to assume that a missing directory
could be the true cause for a file-create failure, even if @areeode was

315

returned indicating some other cause. Do not configMiKEDIRS Yun-
less you suspect that your network or operatingeay$as this bug.

The default behavior for TLIB is not to create missing dioes, but to
give an error message, instead. This is similar to what hape/ou con-
figure:

MAKEDIRS N

The only difference between configuringIAKEDIRS Nand leaving the
MAKEDIRS parameter unconfigured is that fIAKEDIRSis not configured
then TLIB can also display a "hint" when a file create failsedo a miss-
ing directory. The hint suggests that configuriBgpKEDIRS MmMight solve
the problem.

NT351BUG <Y/N>

The NT351BUGconfiguration parameter enables TLIB to work around OS
and network bugs which cause file sizes to be incorrectlpnieg for di-
rectory look-up ("findfirst”) operations. This bug is chateristic of
Windows-NT 3.51, but has been occasionally seen in otheramments,

as well.

When an application either closes a file or does a "file cotyirthie oper-
ating system is supposed to update the directory informatareflect an
changes in file size and date. However, Windows-NT 3.51 hdmi@
which causes directory information to be incorrectly repdrfor a varying
period of time (typically 1-15 seconds) after the file clasefile-commit
operation.

We paid Microsoft $150 for the privilage of reporting thisdyiand their
response, believe it or not, was that they had disableditemits for 16-
bit applications, as an "optimization," and they did noemd to fix it in
any NT 3.51 service pack. Fortunately, it seems to be fixeWindows
NT 4.0.

(Please, don't anybody tell them that they could optimizeeN@n more,
and make it go even faster, if they disabled writes.)

316

So, we built a workaround into TLIB, to use an open/Iseelselsequence
to look up file lengths, rather than the normal (and muchef@dindfirst
(directory look-up) approach.

If you need to configure this option, TLIB will tell you so. bérwise,
don', since it adds significant overhead to some operati¢hhis is in
contrast to thelTFS35BUG parameter, which adds very little overhead.)

To work around the bug in Windows-NT 3.51, and also a bug thad w
presentin NT 3.5, configure these two parameters:

NT351BUG Y
NTFS35BUG Y

The defaults ar®T351BUG N andNTFS35BUG N.

NTFS35BUG <Y/N>

The NTFs35BUGCONfiguration option is used to tell TLIB to work around a
bug in Windows-NT 3.5's NTFS file system. If you are runningndbws
NT with an NTFS file system, either on your workstation PC ounet-
work file server, you should configure:

NTFS35BUG Y

This tells TLIB to do an explicit file-commit afteppending additional da-
ta to a file, such as a TLIB library. If this is not done, theneditory look-
ups (find-first) sometimes report the wrong file sizes fecently-closed
files.

Note: do not configure bothTFS35BUG Y andUSEDUPHAN Y.

See alsoNT351BUG, p. 316.

317

SHOWLNAMEY/N>

The SHOWLNAMESHOW Library NAME) configuration parameter can be
used to suppress TLIB's routine display of TLIB library fiaths and
names. For more concise messages, you can configure

SHOWLNAME N

This inhibits display of library & lock file names in most conon TLIB
messages. The default is stHOWLNAME Y (See also thQUIET Y config-
uration parameter.)

LONGNAMESY/N/M>

The LONGNAMESONfiguration parameter can be used to prevent TLIB for
Windows and TLIBX from handling long file names under Windo®@5,

or to prevent TLIB2 from handling long file names under OS2l &Vin-
dows-NT. See p. 77.

SERIALNO <serialnumber>

TheSERIALNO configuration parameter is how you tell TLIB whétat its
serial number(s) are.

For example, suppose 504-01234-5-123456789012 was yol Jérial
number. (This serial number means that you have TLIB 5.50rs/avas
the 1234-th TLIB sold, and you bought a 5-user license; "55389012"
encodes the type of license you have, and a checksum.) Y oldwonfig-
ure:

serialno 504-01234-5-123456789012

From then on, TLIB's copyright banner would say sthing like:

TLIB 5.50g, 5 user license. Copyright 1985-1996 Bur ton Syste
ms Software

318

If you have more than one serial number, just configure thepeatedly,
like this:

serialno 500-01233-1-123456789012
serialno 500-01234-5-234567890123

TLIB will sum the number of user licenses:

TLIB 5.50g, 6 user license. Copyright 1985-1996 Bur ton Syste
ms Software

The SERIALNO parameter is usually used in theLiB.SER file rather than
the regular TLIB.CFG configuration file.TLIB.SER is an optional TLIB
configuration file which, if it exists, must reside in thensa directory as
the TLIB executable TLIB.EXE , TLIBX.EXE, TLIB2.EXE , Or TLIBDL-
L.DLL). TLIB.SER is read before the regularLiB.CFG file. TLIB.SER is
primarily intended to contain your TLIB serial nuerfs).

USEUMBS<Y/N>

The useumBsconfiguration parameter controls whether or not the real-
mode DOS version of TLIB will attempt to "link" and use "UMB@&Jpper
Memory Blocks), if available, under DOS 5.0 and later. Uppemory
Blocks are conventional memory areas between 640K and 1,0&hi¢Ch

are commonly provided on 80386 or better computers by proegiuch as
EMM386, 386MAX and QEMM.

There are two possible settings:

USEUMBSY - TLIB will link Upper Memory Blocks if they
are available. This is the default.
USEUMBSN - TLIB will not link upper memory blocks.

Note: Our CTMAP memory manager can also provide upper memory
blocks on some 80286 and 80386 computers which use Chips &-Tec
nologies chipsets; seeTmMAPo9c.zIP. However, CTMAP's UMBs are
always "linked" and available, so they are unaffected byThH “ USE-
UMBS configuration parameter.

319

The uUseumBarameter is ignored in protected mode: by TLIB2 under
0OS/2 or Windows-NT, and by TLIBX (the DOS Extended TLIB) when
DPMI, VCPI or XMS extended memory is available.

By default, if TLIB runs low on memory under DOS 5.0 or latdrill
ask DOS to “link” any available upper memory blocks, therebgking
them available as normal DOS memory to programs like TLIB.ewh
TLIB does this, it displays a message:

*** UMBS linked ***

For most users, this is good: it means that TLIB has additiomemory
that it can use when processing large files.

However, if you have a problem with badly interacting progsathat you
suspect might be a memory usage conflict, especially whening a DOS
“task switcher” or similar program, you may wishdonfigure:

UseUMBs N
This will prevent TLIB from attempting to use Upper MemoryoBks.

(You can also accomplish the same thing by using DOS's SETu®&R
mand to make TLIB think it is running under DOS 4.)

READONLYKY/N/W>

The READONLYTconfiguration parameter controls whether or not TLIB
will set tracking files (ibwork.trk) to read-only. There are three possi-
ble settings:

READONLYT Yes - TLIB sets all tracking files to read-only
when not open. This is the default.

READONLYT No - TLIB does not set tracking files to read-only.

READONLYT Workdir - Only work directory tracking files will be

marked read-only. Project level tracking files
will be left read-write.

320

This parameter is intended for use with multi-user editiohgLIB when
used with Sun PC-NFS, since apparently with PC-NFS only thvener”
of a file can change the file from read-only todreerite.

This parameter can also be used to work around a bug in sors®ngf
Novell Netware. This Netware bug causes files to lose thghatable” at-
tribute (which you set with Novell'sFILER utility) whenever a program
(such as TLIB or DOS'sATTRIB command) changes the read-only at-
tribute. Se&READ_ME.TOOfor details.

Conditional configuration parameters

IF <list of wild-card specs>
ENDIF

TLIB configuration files can contain two kinds of conditiainconfigura-
tion constructs: run-time conditionals and load-time dbodals. Run-
time conditionals are iNF/ENDIF blocks (note: there is n@&LSE clause).
Load-time conditionals are inFF/ELSE/ENDIF blocks. Run-time condi-
tionals are used to specify configuration parameters whidly apply to
certain files, which are selected by wild-cards (sorry, yamnot use file
lists in this context). Load-time conditionals are simitar "conditional
compilation” for configuration files; they are predicatagon conditions
that can be tested as TLIB is reading its configuration filesprogram
start-up (or, in TLIB for Windows, when the curretitectory is changed).

The syntax for run-time conditionals is:

IF <list of wild-card specs>
REM conditional parameters go here
ENDIF

A few of TLIB's configuration parameters cannot appear inIB&NDIF
block; TLIB will give you a clear warning if youytra prohibited one.

Example:

REM These are popular changes to the “default” pa rameters:
EqualDate Y

321

path c:\tlibs\

REM No tab/blank conversions except on Pascal sou rce code:
IF *.PAS
entabU Y
ENDIF
REM Revision history log insertion only for C mod ules:
IF *.C,*.H
logwidth 76
logflag 3,"--=>revision history<=--"
logprefix 1,"/*"
logsuffix 78,"*/"
ENDIF
detabE M

Parameters are processed in the order you spéaeify:tif a single parame-
ter is set more than once, only the last one hpgHact.

IF blocks can be nested as deeply as you wish. Nesgtetllocks can be
used to make “exceptions” for particular files or groupsitefs. For exam-

ple:

if *.wk?
filetype binary
if timsfile.wkl
filetype text
endif
endif

Note that only TLIB itself fLIB.EXE , TLIBX.EXE , TLIB2.EXE , and TLIB
for Windows) recognizesIF/ENDIF constructs; the DIFF3 and CMPR
simply ignore everything betweerr and ENDIF. You can use this feature
to configure parameters for TLIB which do not affect CMPR dFEB, as
in the following example:

If *.*
addctrlz Y
endif

Note: TLIB 5.0 extended the syntax for thee construct in configuration
files, to allow multiple wild-card specifications, sepead by commas.
This feature may let you significantly reduce the size ofrybulB config-
uration file. For example:

Old way (still works, but now needlessly verbose):

322

IF *.DBF
filetype binary

ENDIF

IF * WK*
filetype binary

ENDIF

IF * EXE
filetype binary

ENDIF

New way (much more concise):

IF *.DBF,* WK** EXE
filetype binary
ENDIF

Note: you mustnot put any whitespace either before or after the commas!
Thus, the following willnot work:

IF *.DBF, *WK*, * EXE
ldoes not work!
filetype binary

ENDIF

IFF <expression>
ELSE
ENDIF

TLIB supports very flexible load-time conditionals in it®mdiguration
files. The following configuration directives areopided:

IFF <expression>
ENDIF

IFF <expression>

Note that thelFF /ENDIF and IFF /ELSE/ENDIF directives are quite differ-

ent from tharF /ENDIF constructlF /ENDIF is used to specify configuration
parameters which pertain to files that match one or more-valdl specs.

An IF parameter's wild-card specification is re-tested for efilehthat

TLIB processes.

323

In contrast, thelFF /ENDIF and IFF /ELSE/ENDIF directives are processed
only as TLIB.CFG is being read. (For command-line versions of TLIB, that
means they are processed only when TLIB loads; however, TaiBVin-
dows re-readsLIB.CFG every time you change the current directory.)

In addition, IFF tests are conditioned upon Boolean expressions, rather
than upon wild-card specifications. Boolean expressiaesexpressions

of the sort used in aET assignment, but with the added constraint that the
result must be numeric. Zero is taken as "falsel'raon-zero means "true".
(For a full description of the expression syntax, see tE& parameter, p.
270.)

Example:

iff %NECESSARY%'=="

warn Oh, dear! Environment variable %%NECESSARY %% is undefi
ned!

endif

Example:

let ONE=5-4
iff %6ONE%==1
say Hey, it works!
else
abort This is impossible!
endif

Example:

REM This example displays the current directory's path.
REM First, get "truename" of current directory:
Let currentdir=UNQ NAM ".\"
REM It may not have a trailing slash, so add one:
Let lastch= '"%currentdir%' SST '-2:1'
iff (%lastch%' NE '\') AND (‘%lastch%' NE ")
Let currentdir = UNQ ('%currentdir%’ . '\')
endif
REM Display the result (and also workdir)
Say currentdir=%currentdir%, workdir=%tlibcfg:work dir%

Useful example:

REM Include "personal.cfg" from current or parent folder,
REM 0-3 levels up. 1st, find the personal.cfg. (If file
REM does not exist, SIZ operator returns -1 for i ts size.)

324

set pname="personal.cfg’
iff (SIZ %pname%) == -1
let pname="..\' . %pname%
iff (SIZ %pname%) == -1
let pname="..\' . %pname%
iff (SIZ %pname%) == -1
let pname="..\' . %pname%
iff (SIZ %pname%) == -1
set pname="
endif
endif
endif
endif
iff ” eq %pname%
say Warning: personal.cfg not found, default conf
else
let psize=siz %pname%
let fullppname=uc ung nam %pname%
let pname=unqg %pname%
include %pname%
say Note: %psize%-byte %pname% (path %fullpname%)
endif

Or, for something really obscure:

Rem Set %X% to any integer value:

let x=-46

Rem Then test the MOD operator:

let easyway= %x% mod 3

let hardway= %x% - (3*(%x% / 3))

iff %hardway% <> %easyway%

abort This is impossible!

else

say (%x% MOD 3) = %EasyWay% (remainder left aft
endif

ig used.

loaded.

er %x%;/3)

For a more realistic example, involving the management ofiyrsemi-

custom software project levels, see p. 161.

See also “environment variables...” (p. 80), and ther parameter (p.

270).

Compressed (archived) library files

ARCCMD<path-of-pkpak.exe>

325

UNARCCMBpath-of-pkunpak.exe>
ARCTEMP<temporary-directory>
ARCEXT <extension>

Note: use of this feature is deprecated.

Note to users of TLIB 4.12Fhis works just as it did in TLIB 4.12, except
that nearly everyone now uses PKZIP & PKUNZIP instead of PKR#d
PKUNPAK.

(In fact, we hesitate to recommend using archived librdegfat all. Using
them makes TLIB sluggish and terribly verbose, and it is ab¢ $n a net-
worked/multiple-programmer environment. We tried to remothis
feature from TLIB 5.0, but too many of our beta-testers caim@d, so we
relented and put it back in.)

TLIB can also modestly compress its library files, but ordy binary files
(“filetype runlen "), and it keeps the library file small by calculating
deltas in a highly efficient manner and optionally convegtimultiple
blanks to tabs. However, the DOS version of TLIB does havelilty to
invoke PKZIP to automatically compress and decompresaritand lock
files, storing them in compressed archive format. PKZIPallgicompress-
es text format TLIB library files by 50-60%, and you can stoneltiple
files in a single archive to reduce the amount of space wasyedOS's
cluster-at-a-time disk allocation.

This can save disk space, but it has several disadvantdgdswks down
the operation of TLIB considerably. Also, you may find theeirspersed
PKZIP messages distracting. Plus, we cannot guaranteeatitmtipy be-

tween TLIB and future versions of PKZIP. So, unless you arg short of

disk space, you will probably not want to use “compressetiiged li-

braries” with TLIB.

Important note #1Even if there is a copy of PKZIP and/or PKUNZIP in-
cluded with TLIB, the price of TLIB doesot include a license to use
PKZIP (except to unpack the TLIB diskettes). Licenses foZRKshould
be obtained directly from PKware, Inc., 9025 N. DeerwoodvByriBrown
Deer, WI 53223. Telephone: (414) 354-8699. Fax-334-8559.

Important note #2The use of compressed/archived library filesdg rec-
ommendedvith the network version of TLIB. The problem is that if two
users try to access the same library or lock file at exactydhme time,
TLIB's network synchronization mechanisms will not worloperly, since
TLIB will be operating upon temporary copies of theary and lock files.

326

Important note #3TLIB does not “understand” the format aofiPp files.
Consequently, some forms of wild-card expansion will notkvoorrectly
if you use compressed/archived libraries.

Important note #4TLIB is the most reliable version control system on the
market, largely because when TLIB updates a library fileydes not in
any way alter or move the existing data. Instead, we just rghpi@ place,

to the end of the existing library file. With other versionntim! products,
any time you add a new revision to a library filell your old revisions
must make a round trip from the disk surface, into RAM (peshaja a
network), get processed by a program, and then be writtek foaa new
location on the disk. In each of those steps, tleaesmall but finite possi-
bility of data loss. Since TLIB avoids those steps, it alswids the
associated risk of data loss.

However, if you use compressed/archived library filess tieiliability ad-
vantage is forfeited.

If you mustuse TLIB with archived libraries in a network environment,
you can reduce the risk to your data by taking@lewing precautions:

1) Make sure that all users utilize the sam&®CTEMPdirectory, (on a
shared file server),

and

2) Instruct all users to watch out for the following PKUNPAK BKUN-
ZIP prompt:

Warning! file XXXX.XXX already exists! overwrite (y /n)?

If this prompt is seen, it probably means that another usacdgssing the
TLIB library or lock file, so TLIB should be abodewith Ctrl-Break.

If you are certain that nobody else is accessing the TLIB library or lock
file, then the file must have been left in the temporary divecas the re-
sult of an aborted TLIB operation. In that case, you can ws&fP F” to
ensure that thezip file is up to date, then manually delete the useless
temporary file.

327

Four configuration parameters must be set to enable TLIBs@archived
library files. Two of them ArcCmd andUnarcCmd, specify the full path
and file names of the PKZIP and PKUNZIP programs. The thinchpee-
ter, ArcTemp, specifies a directory for temporary storage of the exé@ct
library and lock files. The fourth parametécExt, is used to specify the
file extension of compressed archives (usualky).

To use a library which is stored in &P file, simply pretend that the
zIP file is a subdirectory, and specify it in the CP (path) comthor,
more conveniently, with theaTH configuration parameter).

For example, you could add the following line to your TLIB digiuration
file to specify that TLIB library files should be stored inethLiBS.zIP
archive file, which is in theaTLIB subdirectory:

path c:\tlib\libs.zip\

TLIB examines you library file CP (path) setting to determiwhether
you've specified a directory or an archive file. KréExt zIP " is config-

ured and the path setting ends igig\ " or “ zip\name.ext ", then TLIB

presumes that the library files are to be storem RKZIP archive.

