
Index: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Note: in the PDF (electronic) version of this
book, the page numbers are hyperlinks.
Click on any page number to view that page.
Examples: Index, p. 387, Table of Contents, p. 3.

TLIB Version Control

*** PRELIMINARY ***

Reference Manual

Copyright © 1986-2003 by Burton Systems Software.
All Rights Reserved.

Printed in the U.S.A.

Version 5.53, printing 1

2

Table of Contents
Copyright / License...6
Limited Warranty..7
Requirements...9
Introduction...10

Converting to TLIB from other products...10
TLIB Version Control Features...11
TLIB Library Files...14
Getting started: the TLIB Configuration Wizard.......................................15
Command structure...17
TLIB Command Summary..20
N Command: create New library...24

NF command: Fast New library create...31
U command: Update a library...32
E command: extract latest version...35

ES command: extract Specified (old) version......................................37
Command Line Parameters and Batch Files..39
UF command: Fast Update..40
L command: List versions...41
CP command: override library Path..42
Text File Formats..44

Tabs...44
End-of-file markers..47

Managing Multiple Source Files...48
Wild-cards and File Lists...50
Comma-Delimited Lists of Files..53
Integration With Other Products..55

“Native” Project File Support..55
APIs for Integration with Windows Programs.....................................57
Add-In for Visual Basic...57
Borland Delphi and C++ Builder...58
Watcom C/C++..58
Microfocus COBOL Workbench...58
Programmers' Editors...58

Six Different Wild-card Search Algorithms..59
F - Filter File Names..64
Tree-structured directories..66
Branching: Version Trees..68
 US - Add specified version...69
 UB - Make new branch...70
Version Numbers..73
Long File Names...77
Environment variables, SET, and the Autoset file.....................................80

3

Lots of ways to set your TLIB User ID...89
S command: Snapshot version labeling...92
Check-In/Out locking: concurrent access control......................................97

Weak Locking and Branch/Level Locking...98
CW command: Configure Who you are (set User ID).......................100
E and U commands revisited...100
EB command: Extract for Browse...100
UK command: Update and Keep locked..101
UD (discard changes) and ER (reserve) commands...........................101
T command: Test lock status..102

Security...105
Version tracking & Named Project Levels..106

Tracking File Terminology..111
What Are Tracking Files and Named Project Levels Good For?.......113
Supported Development Environments for Version Tracking...........116
Where the Files and Directories Belong...119
Handling Semi-Custom Software With Basic Version Tracking.......120
Tracking file format...122
Advanced Version Tracking & Named Project Levels......................127
Setting Up Your Project Level Tracking Files...................................129
How TLIB Uses the Tracking Files..136
Configuration Parameters for Version Tracking................................138
Configuring Your Project Levels...141
Administering Multiple Project Levels..155

EBF command: Fast-Extract (extract only changed files).......................163
Reference directories...164
A (add/alter project level) and AP (promote) commands........................168
M command: Migrate changes..178
Journal file...190
U (update) with a file list...194
Whereis - file finder..195
Quiet mode..196
Poketrak & Copytrak...198
Saving Disk Space...199
Temporary Files..200
Network Bug Workarounds...201