Nested archive files (archives within archives) are nopsued. E.g., a li-
brary path setting like this would not work corigct

path c:\tlib\xx.zip\yy.zip\

Here's an example of how to use thecCmd, UnarcCmd, ArcTemp and
ArcExt configuration parameters. Note that they will not affea tpera-
tion of TLIB unless you specify an archive file with the CP aoand or
PATHconfiguration parameter.

ArcCmd c:\util\pkzip.exe -es
UnarcCmd c:\util\pkunzip.exe
ArcTemp c:\temp\

ArcExt ZIP

If your library files were in an archive file callediss.zip , you would
use the CP (path) command to reference the archive just kewould
reference a directory, like this:

tlib cp c:\libs.zip\ e myfile.c

328

One last note: Because the PKZIP command format may chanigéuire
releases, we cannot guarantee permanent compatibilityelet TLIB and
PKZIP.

Customizing the user interface

BANNER<1-42>" string'
NUMBANNER1-42>
PROMPT<1-42>" string'
NUMPROMP®1-42>

HELP <1-49>" string'
NUMHELP<1-49>
COMMANDSist-of-commands>

Thebanner, prompt andhelp parameters allow you to configure the mes-
sages which command-line versions of TLIB present to the. d&sch of
them requires a line number and a string. Unlike the othefigoration
parameters,BANNER PROMPTand HELP can be specified repeatedly to
specify multiple-line prompt and help messages.

The prompt message is shown to the user when he must selecinazca.

It is usually just one or two lines. The help message is whaisplayed
when the ?” command is selected. It can be up to 49 lines long, but you
should limit it to at most 24 lines unless you are sure thatusd! always
utilize display modes that support more than 2&din

The initial prompt and help are normally configured by TLIBAF, but
you can easily change them simply by editing your TLIB coufagion
file.

The number of lines in the banner, prompt and help screenetegrdined
by theNUMBANNERNUMPROMPTandNUMHELPparameters, respectively.

Note to users of TLIB 4.12ZFrhe HELP and PROMPTONfiguration parame-
ters were slightly changed in TLIB 5.0. TLIB 5.0 Removed tixé&a& blank
line which TLIB 4.12 displayed before the prompt and helpesas. In-
stead, TLIBCONF now configures the prompt and help screermate a
blank line at the beginning. This change allows you to gebfithe blank
line (by changingTLIB.CFG), if you wish. We recommend that you let

329

TLIBCONF (or the TLIB Configuration Wizard) configure youELPand
PROMPTThen if you don't like the appearance, you can exitB.CFG to
change them to your liking.

The commandsparameter allows you to restrict or expand the set of legal
TLIB commands. That is, it lets you configure which TLIB corands the
user can use. The user will not be allowed to use any commaimzhvig
not in the specified list of. Note that TLIB commands are easensitive;
that is, “N” is equivalent to “n”, etc..

Note: The format of thecoMMANDsDNfiguration parameter has changed in
TLIB 5.

All of the legal commands should be listed in tltMMANDSoNfiguration
parameter (in TLIB's configuration file, usuallyLIB.CFG), separated by
commas, except that the search mode suffixes may be omiktadin-
stance, the following enables all of the commands listedvahkia the
“old/new” table on p. :

COMMANDS US,EB,C,E,UFK,UD,UK,L,UKS,N,ER,CP,Q,EBS,N S, T,U\
UM,CW,ES,?

Any commands omitted from theomMMANDeonfiguration parameter will
be unavailable to users.

Note that the TLIB Configuration Wizard (or the older TLIBGIP utility)

will create a TLIB configuration file with an appropriateoMMANDEON-
figuration parameter, prompt, etc., so you probably willt meed to
manually change it.

New to TLIB 5.01 was the ability to configure the default witdrd search
mode for any TLIB command, via an extension to theMMANDBarame-
ter syntax.

To override the default wild-card search mode for a commamaply edit
the coMmMANDparameter in tlib.cfg, addingx ” to the command, where
“x" is one of the six legal wild-card search modes.

For example, if your configureCloMMANDSvas:

COMMANDS U,UK,US,UD,UKM,UKS,E,ES,EB,...

330

Then you could change the default wild-card search modehf®wvarious
U (update) commands tad® ("owned" files) by adding fo” to each com-
mand, like this:

COMMANDS U/O,UK/0,Us/0,UD/O,UKM/O,UKS/O,E ES,EB,..

The TLIB Configuration Wizard can utilize this facility toptionally con-
figure TLIB to be more “project oriented.” If you tell the Cfiguration
Wizard to configure TLIB for “project oriented mode” or “IS@001 pro-
mote levels,” then it will make the default search mode forsto
commands beT” or “A” (to search the project level), and you'll need to
first add your source files to the project level via thd tcommand before
you can extract and/or update them (unless you overridecifels mode).
(See also theINDIFILE parameter, p. 306.)

The coMMANDseonfiguration parameter can be continued onto additional
lines in the configuration file, by adding a trailing bacsh (1) charac-

ter. (COMMANDIS theonly configuration parameter which can be continued
in this way.)

Input lines in TLIB's configuration file should never exce254 characters
in length. However, it is possible for aoMMANDgarameter to be too long
to fit on a 254-character line, so we've added a way to extetudthe de-
sired length.

For example, these twtODMMANDParameters are equivalent:

COMMANDS U/O,UK/0,Us/0,UDb/O,UKM/O,UKS/O,E,ES,EB,EB S,L,T,H,Q
COMMANDS U/O,UK/O,US/O,UD/O,UKM/O,UKS/O\

,E,ES,EB,EBS,\
L,T,H,Q

Note that leading whitespace (tabs and/or blanks) is ighorethe contin-

uation lines.

Important: as listed in thecoMMANDSoNfiguration parameter, the TLIB
commands must have their suffix characters in alphabetiaitr. Thus,

this is okay:

COMMANDS U/O,UK/0,Us/0,UD/O,UKM/O,UKS/O,EES,EB,EB S,L,T,H,Q

331

but this is in error:

COMMANDS U/O,UK/0O,Us/0,UDb/O,UMK/O,UKS/O,E ES,EB,ES B,L,T,H,Q

becaus&Mk should baukm, andesB should beeBs.

Be careful: the current edition of TLIB doesn't do much vidi¢hecking
of thecoMMANDParameter, so it will not detect this error.

For your convenience, you may equate single-charactertrsmat syn-
onyms for any of the multi-character commands. One use fsrigho let
you make TLIB 5 look and feel like earlier versions of TLIB (e=pt that
the user will still have to preNTERafter each command).

TLIBCONF will offer to configure the COMMAND$®arameter to mimic
most of the single-character commands in earlier versibi&.B. This is

helpful for users who have become accustomed to the old-stgm-
mands, or who have editor macros or batch files that use thesinfle-
letter commands, but there seems to be universal agreementgaour
customers that the new style is much better.

Note that you manot redefine the multi-character commands.

Also, to avoid confusion, we recommended that you not regefiny of
the twelve default single-character commands to mean $ongestrange.
The default single-character commands are: A,G,BVEN,Q,S,T,U,?.

Note that all but four of these commands have #mesmeanings that they
had in TLIB 4.12. The exceptions are A, F, S and M.

“A” was “update with specified version number” in TLIB 4.1But is “add
or alter project level” in TLIB 5. The “update with specifiegrsion num-
ber” command is now “US”.

“F” was “fast-update/freshen” in 4.12, but is “filter fileames” in TLIB 5.
The “fast-update/freshen” command is now “UF” oFKJ’,

“S” was “split-library” (create new library with specifiestarting version

number) in 4.12, but is “snapshot-version-label” in TLIBThe “split-li-
brary” command is now “NS”.

332

“M” was “make branch” (update, specifying version nhumbeut do not
unlock) in TLIB 4.12. The equivalent TLIB 5 command is “UKSThe
“M” command is “migrate changes” in TLIB 5.xx.

The following configuration parameter gives single-cluéea shorthand
equivalents for many of the possible commands, chosen sdhisanew
version of TLIB will respond correctly to most of the old TLH&12 com-
mands.

COMMANDS US,B=EB,C,E,UFK,I=UD,K=UK,L,UKS,N,O=ER,P= CP,Q,\
R=EBS,T,U,W=CW,X=ES,F,?

For a fancier display (with highlighting, multiple colors;, whatever), you

can embed ANSI escape sequences in your prompt and helpalinkgse
DOS's ANSI.SYS device driver (see your DOS manual for details aR-
sI.sYs and the ANSI escape sequences). We've included a simple AWK
program namedNSIFY.AWK, which can add ANSI highlighting to the
prompt and help which were configured imLIB.CFG by TLIBCONF. If

you don't already have an AWK, you can use Rob Duff's freewtdhd
(from thepuBLIc.ziP archive on the TLIB distribution diskette).

To add ANSI highlighting, use the following command

awk -fansify.awk tlib.cfg >tlib2.cfg

Then test the new configuration file like this:

tlib ¢ "include tlib2.cfg" ?

If you are happy with the result, you can replateB.CFG with the newly
createdrLIB2.CFG .

BANNER<1-42>" string'
NUMBANNER1-42>

These parameters let you create a customized TLIB “starammdr,”

which you can configure to display whatever you wish. It weojlist like
the PROMPTand HELP configuration mechanisms, except that (unlike the

333

prompt & help screens) theBANNERIs always displayed (unless sup-
pressed with theq2 command line option, p.), and (unlike the prompt) it
is displayed only once (when TLIB starts up).

The intended purpose is to provide a convenient mechanism 8ystem
Librarian to provide helpful advice and instruction to tlestrof the TLIB
users.

There are two configuration parameters) MBANNERNd BANNERtO con-
figure your customized startup banneuUMBANNERpecifies the number of
lines in your customized bann&ANNERspecifies the individual lines. Ex-
ample:

numbanner 6

banner 1,”

banner 2,'Hi, %TLIBCFG:id%. Current projlev is %T LIBCFG:projlev%.'
banner 3,"Don't forget to mention the problem numb ers in your TLIB"
banner 4,'comments when you store a new version of a source file!"
banner 5,'Call me at extension 234 if you have que stions. -Dave'
banner 6,”

Note the use of double quotes on the third line, to allow qupthe apos-
trophe.

Huge File Support

MULTIPASS <Y/N>
MAXLINES <100-16380>
PASSSIZE <100-16380>

When running with the default configuration parametersiBrprocesses
source files of up to 16000 lines (or binary records) in laénigt a single
pass. Larger files are handled with multiple passes, wharimfs TLIB to

manage files of nearly unlimited size.

(Note: The real-mode DOS version of TLIB has a defamhsssizE of
4000, instead of 16000.)

334

TLIB's memory footprint can be reduced, at the expense df Ipetfor-
mance and storage efficiency, by using a smalesssizE setting. But
this is not recommended for most users.

The only significant problem with using the defaelisssize (16000) is
that the increased memory requirements may prevent themegé DOS
version of TLIB from being able to process lardedi This is probably not
a significant problem for you; you can solve it simply by rumgnone of
the protected-mode versions of TLIB (e.giLIBX.EXE or TLIB2.EXE Or
TLIB32C.EXE or TLIB for Window$ instead of the real-mode DOS ver-
sion.

Mostly for historical reasons, it is also possible to digabLIB's multi-
pass operation, by configuringultipass N, in which case TLIB will be
unable to process files that are too long to be handled in ass.his is
not generally recommended.

Note: For FILETYPE BINARY, andFILETYPE RUNLEN TLIB uses an inter-
nal “record” representation which is analagous to the limea text file,
except that TLIB uses an adaptive algorithm to delimit thectirds,” in-
stead of being hard-coded to look for carriagefretime-feed.

If you Run TLIB under OS/2, you should useiB2.EXE for command-
line work. Under DOS or Windows 3.1x, use the DOS-extendediop of
TLIB, TLIBX.EXE, for command-line work, rather than the real-mode
TLIBDOS.EXE. Under modern versions of Windows, use the 32-bit TLIBs:
TLIB32C.EXE and the 32-bit Windows GUI version.

For users of the DOS versions of TLIBye preferred methodf handling
large files is to configurePASSSIZE 16000 and MULTIPASS Yand run the
DOS-extended TLIBTLIBX.EXE .

If MULTIPASS Yis configured, TLIB is able to handle arbitrarily large
source source files, by processing them with multiple “pa%®f PASS-
Size lines (or binary records) each. The additional passes wigrade
performance somewhat, but only for files of more thaasssIzE lines;
shorter files will be processed just as efficiemtybefore.

If you have plenty of extended memory available (and a DPMIPV, or
XMS memory manager, such as that provided by Windows, EMS886
HIMEM), and you need to handle many extremely large filegnthhe
simplest and most efficient solution is to configurAsssIZE 16000 and
MULTIPASS Y, and run TLIBX.EXE instead of the regular DOSLIB.EXE .
However, when processing small filegLIBX.EXE is somewhat slower

335

than the regular, real-modeLIB.EXE (and much slower thamLiB2.EXE
under OS/2 orLIB32C.EXE under modern versions of Windows).

Note #1:to decreaserLIB 's memory usage, you mudécreasdhe PASS-
SIzE (or MAXLINES setting. This slows down TLIB somewhat, by
increasing the number of passes required, but it cuts meregojirements
by reducing the number of lines that are kept immey at one time.

Note #2:These paramters affect the fundamental structure of th& TiLI
braries, so if you change them to make TLIB work with a largerse file,
you must delete the TLIB library and create a new one with theokh-
mand before the new settings take effect (or cdritefith TLIBTLIB.EXE
or TLIBTLIB.AWK , see p. 296). Simply changin@ASSSIZE (MAXLINES
will not work!

TLIB divvies up the available RAM memory into two kinds of lieif area:
the line buffer, and the text buffer. The line buffer regsi@ bytes per
source file line, or 32,000 bytes for a 4000 line buffer. Tétisrage is used
even if your file is less than 4000 lines long. The text bufises the rest
of the available RAM; the “fullness” of the text and line berf$ is indicat-
ed by the “memory % used...” messages which the real-moddoveof
TLIB often displays.

The PASSSIZE (or MAXLINES parameter provides you with a way to
change the size of the line buffer. However, increasingitie buffer size
will reduce the amount of memory left for the text buffer. @ersely, de-
creasing thePASsSSIZE parameter will free up some additional memory for
the text buffer. If you are using the real-mode version of B.Lyou may
need to decrease theASSSIZE parameter if your computer does not have
very much RAM memory. ThePASSSIZE parameter can be set as high as
16380, but this is only useful if your source files are madetipxtremely
short lines, unless you are runnning one of the the proteutsdk editions
of TLIB. 7000-8000 is the practical limit for typical prograsource code
on a 640K PC, and 3000-4000 is good choice for most users afetie
mode DOS version of TLIB.

Note #3:Large source files with unusually long lines will generalguire
that you reduceasssize to handle them with the real-mode DOS version
of TLIB. The strategy is to choose RASSSIZE setting which will result in

a “reasonable” portion of the source file being handled & time, e.g.
100-150kb. A “typical” source file has an average line léngf around
20-35 bytes. With the defaulbAsssIZE setting of 4000 lines, this implies
that up to 140kb will be handled per pass (83000 = 140,000). Howev-
er, if you have large source files with lines that averageswterably

336

longer than that, you'll need to redu@nsssizE (MAXLINES to manage
them with the real-mode DOS version of TLIB. (An easier/eetolution
is usually to use a protected-mode version of T&lBh agLIBX.EXE .)

Example: suppose you have a 500kb source file, which is 7i5@8 long.
The average line length is 75 bytes (500,000 / 7500 = 77). Tkerid.|1B
handle the file in four “chunks” of about 125kb each, you wbuked to
set PASSSIZE to a little over 1/4 of 7500, i.e. about 2000,. WitlPASS-
SIZE 4000, TLIB would try to handle the file in only two passes (of 4000
and 3500 lines, respectively), which would require thatB'lbe able to
process over 250kb at a time. (This is not a problem for ptetemode
versions of TLIB, but itmight notwork with TLIBDOS.EXE unless you
have an unusually large amount of free “low” memory. Notet fRaB's
memory requirements increase somewhat as theyibilaigrows.)

Note: For FILETYPE BINARY, the adaptive algorithm TLIB uses generally
results in an effective internal record size (or “granuiéjiof about 20-30
bytes. Thus, forFILETYPE BINARY it is rarely necessary to change the
PASSSIZE (or MAXLINES setting to handle small binary files. But to most
efficiently handle binary files of more than about 80K, ycwsld use a

protected-mode version of TLIB, such asLIBX.EXE, and configure
PASSSIZE 16000.

Users of the real-mode DOS version of TLIB can obtain a goed iof the
best choice forPASSSIZE by creating and updating an experimental library
file for one of your largest source filegnfportant: do this test withmuL-
TIPASS mode disabled, i.e., MULTIPASS N). TLIB will display the
percentage of the text and line buffers which wseduy like this:

Memory 38% used up. Line buffer 59% full.

We recommend that you chooseraSSSIZE value which results in the
line buffer being more nearly used up than the text (“memplyiffer; the
38%-59% example, above, is fine. If you find that the “mem#&tyused”
approaches or exceeds the “line buffer % used” with a de{d0Id0 line)
buffer, then you should reduce theasssize parameter. You'll still be
able to handle large files if you enaMeLTIPASS v .

If TLIB runs out of text buffer before filling the line buffeit will resort to
a “garbage collection” process to try to handle the libraley. if that fails,
TLIB will display an “Out of memory” error message and abdw bpera-
tion. So be very sure to select theasssIZE (or MAXLINES parameter
conservatively!

337

Important: once you have created a library file, you cannot later reduce
TLIB's memory requirements for that library file by redugithe PASS-

SIZE (or MAXLINES parameter, since theAsssIZE value is stored in the
library file, and affects its structure. You can, howevese uhe DOS-ex-
tended version of TLIB,TLIBX.EXE , instead of TLIB.EXE . Or, you can
convert the library file to have a smallerPAsssizE, with the
TLIBTLIB.EXE (Or TLIBTLIB.AWK) conversion utility (see p. 296). Or, in a
pinch, you could split the library file with thes command (see p. 239).

Example: Here we setULTIPASS to enabled (Y), and SBASSSIZE (MAX-
LINES) to 4000 lines, which are the defaults for the real-mode DOS
version of TLIB,TLIBDOS.EXE:

multipass Y
passsize 4000

Cmpr and TImerge/Diff3 parameters

CMPR is the TLIB stand-alone “delta” generator (compardityli The
output is a “differences” file.

DIFF3 is a 3-way compare utility which will combine two indapdent
sets of changes to the same source file. The output is a newesdile
with both sets of changes. Note that DIFF3nist compatible with the
Unix™ utility by the same name.

For how to use these tools, see pages 225 and 233.

There are several configuration parameters for adjustiegbiehavior of
these two tools:

338

ADDCTRLZ<Y/N>

The addCtrlZ configuration parameter is used by CMPR and DIFF3, as
well as by TLIB (see p. 276).

CMPRENTABY/N>
CMPRDETABY/N>
DIFFLINES <100-16380>

These three configuration parameters are used only by CMiERD&#F3.
The CmprEntab and CmprDetab parameters affect the treatment of tabs
and blanks. TheDiffLines parameter determines the internal line buffer
size for CMPR and DIFF3 (likeAXLINES does for TLIB).

CmprEntab determines whether multiple blanks will be converted testab
before the comparison is performegimprDetab determines whether tabs
will be expanded to blanks in the output file.

Both of these default tov (disabled). If you set them tor (enabled), tabs
are equivalent to blanks, and there will be no tab charaatettse output.
If you set CmprEntab Y, but leave CmprDetab N, then the output will be
smaller because blanks will be converted to tabsrexrer possible.

If you leave both CmprEntab N and CmprDetab N, then CMPR will not
perform any blank/tab conversions, and lines containifg t&ill not be
considered the same as lines which appear identical butaicownly
blanks.

The fourth combination of parametersmprEntab N and CmprDetab VY,
is legal but not very useful.

If each of the input files contain at moBiffLines lines, then CMPR and
DIFF3 will handle them in one “pass.” Otherwise, the fileslwe handled
in several pieces (which is slightly slower andastonally less “robust”).
Multi-pass operation works well with both DIFF3 and CMPR|ass there
are really massive differences between the files. The dtafawiffLines
3000.

Here we set all three parameters to the defaults:

339

CmprEntab N
CmprDetab N
difflines 3000

D3COLLIDE <line-to-insert>
D3FLAG2 <0-253>" <string>"
D3FLAG3 <0-253>" <string>"

DIFF3 uses the same configuration parameters as CMPR, lples of its
own: D3collide, D3flag2 andD3flag3.

D3collide changes the special line to be inserted in the output fileraihe
er DIFF3 detects conflicting changes in file2 and file3. hoald be
something which is easy to search for with a text editor. Téfwlt will
be fine for most users (scan for the#"):

D3collide /* ###Change collision detected! %n */

The "%’ in the flag line is replaced by the file name(s) for the chaaig
files when the flag is inserted in the output file.

Because changes to a program may well conflict even if ndesile in
the base file is altered in both file2 and file3, you may wishflag all
changes, rather than just those which happen to “colli@&flag2 and
D3flag3 are provided for this purpose. To flag all lines which weredimo
fied or inserted in file2 and in file3, respectiweyou could define:

D3flag2 68,"/*##file2*/"
D3flag3 68,"/*##file3*/"

The string F#u##iile x4 " will be appended to each changed or added
line, so that you can easily find the changes lycdeng with a text editor.
The “68” is a column number, which guarantees that the stsitligstart at
column 68 or higher. That is, if the line is less than 67 chiaclong, it
will be padded with blanks before the string is exged.

If you set the D3FLAG2& D3FLAG3columns to 1, then the string will just
be appended to the end of the line, with no blank padding. uf yeefer to
have the special string inserted at the beginning of the tetker than the
end, then you can specify column 0 (zero).

340

PCOM & PCOMS parallel port file
transfer

PCOM is a simple MS-DOS uitility for very high speed PC-to-Rle f
transfer via back-to-back connected parallel printer arsing a special
cable (not a “laplink cable™). PCOM is useful foansferring data between
computers which are equipped with incompatible disk drifies, 5.25"
and 3.5").

PCOM transfers data with an effective baud rate of 79-200aub de-
pending upon the speed of the computers which use it. Thedspee
roughly proportional to the CPU speed of the slower of the bompters
(about 7900 bytes/sec on a 4.77 MHz PC).

Because the data transfer is fully handshaked, it is highlialle and is
completely immune to “missed interrupt” (overrun) erroiBecause
PCOM does not disable interrupts, it generally will not ifeeee with inter-
rupt-driven background tasks, such as communicationsranog print
spoolers, local area networks, etc..

PCOM runs on any IBM-PC or compatible MS-DOS computer whiak h
a parallel printer port.

Abbreviated Operating Instructions

for more extensive instructions (on-line help):

PCOM

to test the printer ports & reconfigure PCOM:

PCOM TEST

341

to run as a “server” for the other computer:

PCOM [port] SERVER

to see a directory list of files on the “serverhgouter:

PCOM [port] X:<wild-card-spec>

to send file(s) to the “server” computer:

PCOM [port] <fromfile> X:<tofile> [options]

to receive file(s) from the “server” computer:

PCOM [port] X:<fromfile> <tofile> [options]

All names can contain wild-cards and/or drive/directorged@fications.
Multiple and leading asterisks are handled properly, but y@y not use
file lists. For example:

PCOM X:a:*ame.* *.*

To exit PCOM at any time, press Ctrl-Break.

Options

The [port] option is needed only if you wish to override the default
choice of printer ports. You can specify it either as a priulevice (pLP-

T1, -pLPT2 or -pLPT3), or as a hexidecimal addres$37s , -p278 or
-p3BC).

The other options are:

-C Calculate and chedBRCs

-M Make subdirectories if necessary (often used in @uatibon with-s)

-S Recurse through tree 8tibdirectories

342

-N Transfer onlyNewer files

-T JustTest, don't really transfer files

If you specify -C, then after each file is transferred, PCOM will close the
file, reopen it, read it from the disk, and calculate a 16etRRC checksum.

If the checksum is incorrect, PCOM will display an error naggs This
option offers an extra measure of safety to ensure that finevéis correct-

ly transferred and that it can be read from the disk withoubrerOf
course, the file transfer will be a bit slower.

Normally, PCOM will replace already existing files withowarning, just
like the DOS copy command. However, if you specify the option,
PCOM will only replace a file which is “older” than its replament. For
most files, the determination of which file is “older” is dein the obvious
way, by checking the file dates.

Special -N handling of TLIB libraries

PCOM has special handling which is used when you copy TLIBalies
with PCOM's -N option. (PCOM detects whether a file is a TLIB library
by checking whether the first two bytes ar& ".) For TLIB libraries, the
“newness” depends, not upon the file dates, but upon thaeifiks. Usual-
ly, the shorter of two identically named TLIB library files i“older.”
(Since TLIB always appends new deltas to the end of a libriggythe li-
brary file can only grow.) But if both library files have beapdated, this
is not true; neither of them can be considered “newer,” srepdacing ei-
ther file with the other would cause a loss of data. So, in taldito
comparing the file sizes, PCOM compares a CRC checksum éosrtiall-
er library file to a CRC calculated from the first part of tregder file, to
determine whether the shorter library file contains a subtthe versions
in the larger one. If not, then the shorter file may contaimsiens not
present in the longer (“newer”) file. If PCOM detects thisuation, a
warning is issued and the file is not copied; the warningtalgou to the
fact that you need to compare and reconcile the new versitingitwo li-
braries (DIFF3 can help with this chore).

This feature is helpful if you take work home on a lap-top cotep. You
can copy the library files to your lap-top computer, takedtrte and do
your work, and then, when you return, you can safely updaéatwork”

versions of the library files even if you hadn't checked thames out for
modification. (Warning: PCOM does not understand TLIB'eakin/out

343

locking mechanism, so it doesot warn you if someone else has a file
checked-out for modification.)

PCOMS - a background PCOM server

The trouble with running PCOM SERVER as described aboveas ith
monopolizes the “server” computer. To avoid this problens, have de-
veloped a memory resident (TSR) version of the PCOM server,
PCOMS.EXEIt runs in the background, using up about 31K of RAM memo-
ry, and allows you to continue to use your “server” computar dther
things, even as you access its disks via PCOM.

To run PCOMS as a background server for the othepaiter:

PCOMS [port]

If you have purchased multiple copies of TLIB, or a multit&ta license,
you can even run two or three copies of PCOMS on the “serveching,
to simultaneously service two or three other computers ectead to two
or three printer ports. (To configure PCOMS for such an eminent, you
could run pcoM TESTto configure PCOMS for one port, then sapeom-
S.EXE under another file name, then switch cables, rTOM TESTagain,
etc..)

PCOM 5.00k changes

PCOM now supports additional options; run it without partere for
help.

PCOM and PCOMS now have improved support for non-standangepr
ports, and an improveREMOTE(“remote control”) mode.

Also, PCOM 5.00k now supports the following exteth@éld-card syntax:

PCOM x: wi | d- card- spec d:**.*or
PCOM wi | d- card- spec x: d:***

where ‘0: " is a drive specification. This syntax tells PCOM to copye§il
to the same directory and file name, except onto a differemedetter. If

344

the “d: ” is left off, then the destination file will go to the same &iletter
as the source file:

PCOM x: wi | d- car d- spec **.* or
PCOM wi | d- car d- spec x:***

Note that PCOM is a DOS-only program (though it also runs & HOS
boxes of OS/2 1.3 and later).

There are a few idiosyncrasies when running PCONeuS/2 2.x:

a) If you use OS/2 2.x, you'll have to use the * option to tell PCOM
which printer port to use; the default is generally wrongtefately, you
can run ‘PcOM TESTon both computers (simultaneously) to re-configure
PCOM.

b) Under OS/2 2.x, PCOMS (the TSR server) is slow. It may bedha of
0S/2's VDM (DOS box) settings could be adjusted to solve 1Dis just
run “PCOM SERVER

¢) Under OS/2 2.x, PCOM may often pause before exiting. Thiluie to a
problem in the OS/2 printer port driver, which was fixed itelaversions
of OS/2.

d) “pcomM sHELLdoesn't work under DOS 5 or 6 or an OS/2 “DOS box.”
However, remarkably enough, it seems to work fine undervadilS-DOS
4.01 running in an OS/2 2.x VDM.

Examples

PCOM -p3BC *.txt x:c:*.* -c (copy using port 3BCH, with CRCs)
PCOM c:** -s (list all files on remote computer's C: drive)

PCOM -pLPT1 *.txt x:c:\z*.* -m (copy viaLPT1, & “mdirc\z ")
PCOM x:*.* p*.* -m (copy from server using default, witimdirp ™)
PCOM c:*.* x:c:*.* -s -m (copy whole disk, except hidden files)

PCOMS -pLPT1 (install background server on LPT1)

PCOM -pLPT1 REMOTE (remote-control the server's screen & keyboard)

345

Configuration

Connect the special printer cable between the paralletgridapters of
the two computers.

PCOM is initially set up to use your last printer port (prolyadddress 378
hex if you have two of them). To use a different printer podyuycan use
the -p command line option to select the port, or connect the cahte a
run “Pcom TEST on both computers.

If you run pcoM TESTPCOM will offer to patch itself (and PCOMS), if
necessary, to use the correct default port. If you are usi@fs[2.x,
PCOM.EXEand PCOMS.EXEmust be in the current directory when you do
this.

You can also patch the printer port address manually. Theeved be
patched is near the end of tircoM.ExEand Pcoms.ExHiles, and is im-
mediately preceded in the file by the stringoft= . Normal values are
378, 3BC or 278 hex.

Note that you can always override the default by specifyirey‘tp ” (port)
option on the PCOM command line.

Copyright/license

PCOM is not of much use when run on only one machine at a time! So
we're making an exception to the copyright/license termshfe single-us-

er version of TLIB, to allow you to use PCOM dwo computers at a time.
This applies only to PCOM, not to the other programs in theBrpack-
age.

This product uses the TesSeRact™ Ram-Residentriibral supports the
TesSeRact Standard for Ram-Resident Program CommunicatisSeR-
act is a trademark of the TesSeRact Development Team. TesBeR
information could formerly be obtained from The TesSeRaatd&opment
Team, c/o Innovative Data Concepts (a Pennsylvania comp@yp Ra-
binowitz, President. Innovative Data Concepts sold an dawed,
commercial version of TesSeRact, called the “TesSeRact R¥gdident

346

Development System.” Unfortunately, the TesSeRact Dgvatmt Team
has disbanded, IDC has gone out of business, and we are updbtate
Chip.

Cable

PCOM needs a special cable to connect the printer ports dintbeom-
puters. The cable requires eleven wires and two 25-pin mleshell
connectors. It should be wired like this:

le} name pin pin
out DB3 5 15
out DB4 6 13
out DB5 7 12
out DB6 8 10
out DB7 9 11
in -ACK 10 8
in -BUSY 11 9
in +PE 12 7
in +SLCT | 13 6
in -ERR 15 5
GND 18-25 18-25

Actually, you usually do not need to attach GND to all eighdigrd pins...
just pin 18 is enough for most computers. For minimum RFlatdn, you
should also attach the cable shield to GND at bats.

We've seen PCOM work with cables up to 75 feet long, but wemeco
mend that you try to keep the length below 25 feet, especialihigh
noise” environments. If the cable is more than 10 feet long, recom-
mend that you use “low capacitance” wire.

The cable is completely symmetrical. It does not matter Wigind is con-
nected to which computer.

For those who prefer not to make their own cables, we stockicsix
PCOM cables for $30.00 (plus shipping, 1 Ib.).

347

Expandir

EXPANDIR is used to pre-allocate disk subdirectory spaoejriproved
performance.

The problem is that when a DOS subdirectory grows beyondgesitisk
cluster in length, a second cluster will be allocated, ndigfar from the
first. Thus, multi-cluster subdirectories are generadlyesely fragmented.
This is why file access tends to be so slow in subdirectorigighvcontain
many files: each time an operation is done which requireessing the di-
rectory (e.g., an “open”), a lengthy “seek” operation musdone for each
directory cluster.

EXPANDIR forces DOS to add the needed directory clustersaadhaf

time, which usually results in a contiguous or near-comigudirectory,
for much improved disk performance. A hard disk with 2K clrstcan
hold 62 files in the first cluster of a subdirectory, and @4diin each addi-
tional cluster. Thus, you may wish to use EXPANDIR on any sudmtiory

in which you plan to store 63 or more files.

EXPANDIR is intended for use only on “normal” DOS subdireds. It
will not work on “root” directories (which are of fixed leng}, and it is
unlikely to improve performance on WORM optical drives orved net-
work file servers.

For instructions on how to use EXPANDIR, run ithwito parameters.

348

Testlock

TESTLOCK is our tool for testing network and OS network fillearing,
locking and related functions.

TESTLOCK is mostly used in either of two automa#ist modes:

AUTO tests file sharing/locking on a single machine
AUTO2 uses two machines for a more thorough test

We include five versions of the TESTLOCK executable

TESTLOKR.EXE - real-mode DOS

TESTLOKP.EXE - 16-bit OS/2+NT+DOS ("bound" family-mode)
TESTLOK2.EXE - 32-bit OS/2

TESTLK95.EXE - real-mode Win-95 (uses Int 21H LFN functions)
TESTLK32.EXE - Win-32 (for Windows-9x/Me/NT/2K/XP)

All five versions are functionally identical, except thaely were compiled
and linked for different operating environments.

Most versions of TESTLOCK will run under more than one PC afiag

system. For the most thorough test of your operating systanatwork
file /0, we recommend that you test it with all versions of SH.OCK

which will run on your operating system. Some network clienitvers

have bugs which only affect certain subsystems. Thus, ibisafe to as-
sume that your network software is working correctly aftesting with

just one version of TESTLOCK.

This table shows which versions of TESTLOCK can be run undehef
several common PC operating systems:

TESTLOKR | TESTLOKP | TESTLOK2 | TES TLK95 | TESTLK32 |
+ + + e S |

MS-DOS |Yes/83 |Yes/83 | No | N o | No |
Windows 3.1 | Yes/8.3 |Yes/8.3 | No | N o | No |
Windows95 | 83 | 83 | No | Y es | Yes |
Windows NT | 83 | Yes | No | N o | Yes |
0S/213 | 83 | Yes | No | N o | No |
0S/22x | 83 | Yes | Yes | N o | No |
OS/2Warp | 83 | Yes | Yes | N o | No |

349

Where:

Yes means that it runs
8.3 means that it runs, but only using short file names
No means that it won't run

The various versions of TESTLOCK test the I/O methods usedaopus
versions of the TLIB Version Control System:

Program Does 1/O similarly to...

TESTLK32 Win-32 versions of TLIB

TESTLK95 TLIBX.EXE and 16-bit TLIB for Windows

TESTLOK2 (most 32-bit OS/2 programs — not any version ofBlthough)
TESTLOKP TLIB2.EXE

TESTLOKR TLIBDOS.EXE

Common Usage:

{ PROGRAM} { PATH} {OPTI ON\}

where:
{PROGRAM]}is one of the 5 versions of TESTLOCK

{PATH} is not optional, and should generally be in one of tHes@s:

d:\subdin
\\server\vol\subdir\

{OPTION}is not optional, and must one of the following:
AUTO tests file sharing/locking on a single machine
AUTO2 uses two machines for a more thorough test

Example:

testlokr c:\ auto2

For more detailed instructions, see the fT#STLOCK.TXT.

350

Touch

Purpose: Set a file's date & time to “now”
Usage TOUCH filename

where filename is the path of the file whose date/time yothwipdated.
You can use wild-cards and file lists to specifyitipie files.

TOUCH is a little program to change the “last modified” dateldime for

a file to be the current date and time. It is sometimes handgrwlou are

using MAKE, since it provides a convenient way to force a sgjoent

build (compile, link or whatever). Just “touch” any file ihné dependency
list(s) (to the right of the colon) for the build step(s) wihigou want to

force.

TOUCH has a couple of advantages over simply editing a fitetaen im-

mediately saving it without any changes (which will also #et date and
time to “now”). For one thing, TOUCH can be used on any filef just

text files.

Also, TOUCH will not set the DOS *“archive” attribute, whichowld

cause the touched file be needlessly saved again in yourimengimental
backup (most backup utilities, including DOS backup, usedtchive at-
tribute to decide which files need to be saved). Yada make regular
backups, right?

And, of course, TOUCH is very fast, since the file is not atijueopied or
modified in any way.

351

Make

Another difficulty faced by developers using multiple soeicode files is
not really related to library maintenance. It is the problefrdoing the
compiles, links, etc. needed to keep th@BJ, .EXE, etc. files up to date
with the source files.

Suppose you have an “include file” which is used by many ofryanurce
files, and you make a change to it. Which source files shoaldng-com-
pile, and whichexXe modules should you re-link?

The developers of UNIX™ hit upon an elegant solution: creatéle

(called a “makefile”) describing the dependencies (e.driceh .0BJ files

depend upon which source files). Then a program can exarmeddapen-
dencies and the date/time each file was last modified toréte which
compile and link commands are needed.

The program was called MAKE, and today there are many coregasell-
ing MAKE utilities, most of them bundled with other programBurton
Systems Software does not sell a MAKE utility. However, wemerate
with another vendors who sell an excellent MAKE utility, ang also
give our customers a copy of a primitive public domain MAKE@ram
written (mostly) by Mr. Landon Dyer.

Dyer MAKE is not copyrighted, so you may do anything you wisithwt.
However, he does ask that you pleasendtsell it, either with or without
modification. Please respect his wishes.

Dyer MAKE is supplied with full source code (iMicrosoff™ C 6.0 port-
ed from Borland'sTurbo-C" and (before that)Lattice™ C 2.13.

Incidentally, Landon tells us that it can also be compiled amn under
VAXIVMS.

Note #1:MAKE can be used to update your TLIB library files whenever
you change your source files. However, it is simpler andefasd use
TLIB's UF (fast update) command, which has the saffet.

352

Note #2:Landon Dyer MAKE is a very “vanilla” tool. It lacks some of the
features of Unix MAKE (we especially miss “inference rulgsand it
lacks the marvelous “automatic dependency generatorsiiged by the
better commercial MAKE utilities, such a&®pus MAKE We cooperate
with Opus Software to ensure that Opus Make and TLIB Versiont@l
work together well.

Opus Software@pus™ MAKEandMKMF)
http://www.opussoftware.com/

1032 Irving St., Suite 439-B, San Francisco, CAZ41
Phone: (415) 485-9703 Fax: (415) 485-9704

Syntax

The format of the MAKE command for Dyer MAKE is:

MAKE [-N] [-A] [-F file] [name ...]

where
-F: usefile instead of defaulinakefile
-A: assume all modules are obsolete (rebuild everyjhing
-N: don't recompile, just list steps to recompile
name: module name(s) to recompile
Files

Dyer MAKE consists of the following files:MAKE.BAT (or MAKE.CMDUnN-
der 0S/2), MAKEEXE.EXE, andDELBAT.BAT (plus the source code).
When you use MAKE, these three files should be in either threeot di-
rectory or in a directory mentioned in your PATH.

A temporary file calledMAKE$$$$.BAT is created by MAKE; this file will
be deleted when MAKE has finished (unlegsBAT.BAT is missing).
Description

MAKE is a utility inspired by the Unix™ command of the same ream
MAKE helps maintain programs that are constructed from mleg.

353

MAKE processes a “makefile”, which describes how to buildragsam
from its source files, then produces and rurena (“script”) file contain-
ing the commands necessary to re-compile the program. (Nemept” is
Unix lingo for “BAT”)

Be careful: this MAKE isiot compatible with Unix™ MAKE!

The “N” option causes MAKE to print out the steps it would follow ino
der to rebuild the program. TheA™ option tells MAKE to assume that all
files are obsolete, and that everything should be re-cadpiThe “F " op-
tion, followed by a filename, can be used to specify a mageafther than
the default one.

If no names are specified on the command line, the first dégecy in the
makefile is examined. Otherwise, the specified root nameseought up
to date (the root names are the things you want rebuilt; §ygahe names
you specify on the DOS command line).

The default makefiles are:

MAKEFILE
.\MAKEFILE

If the first makefile cannot be found, MAKE attempts to use tiext one.
If no makefile is ever found, MAKE prints a diagtiosand aborts.

The Makefile

Comments begin with#” and extend to the end of the line. A™ (or al-

most any other character) may be escaped with the escapactdrarthe
backquote (). An escape character may be typed by doubling i).(The
standard C language escape codes are recognized:

'n ASCII 10, line feed

r ASCII 13, carriage return
't ASCII 9, tab

‘b ASCII 8, backspace

f ASCII 12, form feed

A makefile is a list of dependencies. A dependency consibta mot

name, a colon, and zero or more names of dependent files. ¢dloa
MUST be preceded by whitespace.) For instance, in:

354

make.exe : make.obj parsedir.obj file.obj mk.h

the file “make.exe " depends on four other files. A root name with an emp-
ty dependency, as in:

print :

is assumedieverup to date, and will always be re-compiled.

The dependency list may be continued on succebsas

bigfile.exe : one.obj two.obj three.obj
four.obj five.obj six.obj gronk.obj
freeple.obj scuzzy.Ink frog.txt greeble.out

Any number of “method” (DOS command) lines may follow a degem
cy. Method lines begin with whitespace (blank or tab). Whdifeds to be
re-compiled, MAKE copies these method lines (minus theiteatlanks
or tab) to the scriptat) file. For example, in:

make.exe : make.obj parsedir.obj file.obj macro.ob j mk.h
link make,parsedir,file,macro
echo "Another version of MAKE..."

the two lines following the dependency make up the methodefdinking
the file “make.exe ".

If the macro “INIT " is defined, its text will appear first in the script file.
If the macro “DEINIT " is defined, its text will appear last in the script file.
By defining these two macros, it is possible to set the dingcor whatev-
er:

~INIT = echo on’ncd \workdir nif not exist

gwarkle.xyz goto exit (should be all 1 line)
~DEINIT = :exit'ncd \

~DEINIT = $(~DEINIT) necho "Done."

this will expand (in the script file) to:

echo on
cd \workdir
if not exist gwarkle.xyz goto exit

355

exit
cd\
echo "Done."

When a root's method is defined, the value of the maeBEFORE is pre-
fixed to the method, and the value of the macreFTER' is appended to
it.

Frequently one wants to maintain more than one program wisingle
makefile. In this case, a “master dependency” ggear first in the file:

allofMyToolsAndHorribleHacks : cat peek poke.exe g runge
cat : cat.exe

cat.exe : (stuff for CAT. EXE)

peek : peek.exe

peek.exe : (stuff for PEEK EXE)

poke.exe : (stuff for POKE. EXE)

grunge : grunge.com

grunge.com : (stuff for grunge)

In other words, MAKE will bring everything up to date that ismsehow
connected to the first dependency (the incredibly lengtlepéme speci-
fied in this example can't actually exist).

Macros

A macro is defined by a line of the form:

<macro-name> = <macro-body>

The =' MUST be surrounded by whitespace. A macro may be deleted by
assigning an empty value to it. Macros may be redefined, tefini-
tions stay around. If a macro is redefined, and the redafimits later
deleted, the first definition will take effect:

MAC = first I MAC = "first"
MAC = second I MAC = "second"
MAC = $(MAC) third ! MAC = "second third"

MAC = I MAC = "second"
MAC = I MAC = "first"
MAC = I MAC has no definition

A macro may be referenced in two ways:

356

$<char> or $(macro-name)

The first way only works if the macro's name is a single chiaradf the
macro's name is longer than one character, it beuishclosed in parenthe-
sis. ['$” may be escaped by doubling its¢".)] For example, in:

G = mk.h mk1.h
OBJS = make.obj file.obj parsedir.obj macro.obj
BOTH = $(OBJS) $G

make.exe : $(OBJS) $G
make.exe : $(BOTH)
make.exe : mk.h mk1.h make.obj file.obj
parsedir.obj macro.obj
echo "This is a dollar sign --> $$"

after macro expansion, the three dependencies will apgestical and
the two ‘$”s in the last line will turn into ones™.

DOS Environment variables

All MS-DOS environment variables are available within MAKE pre-de-
fined macro names which begin and end with™. For example, the DOS
command processor (usuallpmmand.com) is selected by thecOMSPEC
environment variable, so you could specify it 88 COMSPEC%)n your
makefile. For example, you could run a DQfat file called compile.-

bat like this:

myfile.obj : myfile.c
$(%COMSPEC%) /C compile myfile.c

Unix™ MAKE and this one

They arenot the same. Do not expect Unix makefiles to work with this
MAKE, even if you change the path names. There are some méfer-d
ences between this version and the standard Unip&KE

1. Multiple root names are not allowed. Unix MAKE accepteBrof the
form:

namel name2 : dependl depend2

357

but this one doesn't.

2. With Unix MAKE, method lines must be preceded by a tab cttara
Since TLIB (and some MS-DOS editors) can convert tabs tolslathis
version of MAKE allows method lines to be preceded by eitHanks or
tabs.

3. There is no equivalent of double-colon ().

4. There is no equivalent ofSUFFIXES, or the corresponding special
macros.

5. This MAKE has a unique feature: it is “integrated” with B.land
PKPAK (a/k/a: PKARC). That is, MAKE can check the dates of particular
versions or branches within a TLIB library file, and of fileghich are
stored in a PKPAK-style archive file (but not a PKZIP-stylap archive

- sorry).

To specify TLIB versions and branches in your MAKEFILE, signput
the version you want in brackets after the file palike this:

myfile.c : myfile.c$$[4.%]
tlib ebs myfile.c 4.*

You can also use a TLIB file list or snapshot version labelgecify the
version. For example,

myfile.c : myfile.c$$[@beta,myfile.c]
tlib ebs myfile.c @beta

Note: Most users needn't use this feature of MAKE to ‘integratedith
TLIB. Instead, simply addqualDate Y to your TLIB configuration file,
and you can set up your MAKE dependency to check the date oli-the
brary file, since the library file date will be the same as tfee of the
newest version within the library file. This is much fastsince MAKE
will not need to read all your TLIB library files. (For this twork, you
would notwant to configuredidDate N). See pp. 267 and 275.

To get MAKE to test the date of a file which is stored in comgezsform

within a .ARC archive file, just pretend that the archive file is a diregto
For example,

fino.exe : d:\fino.arc\fino.c stdio.h

358

pkunpak d:\fino fino.c
cc fino

link fino,fino,,lc

del fino.c

PKware is obsolete. . Sorry, but we've not integrated DyerK#Awith

PKWare's current product, PKZIP.

Sample Makefile

MS-DOS Make utility
(compile with Lattice C version 2.13)
#

Adjust these for your system:
CLIB =\lc\s\lc

COBJ =\Ic\s\c

~INIT = echo on

~DEINIT = :xit

H = makedefs.h

C = make.c macro.c token.c parsedir.c file.c

FILES = $H $C osdate.asm

DOCUMENTATION = readme make.man makefile

make.obj : make.c’$ $H
tlib e make.c
if errorlevel 1 goto xit
Ic1 make
Ic2 make
if errorlevel 1 pause Errors!
erase make.c

macro.obj : macro.c $H
Ic1l macro
Ic2 macro

token.obj : token.c $H
Ic1 token
Ic2 token

parsedir.obj : parsedir.c $H
Ic1 parsedir
Ic2 parsedir

file.obj : file.c
Icl file
Ic2 file

osdate.obj : osdate.asm
masm osdate;

print the files associated with MAKE

359

print :
print make.man $(FILES) makefile

copy to distribution disk (on A:)
distribution :
copy readme a:
copy make.man a:
copy makefile a:
copy make.bat a:
copy make.c a:
copy macro.c a:
copy token.c a:
copy parsedir.c a:
copy file.c a:
copy osdate.asm a:
copy cmake.bat a:
copy make.lis a:
copy makeexe.exe a:
copy makedefs.h a:

link the MAKE utility
makeexe.exe : make.obj macro.obj token.obj
parsedir.obj file.obj osdate.obj
link $(COBJ) make macro token parsedir file osdate,m
akeexe,,$(CLIB) (should be all on 1 line)

How Make utilites work

If you are not used to working with MAKE utilities, you may bebé con-
fused at this point. So let's work through a sample edit anid session in
detail, using the following makefile:

#makefile for "a.exe" project

a.exe : a.obj b.obj
rem Link .obj files together w/ DOS linker
link a+b,a,,

a.obj:a.cc.h
rem Compile a.c w/ Lattice, producing a.obj
Ica

b.obj: b.c c.hd.h
rem Compile b.c w/ Lattice, producing b.obj
Icb

X.exe : X.c
Ic x
link x,X,,

360

everything : a.exe x.exe
REM Rebuild both a.exe and x.exe

The first four lines are, respectively: a comment line; ageiedency line”
which says thatA.EXE depends upon bot.0BJ and B.oBJ; and then
two lines of DOS commands (“build rules”) to createEXE from A.OBJ

and B.0oBJ. On the dependency lines, the name to the left of the colon is
the file to be made, called the “target,” and the list of nanvbich follow

the colon is called the “prerequsite list.”

here are five source files mentioned in this makefde, B.C, C.H. D.H
and x.c. The five source files are used to build two program£Xxe and
X.EXE. The compiler commandi¢'” is used to compile the C language
source files, and the standard DOS linker is used to creesE and
X.EXE from the object files.

Assume that initiallyA.EXE and X.EXE are both up to date and consistent
with the source files. Then you edit the file.H to fix a bug; none of the
other source files are modified. Then you typedbmmand

make a.exe

First, MAKE finds the dependency line withA'EXE” on the left-hand
side.A.EXE depends upom.oBJ and B.0BJ. The rule is that the associat-
ed command(s) must be done whenever the left hand file isreitiissing
or is older than one or more of the right hand files, and the isilapplied
recursively.

In this case,A.EXE is the target andA.OBJ & B.OBJ are the prerequsites.
If either A.OBJ or B.OBJ is newer thanA.EXE, then A.EXE must be re-
built (the link command must be done).

Initially, A.EXE exists and is not newer than either of thesJ files, but
since the rule is applied recursively, MAKE must first dexidhether ei-
ther of theoBJ files must be rebuilt before it can decide aboBKE .

So MAKE looks for a dependency line with.0BJ ast the target (on the
left); it finds one, and determines thatoBJ depends upom.c and C.H.

It examines the file dates and finds thatoBJ is newer than eithen.c or
C.H. Since neithera.c nor C.H appears as the target (left-hand side) of a
dependency, MAKE concludes thrabBJ does not need to be rebuilt.

361

Then MAKE looks for a dependency witls.oBJ as the target; it finds
one, and determines tha oBJ depends upors.c and the include files
C.H and D.H. It examines the file dates and finds that wheoBJ is new-
er than eitherB.c or C.H, it is older thanD.H. Thus, MAKE determines
that it will be necessary to rebuild (compitedBJ .

Before it actually emits the compile command, MAKE must tficheck
whether any of the files whicts.0BJ depends upon must also be rebuilt;
if so, then they must be rebuilt befor®.0BJ is rebuilt, sinceB.oBJ de-
pends upon them.

However, none of three files whiclB.0BJ depends upon appears on the
left side of a dependency. So MAKE can now emit the commansiscas
ated with rebuilding.oBJ :

rem Compile b.c w/ Lattice, producing b.obj
Icb

Since B.0BJ is being rebuilt, MAKE must also emit the commands to re-
build A.EXE , as well (becauseEXE depends upoB.OBJ):

rem Link .obj files together w/ DOS linker
link a+b,a,,

Many MAKE utilities actually execute the specified commarichmedi-
ately when they are emitted. Landon Dyer's MAKE, howevest jurites
them to a temporary batch fileMAKE$$$$.BAT, which is executed by
MAKE.BAT as soon as the MAKE progranvMAKEEXE.EX§ completes. This
has the advantage of leaving more available RAM memory ferctmpil-
ers, linkers, etc. (since the MAKE program is not in memoryewtihey
run), and it allows you to use DOS batch file commands like”“and
“goto " in your makefile.

The complete MAKE$$$$.BAT batch file created by our example above
was:

rem Compile b.c w/ Lattice, producing b.obj
Icb

rem Link .obj files together w/ DOS linker
link a+b,a,,

Note that this is exactly the correct sequence of commanddatkto re-
build A.EXE aftere.H has been modified. Neat, eh?

362

If you typed ‘make a.exe " again, MAKE would find that botha.0BJ and
B.OBJ are already up to date (newer than the source files upon vthah
depend), and thab.EXE is newer than either of them (and is thus also up
do date). So MAKE will conclude that nothing needs to be dare] it
will display the message “No changes” and quit without evesating
MAKE$$$$.BAT.

Okay, you're probably thinking, but what about that stradgpendency
line for “everything”? That isn't even a legal fiame!

The answer is that MAKE doesn't care whether it is a legal nanmmt; to
MAKE, an illegal file name is equivalent to a fihich doesn't exist.

Let's see what would have happened if we had typed the comtmaxed
everything " instead of fnake a.exe ™

First, MAKE finds the dependency with “everythingfi the left hand side.
“everything” depends upom.EXE and X.EXE. The rule is that the associ-
ated build rules (commands) must be done whenever the Iaft fike is
either missing or is older than any of the right hand filesplegal recur-
sively. Since there is no file called “everything”, MAKE kws that it will
need to emit the associated command(s). In this case, thehmrld rule”

is a REMline, but MAKE doesn't care; MAKE never even looks at the
build rules; it just echoes them tBIAKE$$$$.BAT. (Exception: MAKE can
do macro substitutions in both build rules and dejeacy lines.)

However, MAKE cannot emit the rebuild command for “everyii just
yet; first it must see if any of the right-hand names (presigs) need to
be rebuilt. It checks each of them in turn, and finds tixagXE is up to
date. However,A.EXE is older than one of the files which it (indirectly)
depends upom.H .

After determining thatD.H does not, itself, need to be rebuilt, MAKE
emits the commands to rebuddBJ and them.EXE :

rem Compile b.c w/ Lattice, producing b.obj

Icb

rem Link .obj files together w/ DOS linker
link a+b,a,,

Then, MAKE can emit the command (really just a REMark linejebuild
“everything”, and the finalAKE$$$$.BAT file looks like this:

rem Compile b.c w/ Lattice, producing b.obj

363

Icb

rem Link .obj files together w/ DOS linker
link a+b,a,,

REM Rebuild both a.exe and x.exe

Which is exactly what you wanted: the compile and link comdsaneed-
ed to rebuild just whicheverexe file(s) depend upon a changed source
file.

Note that if you do “make everything” again, MAKE will find &t both .
EXE files are already up to date (newer than the source files wgtoh
they depend), so it will only try to rebuild “everything”. Tb,
MAKE$$$$.BAT will contain only a REMark line (which does nothing),
which is fine since nothing needs to be domaKE$$$$.BAT looks like
this:

REM Rebuild both a.exe and x.exe

364

Easier Keyboard Input

The DOS version of TLIB's keyboard input routines were desijto be
compatible with RETRIEVE (part of Personally Developed t®afe's
UTILITIES | package, telephone 1-800-IBM-PCSW) and PCEBIC
(from The Cove Software Group, P.O. Box 1072, Columbia, MD42,
telephone 301-992-9371), as well as several similar puldimain pro-
grams (DOSEDIT, NDOSEDIT, etc.). These programs provideRIS
with vastly improved keyboard editing facilities, includj a multi-level
“retrieve” key (so that you can recall previously typed coamds, edit
them, and re-enter them). If you use one of these programd| fiod it to

be very handy when you are updating several source files siitlilar or
identical version definition comment lines. To retrieve threvious file's
comment line, simply press the up-arrow key when TLIB's “ooent
line?” prompt appears.

You can also use the DOS's DOSKEY program, but it doesn't asnkell
because it does not separate DOS and applicattomeaod histories.

Unfortunately, DOSKEY is apparently the only available ecoamd-re-
trieval tool for use in the “DOS box” of recent s&ms of Windows.

365

File Dates

When you use TLIB's U (update) or N (new library) command, B ill
add the source file's creation date to the new version disimcomment
line. This is handy if you ever need to retrieve an old verdiom the li-
brary, since it can help you decide which version geed.

If you do not set the DOS date before creating or modifyingrysaurce
file, TLIB will still run, but the date will be omitted from th version defi-
nition stored in the library file.

You can also configure TLIB to store just the date (not theelinsee p.
266.

Note that, by default, when you extract a source file withBLthe source
file is created with the same date and time that it had whera stored in
the library. However, you may prefer that the file be creatstth the cur-
rent date and time, rather than the original date. One reasomay want
this is to ensure that MAKE will properly reconstruct anysJ or .EXE
files which depend upon a newly extracted source file. If poefer this,
you can change th®.DDATECcONfiguration parameter; see p. 267.

366

Closing

We hope you find TLIB to be as useful to you as it has been to lis. A
though this software is sold with only a 90 day limited watyarnve want
you, our customer, to be satisfied. If you have any commejutsstions or
complaints, please do not hesitate to call or write, evehefwarranty has
expired. We will do our best to help.

Our address is:

US mail: Burton Systems Software

P. O. Box 4157

Cary, NC 27519-4157 USA

UPS, etc.Burton Systems Software

109 Black Bear Ct.

Cary, NC 27513

Our telephone and FAX numbers are:
voice: (919) 481-0149 FAX: (919) 481-3787

On the Internet you can contact us at:

email:support @urt onsys. com
URL: htt p://ww. burt onsys. com

367

Appendix A: Changes from TLIB 4

Command structure

If you upgrade to TLIB 5.5x from TLIB 4.12 or earlier, the firing you
are likely to notice is that TLIB 5 no longer uses singledettommands
(we ran out of letters).

TLIB 5.xx uses multi-character commands. This is much mdegilfle
than the old single-character commands used in ALIR.

Each command consists of a single command character plaseenore
optional suffix characters, to modify its behaworscope.

For example, wherJpdating libraries, you can choose betweeast or
regular update, betweeMinor-version-number-incremented or regular
(major) number incremented, either checking-in (unlogkior Keeping
checked-out, etc. Thus, “UFM” (or, equivalently, “UMF”") rmesUpdate
with Fast mode, and increment tiéinor version number instead of the
main integer version number.

With the old TLIB 4.12 single-character commands, thergpgimnvere not
enough different letters available for all reasonable domiiions, so some
combinations were not supported.

Some DOS-only TLIB users have no need for the newly availabla-
mands, or may prefer the old commands (perhaps because dveyah
program or editor macro which “front-ends” TLIB and uses th& com-
mands). To accommodate them, we have provided a mechanisvhibly
you can configure TLIB 5.xx to look and feel more like earh@rsions of
TLIB. When you run TLIBCONF to set up your TLIB configuratidihe, it
will offer to configure TLIB with old-style commaisd

For more information on the command structure, including/ o make
TLIB 5.xx mimic TLIB 4.xx, see pp. , 59 and 330.

368

New & Changed Configuration Parameters

A full list of TLIB's configuration parameters can be foundAppendix D
(p-). The following configuration parameters were new oamfed in
TLIB 5.0. These are listed in approximate ordeingfortance:

Critically important, be sure to read about thgsae

EXTENSION ext1,ext2,... 254
PATH pat h(s) 257
COMMANDS comma- del i mited-1ist 330

Very important:

IF/ENDIF 321
LOCKING <Y/ N B/ W 265
REPLACE <Y/ N Q A> 268

SET nanme=unquot ed- st ri ng 270
QUIET <Y/ N> 279

DETABE <Y/ N Maybe> 255

TRACK <Y/ N Maybe> 297

CREATETF <Y/ N> 298

PROJLEV nane 299

LEVEL n= nane d= pat h p= nane i= nanes a= <Y/ N @
s= <A d/ New @ Changed>r= <Y/ N> b= n c= nnf= <Y/ N> 300

TREEDIRS <Y/ N> 300

DOTDOTOK <Y/ N> 303

FIXKEYWD <Y/ N> 277

READONLYB<Y/ N W+ 280

DELETESRC <Y/ N> 278

LOGUSER <Y/ N> 266

WORKDIR pat h 304

Less important:

CMTFLAG <nunber, 1- 80>, quot ed- st ri ng 289
REFSUBDIR di rect ory- nane 305
FORCEREFR<Y/ N> 306

AATTR <Set / Preservel/ Reset > 287

LIBEXT ext ensi on 262

LOKEXT ext ensi on 262

QUERIES <Y/ N> 269

SHEIGHT nunber 284

SWIDTH nunber 284

369

HELP <nunber, 1- 24>, quot ed- string 329
PROMPT <nunber, 1- 24>, quot ed- stri ng 329
BANNER <nunber, 1- 24>, quot ed- stri ng 333
CMTSUFFIX <nunber, 1- 253>, quot ed- stri ng 289
CZTRUNC <Y/ N> 291

ELSEWHERE<Y/ N> 308

SLICKEPSI <Y/ N M> 292

AUTOSET fil e- name 292

TRACKEXT ext ensi on 308

These are the old TLIB 4.12 single-letter commands and thi& H.5x
equivalents, provided here for the convenience of users avhaused to
earlier editions of TLIB:

old | new lmeaning
I |
A = US Update, Specifying version
B = EB Extract, Browse mode
C = C.Co Configure
E = EEO Extract and lock
F = UFK Fast/freshen Update (& if locking=Y, Keep checked}o
| = UD check-in, Discarding changes (unlock)
K = UK Update, Keep checked-out/locked
L =LLo List versions
M = UKS Update, Specifying version, Keep checked-out
N = N,NO create New library
O = ER Reserve (lock without extract)
P=CP Configure Path of libraries
Q = QQ0 Quit
R = EBS Extract Specified version, Browse mode
S = NS New lib, starting with Specified trunk version
T=T7T0 Test lock status
U = uU,uo Update, check-in
W = CW Configure Who your are (ID)
X = ES Extract, Specify version, check-out/lock
? = 2,20 Help

(note:b, ¢ H J, v, Y and z were not valid commands in
TLIB 4.12)

370

Appendix B: Library File Format

For text source filesfifetype text), the library file is also a text file,
and the edit commands which are appended to it are very sirfie bi-
nary format libraries, see p. 296.)

Since the library file is a text file, it is possible to look iatand see what
changed from one version to the next. Also, though it shoekknbe nec-
essary, it is possible to use a text editor to change therjiike itself
(dangerous, but possible; one use for this isterfioneous comments).

There are three kinds of “edit commands” (“dot-commands’ itext-for-
mat TLIB library. They are as follows:

1 Insert new lines; the full edit command format is finn ", where nnn
is the number of lines to insert. The new lines appear in thraty file im-
mediately following thel command line.

Note #1: if the numbenpn , is omitted, it is equivalent ta™.
Note #2: lines longer than 254 characters are eguas multiple lines.

.C Copy lines from previous version; the full edit command is “kxx
yyy ", where lines numberedxx through yyy in the previous version of
the source file are appended to the buffer which represéstsi¢w ver-
sion.

Note #3: ifyyy is omitted, it is equivalent taC xxx xxx

Note #4: ifyyy is less thamxx , it is equivalent t0 € xxx xxx+yyy

.V Begin a version definition; a user-supplied comment appbaside the
“.v” on the line, along with the name of the source file and the dhis
version was created.

Additional comment lines can follow thes line, each with a ‘N” prefix.

Also, some additional information may be stored on theline, depend-
ing upon your choice of TLIB configuration paranrstésee p. 266).

371

Let's look at a simplified example. Consider tlilis, fcalledGOODBYE. X

Dear John,

I'm sorry, but | don't love you
anymore. I've found someone new. I'l
always remember the special times we've
had together.

Love,
Mary

After writing this with her trusty editor, SnazzyWrite, Macreates a New
library file for it, with the N command. Her TLIBocnmand is:

TLIB N GOODBYE.X Dear John letter

The library file looks like this:

.V GOODBYE.X 14-Feb-85 Dear John letter
A7
Dear John,
I'm sorry, but | don't love you

anymore. I've found someone new. ['ll
always remember the special times we've
had together.

Love,

Mary

Every new text-format library file is in this same format: & * command
followed by a single insertion (in this case, onlines).

As she is walking to the mailbox to mail her note to John, Margts her
new beau, Mark, driving by with a beautiful blonde. Mary ks to give
John a second chance. Her letter will not be wasted, how&les. edits
the letter to change the first line. Then she runs TLIB to Updeer library
file. The corrected letter looks like this:

Dear Mark,

I'm sorry, but | don't love you
anymore. I've found someone new. ['ll
always remember the special times we've
had together.

Love,
Mary

Mary's TLIB command looked like this:

372

TLIB U GOODBYE.X Dear Mark letter

The library file gets the following delta (version defimiti) appended to it
to reflect the changes needed to make a Dear Mark letter oat@éar

John letter:

.V GOODBYE.X 15-Feb-85 Dear Mark letter

A1
Dear Mark,
.C27

These two edits indicate that the new version consists ohemeline fol-
lowed by lines 2 through 7 of the old version.

The library file now contains two versions, antbitks like this:

.V GOODBYE.X 14-Feb-85 Dear John letter

A7

Dear John,
I'm sorry, but | don't love you

anymore. I've found someone new. I'l
always remember the special times we've
had together.

Love,

Mary
.V GOODBYE.X 15-Feb-85 Dear Mark letter
J1
Dear Mark,
.Cc27

Mary suspects that she will someday have use for the firgimer When
that time comes, she can simply run TLIB with the ES commanctkto

trieve version 1, and avoid having to type a navetdo John.

373

Appendix C: Messages

We've standardized the format of TLIB's error/warninglstanessages, to
make it easier to spot the important ones. This change makesré prac-
tical to start a large TLIB batch job, capture the output iafiile, and later
search for error messages and warnings which would indibatesome-
thing had gone wrong.

TLIB's messages, in decreasing order of importaesvetity are:

ERR: ... TLIB internal error (you should never see this)
ERROR: ... Some sort of error occurred.

Warning: ... A mild error or other unusual event occurred.
Note: ... Something mildly out of the ordinary occurred.

anything else ..an informative message or interactive prompt.

CMPR, TLMERGE/DIFF3, COPYTRAK and POKETRAK also use these
message formats.

If you have a “grep” utility, or an editor which supports réguexpression
searches, then you could find the important messages bglsegrfor
“(ERR(OR|)|Warning|Note): ", or something similar.

Note #1: TLIB's messages are formatted “on the fly” accaydio your
configured swiDTH(screen width). (If your computer has an IBM-compat-
ible BIOS, then you can configurestviDTH ¢ and TLIB will interrogate
the system for the proper screen width.)

Note #2: To prevent you from overlooking error and warningssages,
TLIB for Windows displays them in pop-up message boxes, amu-c
mand-line versions of TLIB can colorize them (if you usesl.SYs or its
equivalent) and/or pause to prevent them messages frortirsgroff the
screen. See thEOLORIZE andERRORPAUarameters, pp. 313 And 312.

374

Note #3: DOS users can use Chris Dunford's nifty freeware CORY
utility to capture a “console log,” which you can later scan ERR:, ER-
ROR;, Warning: , andNote: .

You may have received CONCOPY in the “public domain and skare”
collection that came with TLIB. Otherwise, you can downlagfiiom our
web site.

Note #4: OS/2 users can use a “tee” utility or the “Concurnarmicess
buffer” of some editors to capture the output of TLIB (and esth
programs). We've included &Ee.EXE (and tee.c) utility with the OS/2

version of TLIB.

SlickEdit and Epsilon are the only two programmers' editwhéch we
know of that support concurrent process buffers. Do you kobany oth-
ers? Please tell us, so that we can test 'em with TLIB. Alsosure to
configure ‘Slickepsi Y " in your TLIB configuration file if you use an-
other editor with a concurrent process buffer. (This is wassary for
Epsilon and for SlickEdit 2.2 or later, since TLIB can detaatomatically
that it is running in the concurrent process buffer of thedieoes, and ad-
just its behavior accordingly.)

Note #5: If you capture TLIB's output in a file, and process fife with a
program (e.g., to find the error messages), you may wish tdigure
SWIDTH 32765 to disable TLIB's on-the-fly message formatting. This en-
sures that each message will be on one (perhaps rather loagkb that
your program can tell where one message ends anuktt begins.

Note #6: Several of TLIB's least useful but most frequentbplhyed sta-
tus messages can be suppressed viadgheommand line option, to make
TLIB a little bit less verbose. Theq option (“g” for “quiet”) should be
specified as the first thing on the command line after theBrpftogram
name. (ConfiguringQUIET Y does the same thing, except that it doesn't
suppress the copyright banner.) See also p. .

Note #7: By default, when output is redirected command-liaesions of
TLIB will send error and warning messageshoth “standard error” and
“standard output,” so that you can still see important mgss&n the con-

375

sole even when output has been redirected into a file. Thisife can be
controlled via thee command-line option, see p. .

Notes on a few specific messages:

awaiting access...

If you are using LAN-shared libraries, and another user hzened the
shared library file (or a lock file or the journal file) for %elusive” access,
you may see this informative message. It can normally bereghcsince
TLIB will retry the failed 1/O operation. This situation casccur, for in-
stance, when you List or Extract at the exact moment that samelse is
doing an Update to the same library file. After a few secoryds; will
usually gain access to the library file and your TLIB commaviti com-
plete normally. Note that you will not see this message fobeaty file
unless someone is doing a U (update) or N (new library) conamnsince
the L (list) and E (extract) commands allow shared accessad'tIB li-
braries. Only TLIB commands which modify a file ever prevantess by
other users, and then only for a brief moment.

It is, however, possible for programs other than TLIB to h&eclusive”
access to a LAN-shared library file, in which case TLIB mayeregain
access. This could happen, for instance, if someone onexeiiff comput-
er were using a text editor to inspect a library file. In suekes, TLIB will
eventually “time out” and display an error message. It i® @lgssible, in a
networked environment, for the source file (rather thanlitvary file) to
be opened “exclusive” by another user. This should not ogturormal
operation, however, since only library files (not prograburse files) are
commonly shared by multiple users on a LAN.

ERR: ...

The error messages beginning witkRR:” are internal errors which you
should never see. If you do get one of them, repoot PC and try the op-
eration again. If the error persists, please note what yae deing, save a
copy of the file(s) you were using (both source file and lilgréile), and
notify Burton.

376

ERR: Bad dot-command in library file: " line-from-library-file"

You should never see this message. It indicates that you &aa&eerupted
library file. The line shown in quotes was found where.a™ “.1 ”, or
“.c” edit command was expected. Reboot your PC and try the dperat
again. If the error persists, it indicates that your libréity is damaged.
You can try to repair it with a text editor, or you canextrao fast good
version from the library file by using the ES commaingim the DOS com-
mand line (not interactively). You can list the versions with the L
command to see what the last good version is (the bad versitireilast
one displayed). Then doTliB ES file.ext numbérto extract the last
good version. For assistance, you can call Burton tech stgq919)
481-0149.

ERROR: could not set file date, rc= XXXX

Some TLIB configuration choices require that TLIB be ablekbange the
“last modified” date/time stamp for a file (e.gQLDDATE Yand EQUAL-

DATE V). If this operation should fail, you will see this error mage. The
message does not indicate that a file is damaged, only treaffilids

date/time stamp is not what was intended.

The TOUCH program can also display this error mgssa
The most common cause for this problem is the use of TLIB byesora

who does not have the necessary local area network file siquesnis-
sions to change the date/time stamp of a file.

Incorrect DOS version
DOS versions of TLIB require DOS version 3.1 or higher to rdou will

see this error message if you attempt to run TLIB under ayeaitient
version of PC-DOS or MS-DOS.

377

Appendix D:

Configuration File Syntax

T - means TLIB uses this parameter
C - means CMPR uses it
D - means TLMERGE & DIFF3 use it

(W)

444440444 dggo—dddddd4d4400d 444444+
v

378

parameter
AATTR <set/preserve/reset>

ABORT message

C D ADDCTRLZ<Y/N>

ARCCMD<path-of-pkpak.exe>
ARCEXT extension
ARCTEMP<temporary-directory>
AUTOBRNCHY/N/Q>
AUTOSETfilename
BANNER<1-42>" string'
CMPRDETABY/N>
CMPRENTABY/N>
CMTEXTextension
CMTFLAG<1-80>,<quoted-string>
CMTSUFFIX <1-253>,<quoted-string>
COLORIZE <Y/N>
COLOROFF<string>
COMMANDS.comma-delimited-list>
CREATETF<Y/N>

CZTRUNC<Y/N>

D3COLLIDE <line-to-insert>
D3FLAG2 <0-253>" string'
D3FLAG3 <0-253>," string'
DATAPATH<Y/N>

DEFEXT extension
DELETESRC<Y/N>

DETABE <Y/N/Maybe>

DIFFLINES <100-16380>
DOTDOTOKY/N>

ELSE

ELSEWHEREKY/N>

ENDIF

ENTABU<Y/N>

default
Set

N
ARC

Query
AUTOSET.BAT

N
N
CMT

Maybe
3000

page
287
309
276
328
328
328

292
333
339
339
263
289
289
313
315
330
298
201
340
340
340
278
263
278
255
339
303
323
308
321
256

parameter
EQUALDATE<Y/N>

ERRORPAUSK0-3>
EXITPAUSE <Y/N>
EXTENSION extl, ext2 ...

FINDIFILE <Y/N>
FIXKEYWD <Y/N>
FNAMECASEU/L/A>
FORCEREFR<Y/N>
FORCEU<Y/N>
HELP <1-49>" string'
ID name
IF <list-of-wildcard-specs>
IFF expression

C D INCLUDE path
JFILE <name-of-journal-file>
JOPTIONS <journal-options>
KEYFLAG <1-254>" string'
LET nameexpression

LIBDIRQ <1-54> string'
LIBEXT extension
LOCKING <Y/N/B/W>
LOGFLAG<1-240>" string'
LOGPREFIX <1-80>," string'
LOGSUFFIX <20-253>" string'
LOGTIME <Y/N>
LOGUSER<Y/N>
LOGWIDTH<20-254>
LOKEXT extension
LONGNAMESY/N/M>
MAKEDIRS <Y/N>
MAXLINES <100-16380>
MULTIPASS <Y/N>
NEWLINE <CRLF/LF/CR>
NT351BUG <Y/N>
NTFS35BUG<Y/N>
NUMBANNER1-42>
NUMLIBDIR <1-5>
NUMHELP<1-49>
NUMPROMP¥1-42>
OLDDATE<Y/N>
ONETHREADZY/N>

e e e e e e e I I e I I B B B B I I I I I B B B I B B I I I R B R e I I I R I I

LEVEL n= named= pathp= name etc.

default
N

2
N

FILETYPE <Auto/Binary/Text/Runlen/EOFtolAUTO

N

zz>r <

UOCAPOI UIOAP

4000 0Or 16000
Y

CRLF
N
N
0

Z < PO

page
275
312
313
254
294

277
309
306
275
329
266
321
323
264
190
190
213
270
300

262
265
222
222
222
266
266
267
262
77
315

335
311
316
317
329
329
329
329
267
292

379

parameter default page

T PASSSIZE <100-16380> 4000 Of 16000

(this is a synonym ofAXLINES
T PATH <path-of-libraries> = 257
T PROJLEV name 299
T PROMPT<1-42>" <string>" 329
T QUERIES <Y/N> Y 269
T QUIET <Y/N> N 279
T READONLY<Y/N> N 279
T READONLYB<Y/N/W> N 280
T READONLYT<Y/N/W> Y 320
T REFNEWLN<CRLF/LF/CR> NEWLINE
T REFSUBDIR <directory-name> 305
T RELAXVERS<Y/N> N 307

REMor! Anything 252
T REPLACE <Y/N/Q/A> Q 268
T REPLROBR<Y/N/Q/W> N 282
T ROLOCKS<Y/N> N 280
T SAY message 309
T SERIALNO VVV-SSSSS-NN-CCCCCCCCCCCC
T SET name<unquoted-string> 270
T SETFTIMEW<Y/N> N 274
T SHEIGHT <0 or 8-70> 25 284
T SHOWLNAMEY/N> Y
T SLASHCONT<Y/N/M> Y 285
T SLICKEPSI <Y/N/Maybe> Maybe 292
T SWIDTH <0 or 40-32765> 80 284
T TOPRELATI <Y/N/Maybe> Maybe 301
T TOUcHSOURKY/N/Modified/Revhist> N
T TOUCHU<Y/N> Y 275
T TRACK <Y/N/Maybe> N 297
T TRACKEXTextension TRK 308
T TREEDIRS <Y/N> N 300
T UNARCCMBxpath-of-pkunzip.exe> 326
T UPDATENEWCY/N> N 276
T USEDUPHAN<Y/N/Maybe> Maybe 285
T USEUMBS<Y/N> Y 319
T VALIDATE <Y/N> Y 285
T WARNMessage 309
T WORKDEPTHIN 0 310
T WORKDIR<path> A (usually) 304

380

Appendix E:
TLIB Version Number Syntax

Simplified BNF Version Number Syntax

version = major [: minor] [. branc h_spec J#
branch_spec := [(branch_number)] branc h_version
major = value
minor = value
branch_number ::= value
branch_version ::= value
value := digit [digit]#
value n=F
value RESREN
Where:

== reads “is made up of” or “reduces to”

[1 braces indicate optional clause

[# braces with#” means clause can be repeated 0O or more times.
Other punctuation (colon, parenthesis, period, asteniskmainus) are part

of the version number syntax. However, whitespace (blamkstabs) is
never part of a version number.

381

Version number examples

EXAMPLE (of an unreasonably complex “tree” of version nurspe

1

11 1.1 1.(3)1

|
| |
|

21 21 12 1.(3)2
22 211 13 121 133 1.(3)21 1.(3)2.2)1
3 212 14

Trees, Trunks and Branches:

In this version number “tree,” version 1 is an ancestor oftal other ver-
sions. Versions 1, 2, 2:1, 2:2 and 3 are all “trunk versioss,’hamed for
their resemblance to the trunk of an upside-down tree. Tisetfunk ver-
sion (version 1) is sometimes called the “root” version. Tan-trunk
versions are called “branch versions.” A branch version Inentan be
easily recognised because it contains one or mexienal points.

Major and Minor numbers:

Trunk versions are specified by either a major:minor nungagr or a sin-
gle integer. Specifying a single integer is equivalent tecilying a minor
number of zero, so “2:0” means the same thing &s “2

You needn't use minor numbers at all. It makes no differead¢béd opera-
tion of TLIB whether or not you use minor numbers; all trunksiens are
handled the same way by TLIB. However, some of our customskeca
for a way to distinguish between “major” revisions and “mihohanges
via the version numbers, so in TLIB 5.0 we added support foromirunk

versions.

Branches:

382

“Branches” represent development paths which are “pdtatiehe main
“trunk” development sequence. Branches are typically deedbug fixes
to earlier releases, or for customized versions of the meodubranch is a
series of one or more branch versions descending from ecplanrtitrunk
version.

The versions within a branch are numbered by “branch vensionbers,”

and the branches are numbered by “branch numbers.” Theloramober
is customarily parenthesized, and the first branch is “(T}ie branch ver-
sion number is preceded by a decimal point, and the firstdiraersion is
“.1". The combination of branch number and branch versiominer, with

associated punctuation, is called the branch specificaior example, “.
(2)2” is a branch specification with branch number of 1 andnich ver-
sion number of 2.

The complete version number for a branch version consisteeotrunk
version number followed by a branch specification. For gxian3.(1)2”
specifies the second branch version of the first branch tromk version
3.

In most development shops, it is rare for there to be more ¢im@nbranch
from a single trunk version (indeed, many shops have no naeldréanch-
es of any kind), so we allow a simplified branch syntax in white
branch number is omitted and defaults to (1). Thus, “3.(T)&ild be writ-
ten more simply as “3.2".

Deep Branching:

You can also have branches off of branches. These “deepthesnare
numbered in the obvious fashion, with another branch sigatibn ap-
pended to the version number. Deep branching is very raesged, but,
just in case, TLIB allows branches up to nine levels deep (axe=mever
seen branches more than two levels deep in a real projectjeTre three
examples of two-level-deep branches in the example versionber tree,
above: “1.2.1", “1.(3)2.1", and “1.(3)2.(2)1".

More examples:

1 Trunk version number one, usually the first versiothe library file.

383

1:0 Trunk version number one (same as version “1”).

1:2 A trunk version with major number 1 and minor numbe
Read aloud as “one colon two”.

1:02 Same as “1:0".

1.1 A branch version. Its predecessor is version éadRaloud as
“one point one” or “one dot one”.

1.01 Same as “1.1".
1:.0.1 Same as “1.1".
1.(1)1 Same as “1.1".
1:0.(1)1 Same as “1.1".
5 Trunk version 5.

6 Trunk version 6. Its predecessor is version 5gerhaps,
version 5something

5.1 First version in the first branch from trunk versis.
Its predecessor is version 5.

5.(2)1 First version in the second branch from trunk \@r$.
Its predecessor is also version 5.

5.2 Second version in the first branch from trunk vemsb.
Its predecessor is version 5.1.

5.0 Normally an illegal version number, but one whidhB 5.50
tolerates and considers equivalent to specifyimgkt version
5. However, Se®ELAXVERS, p.307.

Zero and Skipped version numbers:

Normally, TLIB does not allow you to skip version numberssé| TLIB
normally does not allow the use of zero as a version numbé&hereas a
trunk version number or as a branch version number. Howédath of
these restrictions can be circumvented with the RELAXVERSfigura-
tion parameter, p. 307.

384

Asterisks and Floating Version Numbers:

There are also two special non-numeric values which can eefgd. An
asterisk (*) means “latest”, and “*-1” means “seddn-latest.”

Thus, to select the latest trunk version, you could ask fof’‘{this case is
so common that it is normally abbreviated as just “*”). Toriete the lat-
est branch version from the first branch off of trunk versinyou could
select “5.*".

Version numbers which contain asterisks are sometimesc:éfloating”
version numbers because their effective value “floatshilatest (or sec-
ond-to-latest) version. Regular, non-floating version mhers are
sometimes called “fixed” version numbers, to distinguisbr from ver-
sion numbers which contain asterisks.

Note that some syntactically reasonable versioniSpations are not actu-
ally supported by TLIB: the general rule is that the “*” or T must be
the last thing specified in the version number. So, “5.*" 48d” are OK,
but “*.5” and “*:3” are not allowed (it is unlikely that you wdd ever
want to specify a version number that way, anyhow).

Version Labels:

Version labels are text files containing “module name / mgrsyumber”

pairs. A version label is extremely useful for identifyirigetset of modules
which make up a particular release of a software producthdVit a ver-

sion label, if you wished to retrieve the source code for afiezaelease
of your program, you would have to manually select the projeesion of

each module, which would be a tedious and error-prone psoid¢bere

were several hundred source modules!

Note: TLIB supports several ways to easily create and miaivirsion la-
bels, notably the S (shapshot) command (which replaces ibe
TLIBSNAP program). See the index under “version label,” &pshot,”
and “version tracking file.”

Version labels which contain floating version numbers ljvétterisks) are
called floating version labels. Version labels which camtanly fixed ver-
sion numbers are called fixed version labels (or snapshlutstacking
files, depending upon the file format). Of course, theredthing to pre-

385

vent you from using hybrid version labels, which containtbtixed ver-
sion numbers (for some files) and floating versiambers (for others).

With few exceptions, you can specify a version label in lidwwersion
number by preceding the file name with an “at si@®”

For example, suppose that you have a version label fileccéliga.lis ~
which contains the following:

filel.c 12.*

file2.c 5.(2)*

Then:

tlib ebs filel.c @beta.lis means tlib ebs filel.c 12.*
tlib us file2.c @beta.lis means tlib us filel.c 5.(2)*

Date and Time:

You can also specify trunk versions by date/time, insteathyofrersion
number or version label. In practice, however, you will mbly find that
you seldom use this facility. See the p. 241 for details, if yoe interest-
ed.

386

Index

-c command-line option (write configuration)................oeeeveeiiieiiinnnes 251
A

A - add branch (see US command)... TR o 12
A (add/alter project level) and AP (promote) 168
A option, Of MAKE. ... 354
AN PAFAMETETceuiiiiii it e eee 287
ADOI PArAMELET......vtiiiii e et e e 309
access to shared library.............oo e 376
AD - delete from project level..........ooooo e 169
Add Branch - see US and UB commands.........ccceeeevviviieiinniennnnnns 69, 70
AddCtrlZ parameter........coovvviiiiii s reeereme e 276, 339
address, of Burton Systems SOftware........ o ceeeeeeeeviiiiiieeeennnnnn 367
ADF - make project level SParse............vvcceccvvveeviiiiinineeeeeeeeeeeeeeeees 172
admin (see N - NeW liDrary)...........uuuooiiimmmme e 24
administering multiple project levels.......cocceccvvvvvviiii, 155
ADR LIDIarian......cooi oot e 226, 230
Advanced version tracking & named project levelSa.....ccccceveeeennnn. 127
AF - populate project leVel........ccooeieiiiieeeeee e 171
alternate path for libraries............coooieeeiiee e 42.
ANSISYS dEVICE AIVET....uuiiiiiiiiiiiiieieiie e 333
ANSITY.AWK. ... 333
AP - PrOMOte......ccooiiiii e 114, 144, 150, 151, 158, 168, 173
APIs (application program interfaces to TLIB)..cccccoooovevviviiiiiiiiiiininns 57
appending to lIDrary.............uuuiuiiiiiesmm e e e e e e e e e e e ee s s s s 34
Applied Data Research, INC..............o.uv e eeeeveviiiiiinieeeeeeennnns 226, 230
approved configuration management plan........cccooeiiienniiennnn.. 245
APX - promote-eXClUde..........coouuuutnniiii oo 170
ARC e 325
ArCCMA PATAMETET ... iiiiiiiiitiie e e e e bbb e st e e e e e e eeeees 32
ArCEXt PArAMETEeuiiiiiii ettt ennas 325
ArChival COPIES.. ..o e 6
ArChival diSKETE........ccvve it e e et e e e e e e 239
ArChive attribDULE.ee et e 275
archived library fileS...........ooooiieeee 325
ArCeMP PATAMETEY.....ccvuiiiiiiiiit e rrree et 32
ASTEIISK (F) e iiiri e e 44, 263
attrib DOS COMMANT........uuuriiiiiiiiiiiiieie et 280
audit trail Of reVISIONS.......c.vuiiiiiiiii e 41
autobrnch parameter............oovvveiiiii e 108, 298
auUtoMALtiC BranChiNgG........coviii i 107

AULOSET PAFaMETET e Q2

AULOSEL.DAL. ... ,a30
AWAITING BCCESS. ..t eeeeeeeeiittiie e s bbbttt bbbt e s s s s saeeeeeeeeeeeeas 376
AWK e 1K83
AX - eXclude Source file.........ooouiiiiiiiiiee, 169
B

backing up libraries...........evveeeii oo 34

Lo T2 Tod (1T T o T I = TR 6.
DACKSIASH (1).eeeeeeeiiiee e e 9,384
Bailey Controls BatChOO0.............covveuuur oo e e e e eeeeeeeeiieiennsennneenneene 203
banner parameter...........uueiiiiiii e 238
basic version tracking............ccouvveiiiiceemmeieeeeeee e 60
DAL Il 39, 42,985
BatChOO0... .o e 203
binary fileS....... i s 36, 46, 217429
blanks and tabs..........coooiiiiiii e, 36, 44, 255, 339
blanks, trailing...........oiiiiiiiii e 36
boolean exXpreSSiONS........c.c.uiiiiii i 270, 323
Borland C++ BUIlAEN.........ooiuiiiiiii it 55
Borland Delphi..........uuieiiiiiic e 53]
Borland languages.oooiiiiiiiiiiii i 20
branch 10CKING........coooiiiiii e 191
DIranNCNING. ... e 68, 70
branching, autOMALIC.............oveiiiiii i 107
branching, file lists and sNapshots.........ccccceoviiiiiiiiiiiiiiiiiieeeeeeee 209
B BT et ———————— e ———— 58
UGS e —— 367
Burton Systems Software, address & phone........cccccccccvevvveeeee. 367
C

C (.C edit COMMANG)......cceeiiiiiiiiiii s erreem e 371
C - override Configuration parameter.........ccccccvvveeiiieiiiieiiieeieeeeeeeeee 252
ClANQUAGE.ot 203
(or: 1 g =T [N (=1 10 o DT TTRTRPPON 36
CASE SENSILIVILY....uuiieiiii et emmmme et eeeeeenaens 214, 255, 330
G DD e 365
central project 10g - See journal...........oooeveviiiiiiiiii e 190
ChANGES, NO....ciiii it et e e e e e e e e et e e e e 3,318
ChECK-IN/OUL.. ...ttt e 97, 101526
Checking your TLIB cONfigUration.............. o eeeeeeeeeiiiiiie e 251
Ci (S€E U - UPAAte)....cciiiiiiiiii it 32
Class (SEE SNAPSNOL)........oiiiiiiiiiiiiet i e 92

L4] o] o 1= 51, 295
CIMPRL. .ottt e e 225, 276833
cmprdetab Parameter........ccoovv i 339

388

cmprentab parameter...........ooooiii i
CMEEXE PATAMELET....ciiiiiiiieie et
cMtflag ParameEter.... ..o
CMESUTTIX PAraMETEYottt mmmmmm et
CO (See E COMMANM).....cciiiiiiiiiie e
COBOL COPY VEID ...t
COBOL SequeNCe NUMDEIS.oiiiieieieieiieememmm e seiaebiaeeeeeaees
(6700 (21 iY g o] o | AP PPPPPPPPPPPP
COAEWIIGNT ..o et a e e e e e e e e e
COlONZE PATAIMETET. ... ittt
COlOrOff PArAMETET....ciiiiiiiiiii et e
comma-delimited liSts Of fileS...........ouiiicic
command liNe PAramMELErS........ccovvvvuivii e
command liNe ParamMeters: —C......cooeeeeeiiiieeeeeee e
command line parameters: -d (debugmode)

command line parameters: -N and -t.........ccccceeevcieieiiineeriereeiiiieeeee,
command line parameters: -q (quiet)
command liNe ParamMeters: —I............ovuvvceemmmmeeeeereeessereeeeseeesennennns
COMMEANT SHUCTUIE.......utitiiiiiiiiiiiiieie b iemmemme e e e e et e e e e e e
command summary, TLIB.........oooiiiiiiir e
COMMANAS PATAMELET ...ttt
COMMENT fIlES...uuiiiiiiiiieeee e
COMMENT INES....iiiiiiiiii ittt e
comments, abOUL TLIB.......cuuiiieiii i eemee e e
comments, avoiding the Prompt.............. oo
comments, in configuration file...........c.ooveeeeeiiiiiiiii
comments, IN fille 1StS......coiviiii e
COMPAr.DAL......co
(o0]10] 0T 1 (PRSPPI
comparing versions of a file............ooo i
COMPIAINTS. ..t
COMPOSILE COMMANTS.....ceiiiiiiiii ittt a e e
compressed lIDraries.ooviuiiiii e
concurrent process buffer.....................

conditional configuration parameters
conditionals, load-time (IFF/ELSE/ENDIF)......cccecvvvvviiineiiinnnes 161, 323
(o0] 01110 RSV TSSO 2383
oo 0170 |1 = i o) o 1SR 2483
configuration file name, referenCing.........coueeeeeeeeeeiiiiiinneeeeeeeeeeiennnns 85
configuration management Plan..............icoweeemeeeeeeeeeeeeeeeiieeees 245
configuration parameters for version tracking..ccce..oooevvvvvvviveiineeneee... 138
configuring Project IEVEIS........coov e 141
oo 170 18 T o T I 1 15
CONVETSION ULIHIES.uuiiiiiiiiiiiieieie e 10629

CONVERT*.* (conversion UtItIES)...........coimmmmuniirieeeieieeeiiii e 10

converting between fOrmMatsS.............ooo i ceeeemr e 296
converting tabs to/from blanks..............oooee i 44
converting TLIB library formats...........cccooeeeeeeevviiiiiiiinnennn. 218, 220, 338
Converting to TLIB from other products...........ccccccvvviiiiiiiiiiiiiiiiiieeeeee. 10
COPY lINBS..ee et e 371
COPYING TLIB ...ttt 6
COPYIIGNT. .t 6, 38562
COPYIGNT, SUPPIESSING. ... eeeiiiiiiitiit i e er e et et e e e e e e e e e e e e e e e e e aaaaaaaaaaeas 196
copystex - copy structure extended.........ceceeiiiiiiiiineeee 295
(070] o)1 = | T TSP PRSP PPPPPPPPPPIN 198
correction set (see delta).........ouvvveeicemmeeeiiiiiiii 14.
corrupted library file.........ouevveries e 377
CP - library path command..............ccooiirccceiiiiiiieeeeeeeeeeeee, 42, 257
createtf Parameter...........coovviviiiivei s e 131, 140, 298
creating a library.........oooeeueiii i 24
CroSSRETC....coieiiiieeee e 51
CTMAP MEMOIY MANAGET tiieiieeeeiiiveaeeeeeeei e e e e eeeeenenn 319
CHr-Break. ... 231
CHII-Z e e 47, 2281
curfile and Cfgfile..........cooiiiiiiii e 85
CUSEOMET SUPPOI....cieiiiieeieiii et sceeeeer et e e e e 673
CUSEOMIZEA SOTtWAIE.eiiiiiiiiiiiiieit et 120
CW - configure Who YOU @re............ooooiiiceceeeiiiii e 100
CW - Set USEr id (TTWHO")..ueeeeeiiiiiiieee ettt sieeee e e 266
CZLIUNC PAraMETET iiiiiiiiii et et v eneas 912

D

d3collide parameter............eeeeieeeeeeieeeeiee e 235, 237, 340
d3flag2, d3flag3 parameters............... o eeeeeeeeeeeeeeeeeeeneeeeeenn 237, 340
datapath parameter............oooveviiiiiii e 7
ALE .. 266, 275, 35663
date-based retrieVal...............eeeiiiiii e 38
date, retrieVing BY.......coovvoiiiiiie e e 241
OBASE ... ettt 51, 295

D] =1 PP P PP PPPPPP 203
OBFING. ... e 51
DDE 10 TLIB. ... 57
Dear JONN etter.......cooviiiiiieee e 372
defexXt PAraMETEr........ooeiiiii e 263
eIDALDAL. ...t 353
delete @ VEISION......cooiiiiiiiiiee e 235
deleteSrC PArAMELEr........u. i 8
deleting a revision - see DIFF3.........oo s 233
DEIPNI. . 55, 58

DE L T A e e s 225
Delta (MS Delta VCS)....uuuuiiiiiee ittt 10
delta command (see U - UPdate)...........coieceeeeiiiieinieee s 32
AEIA FBVIBW...u it e e et e e e e 205
JEPENUENCIES.cciiiiiiiiiie et ceemenn bbbt e e eeeeeeeeas 352
o2 o 110] 1 o] o T PP PPPPPPPPP 28
DETAB (SE8 TABS)....ci ittt ettt 44
detabE parameter.........ooooiiiiiiiiie e K
Developer STUIO / Cht ..o ceeeee et 55
development environments for version traCkingaueeea......cccccvuvieeennn. 116
DIFF3B. . 184, 23362
IffliNeS PArAMELET......ceveiieeee e e 339
directories (see SUDAIreCIONES)... .. it 42
DLL API (application program interface).......ccceevevvveviiiniieeeereeeiiiinnnnnns 57
DOS .bat file (se€ bat file)..........uuiiii e 9.3
DOS EITOMEVEL ...ttt eeeeee e e 230, 237
DOS VEISIONS. ... e 973
JOSEAIL.... et 365
dot command (see edit commMands)............cccceeeeirereeriiniiiiienns 371
dOtdOtoK parameEter.........oevuuueeiriee st cmmmmmm e 30
DSAPP - Delta Script Application...........ccoevvvveeiiniieeieeeeiiinnnn 226, 230
DSAPPADR. ... 226, 230
DSAPPPAN....coii ittt 226, 230
DUFF AWK ..t 333
DUFE, ROD . .cuiieec e 333
YT R = T T [0 o R 352

E

E - EXtract latest VErsion.........cccccuvvimmeeeeiiiieen e 35, 100, 268
EB - extract for BrOWSE.........ccooiiiiiiiii et 100
EBF - Fast-extract: extract only changed fileSum..ceeviiieeeeeeninnn. 163
ED EItOr.....ccoiiiiiiiiieieie ettt 58
edit COMMANDS........cooi it 371, 377
editor, to iNSPect [IDraries............ovi e 37
EISEWNEIE PAramMEter.......cceeeieeeietii et e e e e e e e e e e e e e 308
ENA-OF-FIl.... e 47
endif paramMeter.........uuviiiii e 321
entab (SEE TABS)......cciiii it 44.
entabU Parameter..........ooooiiiiiiiiiii et @5
environment variable: thbcfg..........ooovviiiii 83, 250, 264
environment variable: thibid.............cooovceee i 89, 266
environment variable: thibini................me e 91, 251
Environment variables, SET, and the Autoset fil€u.........cccoovvvviiiinnns 80
enVIroNMENE, DOSot 251

EOF (end of file) Markers............oooiiii et 47

EPSIHON. ... 292
equaldate parameter..........couuuiuiiiiiiiiceceeeeeieeiieee e 275, 358
ER - CheCK-0UL/TESEIVE.cciiivii it e 101
BRI e e 376
EITON MNESSATES. ... cevtiiieriie ettt e e s e e e e e e e e e rerea s 374
error messages, stderr & StdoUL...........oucee i 196
BITOFIBVEL. .. e e 19
errorlevel, DOS.. ... 52,102, 230, 237
EITOIPAUS PAFAMETET......iiieiiiiiieii ettt e 231
ES - extract specified VErsion............ccueeeeeeriiiiiiiiiieeecccein, 37,373
23 1C: 10 1] o[TP 372
exclusive access t0 @ file.......uuviiiiiiiiic 376
EXITPAUSE PAFAMETETuuitiiiiiiiiiieieee e eee e e et s e e e e ee s B1
expression syntax, and LET parameter.......oeeccvoooevieeeiiieeececnennnnnns 270
=] IS o] T o=V = 10 4= = 61, 254
extension, file NaMe........c.cciiiii 14, 258
extract lateSt VErSION........oooi i 35
extracting an Old VEIrSION............uuuuuiiice e 37

extracting to a temporary file...............comwm ... 37, 108, 138, 184, 189
F

F - Fast update; see UF..........coiiiiiiiiieiiieee e 40, 278
F - Filter file NAMES.......covi i 64

F option, Of MAKE........coii e 354
fancy, highlighted TLIB prompt..............oo e veeiieemieiiiiieieeeeeeeeeeeeeeeeens 333
fast file transfer (See PCOM).......cooiiiiiiiiiieie e 341
Fast-extract: extract changed files (EBF)...ccuuueniieeeevieeiiiiiiiiiniieenenans 163
Fast-Update: freshen libraries (UF)........oocooeveveeviieeiiiiiiiiiiiieeineeeeeeeen 40
fastebft.Dat.........ooooi i 163
faster and SMaller...........o.viiiiiiiiiii e 239
X e 7
Features of TLIB Version COoNtrol............cuceaceeiiiiieinee e 11
file formats (fletyPe).......uueerieii e 294
file lists and SNAPShOLS.........ueviiiiii e, 052
file lists and Wild-Cards..............ooiiieceii e 50
file lists for dBasSe ProgramsS...........uueccmmcceeeeeeeeee e e ee e e ee e s ee e s e 51
file liStS, NESTEA......ccoe oo 52
file NAMES (SEE NAMES)....uiiiiieee et e e e e e e e e e e e e e e eaaeaens 14
file transfer, fast (S€@ PCOM).......coiiiiiiuiiieie e 341
filetype Parameter........cooiiiiiiiiiei e ceeeee et 311
filetype parameter (for binary fileS)........cccoveiiin. 46, 217, 294
findLfile parameter...........uuuiiiiiii e,

fIXKEYWd PAramMEeter......ccoiiiiiiiiiiie e bbb ee e
fnamecase parameter

392

forcerefr parameter..... ... Q63

fOrCEU ParamMETer.... oo yASY
format of configuration file.............cccooveevveriiii e, 251, 252
format Of lIDrary.........ocooviiiiiii e 296137
format of teXt file.......oieiii e 44
0] 1 7= o 1P 203
FOXBASE. .. it eeee 295
freshen libraries (SEe UF).......ouiuiii i 40
freshen source files (SE€ EBF)........uuuiiiiieiieiiiiiiiiiiieeeee 163
G

garbage COlECHION...........covvieiiieeee e 337
get (see E command).........uueiiiiiiiiiii e 35
QEttiNG StArEd.o 15
GNU RCS... et et 10
GNU2TLIB.EXE and GNUZ2TLIB.AWKuuutiiiiiiiieeaaaaaeeaaeeeeeeeenn 307
GOODBYE. X ittt ket a e e et e e e e e e e annnnees 372
gOVEINMENT CONTIACTS. ... cieviiiriiciet s e 245
GREP (586 TLIBSCAN)....cciiiiiiiiiiiiee ettt 221
[0 [UT= U= T a1 (=T TP 7

H

help ParameEter.......ooooveieie e 329
NEIP SCIEEN... . 2237
highlighted TLIB PrompPt.........ccoovieiiiiiii e eeeeeeee e e e e e e 333
how TLIB uses the tracking fileS...........coocceecevvieiii, 136
LT T 1= 9,.334

I

I (.1 edit commMaNd)..........cooiiiiiiiiieee e 713
IBM 3363 WORM optical disK.........coooeiiiiiiiiie e 259
IBM UPALE.coiiiiiiiiiiie e 226

o I o= U= 1 4= (=] SRR 89, 100626
IDENT (S€€ TLIBSCAN).....citiiiiiiiiiiiiiiii ettt 221
Identifying @ VEISION.......ccouuuuuiiii et ee e 28

IF and ENDIF parameters... reeeeennnnnnnnn 46, 253, 297, 321
IFF/ELSE/ENDIF conflguratlon dlrectlves 161, 323
INCIUAE il e 352
o (U Lo Lol o T =g 0= =] 253, 264
INSAEI MOAE......ciiiiiiiiii i e 226
insert (.1 edit COMMANA)..........uuuiiir e e e e e 371
integrating MAKE and TLIB........coooiiiiiiiiieee e 358
integration with other products...........cooceececve i 55
INtel 8096 ASSEMDIET.... ...ttt ettt 0
INTEraCtIVE MOE.......uuiiiiiiiiiiiiiieie et e 41
INEEISOIV. ..o 10
INEFOAUCTION....ceiiiiiiiiii e 10

INViSible DDE (10 TLIB).....ccoiiiiiiiiiii ittt 57

ISO 9001 COMPlIANCE......uiieiiiii e 149, 331
J

JLE1 =N o= L= 1 1= =] OO 190

o] 01010 g IS3N o F= T ir= 10 1 1=] =] aa
o 1015 g = 1 1 190
JOUMN@ALAWK. ..ot e 191

K

K - keep locked (S€€ UK)......uuueuniiiiii it 101
Kennamer, WaALEE J........coouiiiiiiii et 295
keyboard iNPUL, BASIEN..........uuuuiiii i ieeeceee e 365
keyflag parameter...........ouuuiiiiiiii e 213, 277
KEYWOIAS. ...t a e e 212, 253, 295
L

L - ISt VEISIONS. ... e 41
1= 1= YA o] 1 = o 203
LAN (S€€ NEetWOIK)......ccviiieeiiiiiiiie et e e e e 6...
[Arge filS...uuee e ————————— 334
length, Of INES......cccoiiii s 36, 267428
let parameter, and eXPreSSIONS.........vvvvccceeeeee et 270
level parameter..........cccceevvvvviii e, 130, 138, 143, 300, 304
DEXE PAFAMETEN it eeeeer e 262
LiDrarian. ..o 226
HDFAIY il e e 14
Drary fOrmMaL.........oovuiiiiiiiiee e e e 2991
license (See COPYIGNT)......coooiiiiiiiiiiee e 6, 346
lICENSE TOr PKZIP.. oot 263
[Tod=Y A TSI 1 (TR 6
IMItEd WAITANTY.....eeeie e e e 7
NE 1ENGLN.. .o 36, 28B4
[INE Wrap, iN MESSAQES. . .. i eeieieietteeeeeee e e e e e e e 284
T Lo 1= T=T o RSP 36
[IST VEISIONS. ...ttt e e 41
LISTBLD ...ttt e 203
load-time conditionals (IFF/ELSE/ENDIF).......cccccevevvvvvieiiiinenee. 161, 323
local area (See NetWOIK).........cevvuvren i eee e eee e 6...
TOCK FIl@.. e

lock file path, SPECITYING......ccoiiiiiiiie e e e
locking branches. ...
ToTod K] plo N oF= r= 10 0= (= S

logflag parameter..........ooov e

logical (boolean) expressions

ToTo o] £=1 10 o=V r= 11 4= (= R
[OgSUFfIX PAr@mMELEr... ... ii e eii e e eee e

394

[OgLIME PAraMETETot 241, 266

[OQUSET PAr@METEN i ieiieeeeiiitee s bbbttt e e e e e e eeeeeas 6e
logwidth parameter...........oooiiuiiiiiii e 267, 284
[OKEXT PAFAMELEN......ueiii et 262
long file names and longnames parameter......cccccc.oooveeiiieieiiinennnnnnn. 77
[ONG FIlES. . 334
[ONG INES... ettt a e 36
[OWEr-CaSE VS. UPPEI-CASE......ceeeeieeeettemmmis s eeestbessbeessseeeseeeeeeeens 214, 255
M

M - make branch (see US command)............oummeeeeereeiinenniiinnninnnn.069
M command - Migrate Changes.................ammmmmeeeeeeeeeninnnnnenennnnns 178
MAIN MENU (SEE MENU)....cceiieieiieiiieeeeeeeeeeeeeeiei e e e e e e aeeaaaeaaaaaaaaaaaaaaees 27
MAINframe UPIOad.......ccooeiiiiiee e @2
MAKE e 40, 275, 352, 366
MAKE. DALt 353
MAKEBEBB.DAL. ... veiieiiciiie e 353
MAKEdIrS PAraMETET.......cciiiiiiiiiii e 315
MAKEEXE.DAL. ..o s 353
MAKETIIB. .. e 3854
IMASIM. Lttt e+ 44t e e et e e e e nnr e s 203
maxlines parameter (same as passsize parameter)...........ccceeeeeen. 334
Megan, MIChael............ooiiiiiiiiiiiiiiee s e e e e eeeanes %
MEMONY FEQUITEMENT. ..ot e e e e e e e e e e e e 9
MEMOTY, Y0 USEU.....iiieiieiieeiiiiii e e ettt s s e e e e e e e e eeeastba s e e eeeseeeesnne 433
MEMOTY, USING I€SS.... it eeemce e 240, 334
(00T 0 LU TR PPN 27
merging revisions - see DIFF3.............. emcemeveeeiiiiiiiiieiieereeeeeeeeeeees 233
MBS SAGES ..t eetett ettt e e e e et ettt e e e e e e e e e e e ettt e e e e e e e e e e e b 374
Microfocus COBOL Workbench..............ooiiiioooiiiieee 58
Microsoft Developer Studio / CH+ ..., 55
MiICroSOft [aNQUAGES.cevveeeii it ereeee e 203
Microsoft Visual Basic and VCH+...........oooiiiiiriiiiiiiiiiiiiiiiiecee e 57
Microsoft Word dOCUMENTS...........oooiiiiiiiimm e 46
MIKS RS ..ttt et e e e 10
MOES, TOr CMPR......oi et 225
MOodifying a liDrary..........oouviiiiiii e 34
modifying shared lIbraries...............oov v cememevviiiiiiiiieeeeee e 376
MS DAL ...ttt 10
IMURTEGIE. e 55
MUIIEdit tEXE @AITOr ... e i 48 5
MUIIPASS PAIAMETET.... oo i iiiiiiiiiiiiieiicmmeeem e e e e et e e e et e e e e e e et e e e e aaaaaaaaaaas 433
MUItiple SOUICE fileS......co i 48

N

N - create New library..........cccooeii oo, 24.

395

N - create NeW liDrary.........ccooieiiiiiiiiceen e 276, 372

N Option, OF MAKE........coiiiieieee e e e 354
NAME, OF il e e 14
NAOSEAIL. ..ottt ettt e e e e e e e e e e e e eeeaaaas 365
NeSted file lISTS......coiiiiii i 52
Netware (see also "Novell")..........ccceeeeeennl. 53, 104, 201, 244, 278
Network bug WOrkaroUNdS.............oooviiiiiiiiiiniiiiiiiiiieiiiiee e 201
Network USer ID l00K-UP.....c.uuuuuiiiieee e 89
NEIWOTIK, 10CaAl Ar a.........iiviiiii it 6,637
New & Changed Configuration Parameters.......cccccceuvvviiniiieneeinennnns 369
NEWIINE PAraMELET.......ciiiiiiii e 131
NF - Fast new library Create.............ceieiiiieeeeiiieiee e 31
NK COMMEANT......iiiiiiiiiiiiiiiiib s e+t e e e e e e e e nnnneee 1no
(Lo T o] 0 F= T o o 33, 48, 275, 278
NON-tEXE fIlES....oo e 46, 21942
INOVEIL .ttt e e e e et e e e e e s enaeeeeee s 53
NOVEI NEIWAIE......uueviiiiiiiiiiiiiiieieie e e e 104, 201, 244, 278
N ST 111 = T {1 0 = o/ 239
NT USEI NAME...eiiiiiii et ee e e 89
NE351DUG PArAMELE. ...t 316
LU ESICTSY oW To N o F= T ir= 10 =] (=] 317
10T aa] oF= Vel oI gl ooV = T 4 1= (= P 329
LU g g a1 o o =Ttz 1y = = 329
NUMPIOMPTL PATAMETET.....ceuuiirineeetes s e e e e e ear e rern e 329
O

O - check-out (see ER command).............ccocccumereeermmmimienniineiieeeeeeeee 101
olddate parameter.........cccccceeeveeeee v e s om0, 266, 267, 276, 358, 366
(o]0 g F= T g [o TV = U 1= (=] R 292
Lol L= o= T3 4o To [TR 225
onethread ParamMeter...........ei i 292
OPENEIWOIK.evviiiiiiiiiiiiiiie e 23
operators and EXPreSSIONS.iiieeeeeere e ee s s eea s s eneennneennenee 270
optical (WORM) diSKS.........uiiiiiieieiiieieceeerieine e e e e 259
OPUS MAKE......ccoiiie it eeenme e e eees 262335
Out Of ENVIFONMENT SPACE........cciveeeeeee s et eeeeeeeeeeeeeeeeeeeeeeees 251
P

Pansophic Systems, INC.............occciiiiiiiii 226, 230
Panvalet...........cccooiiiii 2260
parallel port file transfer (see PCOM).......coeeemiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiees 341
PasCal.....ccviiiiii e 28, 203
passsize parameter (same as maxlines parameter).................oee.... 334
path for library..........coeiiiii s

path parameter

PCOM . Lttt e e e e e e e e a e e e e nr e s 341
PRONE. .. e 7, 367
PKware, INC. (AddressS)........eiiiiiiiiiiiieeememe e 326
PKZIP, PKPAK, PKARCc.iititiiiiiiiiiiie ittt 325
(0]] (= | 13D8
printer port file transfer (See PCOM)........cuueeriiiieiiiiiiiiianeeeeeeeeieinns 341
Printing a list Of VEISIONS.......coioi oot 41.
PrODIEMIS. ... 367
PrOQUCTIVITY. ...ttt e e e e 8
PrOGIAMIMEIS.iiiiiiiti ettt sree s e e e e e e e e e e e e ear e aees 8
project log file - see journal............ccoveveeeeeee s 190
project-oriented MOE............uuueiiiiiie e 331
projlev parameter........ccccceeeveeeeiennnn. 1008, 130, 136, 139, 140, 143, 299
promote (AP command).........cccceeveeeevnnnnns 114, 144, 150, 158, 168, 173
PrOMPL PArAMELET .. . eiiet e et sreer et e e e e e eeeetbb e e e e e eeeeeeee B2
pronunciation, Of TTLIB".........ouuiiii e 8...
pseudo-environment Variables............coii e 85
PUt (SEE U - UPAALte).....ceieeeeiiiiiiie e eeeeeeee e 32.
PV S e a e s e e 10
PVCS, cONVErsion fromMi..........cooiiiiiiiiiiieeeeee e 307
PVCSTLIB.EXE and PVCSTLIB.AWK........oouiiiiiiieieeiieiieeeiieeee 307
Q

QUETIES PArAMETET....ciiiiiiiiiii it ceeeeee et e 269, 305
query before replacing............ccooviiiiiiiiiieii 268
question mark, as Wildcard..............oovviemceeeiniieeeeeeee e 258
QUICKBASIC bbb e e e Q22
quiet parameter, and - OptioN........coovvvccccceeeeeeeeeeee, 96, 196, 279, 302
R

R - regress; see ES COMMaNd..........ccooiveeeeieeeeiiiiin e 37,373
R C S ettt et e e e et e e e e e s nnraeaae s 10
RCS, CONVEISION frOM....ieiii e 307
RCS2TLIB.EXE and RCS2TLIB.AWK.........uuuiiieiicm it 307
read-only browse-mode files............ccoveeiiiiiiiiii e, 280, 282
read-only library files............ueiiiiiiii e 7
read-only network directories

READ.ME fil...ciiiiiiii i
FEAAONIY PAFBMETETttt s ettt e et et e e e et e e et e e e aaaaaaaaaaans
readonlyb parameter..............c.........

FEAAONIYE PATAIMETEN......uu it iiiiii ettt et ettt e e e e e et e e e e e e aaaaaaaaaaaas
FECONSLIUCTING @ VEISION...ceiitiii e 2.9
(=0 [Tg=Tox 11T o TU 11011 | O 196
reference directories....... 111,117, 118, 119, 139, 140, 143, 144, 146,

164, 289, 301, 304, 305, 306

397

reference directory refresh...............uv e eeeeeiiiiiee e 144, 163

refsubdir parameter............coviiiiiiii e 165, 301, 305
regress; see ES command............covvvviveenieneeeiiiiiiinnieeeeeeeeeiinn 37,373
relativepaths option, to listbld.............ooeiiiiiii 205
FElAXVEIS PATAMETET.....ccciiiiiiiiiiiii sttt ettt e e e e e e e e e e e e e e e e aaaaaeas 730
release Of @ Programl........ooooiiiiiiiiiiit e ettt e e e e ee e Q2.
FRIIADIIILY. ... e 327
rem or ! (configuration file COMMENLS)........ccoeeeiiiiiiiiiiiiiii e 252
replace Parameter........cooi i et 101, 268
FEPIrODI PArAMETETui i ee e 82
report generation, by Module.............oi oo 41
report generation, from journal file.........cccceeviiiiiiiiiiiiiiii e, 191
report generation, I0CKS..........ccovviiiiiieiicee s 103
(=0 U T =10 0TS o1 SRR 9
reserving files - see ““check-infout"........ccccceeiiiiiiiiiiinennnnes 97, 101, 265
FEUTIEVE. ...ttt et e e e et e e e e e neeees 365
retrieving by date/time...........oooiiiiiiiiceereeeeeee e 74
revision history 10gging..........ccuvvveiiiiemcc e, 217, 222, 253, 295
(0] 0101 SR o I= T =1 0 =] = 8@
root names, in a makefile............ccooccc 354
S

S - SNAPShOt COMMANG........ccvviieiiiiitt e et e e e 51, 92
SAVING AISK SPACE.uuii ittt ittt e e e e e 199
SAY PATAMETETieviiiiiiiiiiiii et mrnn e e e e e e eee 309
SCAN (SEE TLIBSCAN)....uuuitiuiiiiiieieeiieeeeememttiinitieeeeeeaeannrneeeeaeeaaanns 221
STe0] 0}V S (PP 191
SCOPY.EXE...oiiiiiiiiiiiii e 318
SCIEEN SIZE.. it ittt e e e e e 284
o 0] S 354
1B S 3 {0111 - | ST 22
search modes (Wild-Cards)............covviviceeeeeeeieeieeeeeeeee e 59, 306
ES]= o U 1] 105, 2240
Semi-Custom SOfWAIE...........ooiiiiiiiiiii e 120
SEriAl NMUMDEIS. ...ttt 318
=T A E= L g Lo T o F= 1= Vg 1 T=] (] 18
TS LT = 101 (] TS 83, 140, 270
RS 0111 o o 83, 2264
SEE DI .. 89, 266
SEEHDINIL. e 91, 251
SetflimMeW PAramMEter.......ccoiiiiiii e 274
setting up your project level tracking fileS......c..uceeiiiiiiiiiiiiiciee, 129
shared file copier, SCOPY.EXE.........cccoocvimmmiuiiiiiniieeeeeeeiiiiiinnn 183, 191
shared [IDraries........cooovvvii e 376
Sheight ParamMEter..........uuuii i 8x

398

Showlname parameter...........uuueii i 318
SIGIMA SIXuuuniiie ittt ettt e 51
SITE ICBNSE. ...t e 6
SIZE M. e e e e et eaan 9, 334
SIZE OF fIlES. it ————— 334
SIZE OF DFArY...... i . P89
SKIippIiNg VErsion NUMDEIS........uuuuiiiiii ettt 74, 307
slashcont parameter............eii oo 28
SHCKEIL......o ettt e e e 8,292
SHCKEQIL ...ttt e e e e e e e e e nnreeaaeas 55
SlICKEPSI PArAMELET.....ceeiieeiee et a2
smaller and faster...........oovviiiiiiiii e 239
SNAP, by Walter KeEnnamer.............eeiiiiieeeieeiiiiisee e 295
SNAPSNOL fIlE.. . e 92
SNAPShOL fil@S.. .o, 38
snapshot version 1abels............ccooiiii e, 2.9
snapshots and file liStS...........ouuuveiiicc e 02
SNEAKEINEL. ...t e 219
SOICEIEr'S APPIENTICE. . .uu it i ettt e Q.1
SOUICE FIlB.. e 14
spaces (See blanks).......cccooviiiiiiiieiscemmmmm e e 36, 44, 255, 339
£ 010 o) 0 = 239
Sperry Unisys SDF/SIRS..........uvviiiii e 226
split a library (NS command)...........ooouuiimmmmmoieeee e 239
SPIIL INES. .t e 36
SPIIt MESSAGES. .. ettt e 284
status column in WINTLIB........cooiuiiiii e 52
SEACIT VS, STAOUL. ..evvvtiiiie et 196
SUDAITECIONIES. ...ttt 42
5101 0] 0o] ¢ FO PSPPI 367
SWIAth PAramMEter.....c..vviiii e 8x
synchronize (see EBF command)...........c.oueeemmmeniiiiieiiiieeieeeeeeeeeee, 163
syntax, of configuration parameters..........weeeeeiieeiiineeeneeee.... 253, 255
syntax, Of VEIrSION NUMDEIS............iiiieimmmm s e e eeeeeeevaiiiae s e e e e eeeeeanennnns 381
SYStem lIDrarian.........cooevvviuiiiie oot 244026
T

T - Test check-infout StatUS...........oooiivirieerieee e 102
tabs and blIanKS..........ccooviiiiiiii i e 36, 44, 255, 339
tabs, other than 8-SPACE............oiiiiiiicmmec e 256
DB e ———— ettt aeeas 197
TElEPNONE ... 7,.367
temporary files........cc.oooviiiiii e 95, 108, 138, 184, 189, 200
TESTLOCK - test network OS file sharing/locking....................... 9, 349

L O (1 ST (011 4= £ T 44

teXt VS, DINAIY fileS. ... 294
The Software Development Factory............ccce v 51
111 TSP 266
TLIB cOMMANd SUMIMAIY......cccouiiiiiiiiaeaeeeeeeeeiiieeeeee e et eaaaaaaaaaaaaaaaaaaeens 20
TLIBANI Il 251

1111 o3 {0 SRR 83, 2264
tibcfg:«USIT»NamecUSNMD®.....cooviiiiiiiiiie et 85
TLIBCONF -- configuration set-up program........ccc......eeeeeereeeemeeeeeeee 15
TLIBDLL API (application program interface)..............eevveeeeeeeeeeeeeeeeen. 57
1110 o PP RUPR R RUUPPPRRTR 89, 266
HIDINI. . 91, 251
TLIBMODE pseudo-environment variable.........coeeeeieiiiieeneennnennnn, 86
TLIBNAME pseudo-environment variable.........ccccccoiiiiiiiinn, 86
TLIBOS pseudo-environment variable...........ccccecviiiiiiienieeeneeeeeeeeeneen, 86
TLIBPROG pseudo-environment variable.........ccoemeeeeiiiieeiiivieieeeeee, 86
TLIBSCAN. ..t 2p
TLIBSNAP -see 'S - snapshot”..........ooeeeeevrivieiiiiiineneeee, 49, 92, 276
tlibsuffix macro for Opus Make............ovvvceeeeeeiiiiiii e 262
TLIBTLIB.EXE and TLIBTLIB.AWK............ccoevvvrmmn. 218, 220, 296, 338
TLIBX.EXE (DOS-extended TLIB).........cuvueriiieieriiiiieeeeeeeaiieee, 335, 338
TLMERGE/DIFFS.... ettt
toprelative parameter

TOUCH. .
touchsour parameter

touchu parameter..............cceeeeeeeens

TraCk Parameter..........uueiii i iieeemee e

traCKeXt PArAMELETeeiiiiiiiiiii ittt
tracking file fOrmat...........ooooiiiiiiiiiit e
tracking file terminology............uuuueii e, 111
trailing blanks...... ..., 36
transfer, of files by modem............ooovii i 225
transfer, of TLIB OWNErShip......cccuuviiiiiiceeiee e 6
tree structured liDraries. ... 68
Tree-structured dir€CIONES.oiiii it 66
treedirs parameter............ccccevvvvvn s s 61, 130, 139, 300, 303, 304
EUNCALEA lINES...uiiiiiiiiiiieie et e 36
ETUNK VEISION. ...ttt et 37
EUNK VEISIONS. ...ttt ettt e e 37
TSE - The Semware Editor..............oooi st 58
U

U - Update library.........cccccvvveereeennnn. 32, 40, 48, 100, 275, 276, 278, 372
U (update) with @ file liSt.............uue e 49
UB command - make new branch............ccccuiiiiiiiiee 70

400

UD - check-in, discarding Changes........... e i 101

UF - fast update (freshen libraries).........ccoceeiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeee 278
UF - Fast update (freshen libraries)........ oo 40
UK - update and keep locked.................mmmeeiiiiiinneieeieeeeeee, 101, 278
UNArCCMA PAramMETET. ... coieeiiiiieiiitie e eremmma e e 325
UNCMPILDAT. e e 225

UL g o [J= W (=Y] o] o PSR 235
UNIX MAKE. ... 58
UNIX RCS. .ottt 10
Update, on IBM Mainframes..........oooeiiiiiieeee e 226
updatenew Parameter........cccuuiiiieeeievceeeeenme e e e et e e 29, 33, 276
UPPEr-CaSE VS. IOWEI-CASE.......cceeveeeertemmmmms s eeeeseeeeneeneneeneeeeeeeeees 214, 255
US - Add Specified VEISION.......cooiieiiiii ettt ee e e e e 69
(BT o T PP PP PPPPPPP 89
USEI ID e 1266
USEUMDS PAramMELEI.....ciieeeiiiiii et e e e e e e e s e e e s nnnes 319
Y

V' (LV edit commaNnd).......coooiiiiiiiiiii i 371
validate parameter...........uuuiiiiiiiii e 82
VA e 352
VErsion definitioN..........iiiiiiii e 1433
version definition lINE..........oooiiiiiiei e 713
version label (See SNAaPSNOt)..........cooiiieemememeeeeeie e 92
Version [abel fileS.......oouu i 38
VErsion NUMDEr SYNTAX.........cuuuuuu i ccmmmmmesieeiebbieebbeeebeee e eeeeeeeeeeeeees 307
VEIrSION NUMDBDEE ZEI0.. ...ttt 74, 307
VEISION NMUMDEIS. ...ttt e e e e ee s e s e s e st e e e e e s sebbeeeeeeeeeaaas 73
VEISION rEES...ciiiiiiiiiiii e 68
Versions of @ SOUICE fil€.........uuuuiiiiiiiiiiii e 8
VErSIONS Of DOS....ciiiiiiiiiiiiiiiieie e 9
Visual BasiC 8nd VCHt.......uuuiiiiiiiiiiiees ettt 57
RY 4 S T PP UPP P TOPPPPPPPN 352
W

W - s€e TCW - SEL USEI id".....oeiiiiiiiei e 266
=L gl 0= 1= 11 4[] (< PP 309
WaAINING MESSAGES. . .cvtuuuueeeeeeiiieiittiiennnraeaaaaaaaaaaaaaaaaaaaaaaaasaaaaaaaaannane 437
WATTANTY ..ot e e et e et e e e e e ean s 7,367
WaaLCOM C/CH .. it e e e e e e e e e aaaaraas 8.5
weak locking and branch/level locking........ccccecooooiiiiiiii 98
web sites, using index.html as a native projeet.fil..................cc. 55
WHAT (S€€ TLIBSCAN)...cciiiiiiiitititii ittt ettt eieee e e 221
WRAL IS TLIB?....uiiiiiiiiiiiitittieeie it cmere ettt e e 8
where the files and directories belong......ccoeeeeeiiiiiiiiii, 119
Whereis - file fINder.........ooiiiiiiiii 951

WIlA-CArdS......cviiriiiiceeee e 44, 50, 59, 258, 306
wild-cards wWithin file IStS..........uiiiiiiice e 2.5
WINAOWS.... et e e e e e e e e e e e aaaaens 9
WINAOWS-NT USEI ID....coviiiiiiiii ittt 89
WINE Windows Emulator 0N LiNUX...........eeeecummmeeeeneeeesieeeseeeeennnnnn. 9
word processor document fileS.........o.ouui oo
Word-For-Windows dOCUMENLS............uuviiiiiiiiiieeeiii e e eeeeeeeannns
WordPerfeCt dOCUMENTS..........uuuiieieeeis s e e e e s e e e e e e eeeaeennanns
WOrkdepth parameter..........oooviiuiuii e e e
WOTKAIr PArAMETETottt e

WORM optical disks.........c.cooeeeieiiininnnn.

wrapped MESSAJE lINES........cvevviriiie s ettt a e e e e
write-once (WORM) optical disks

402

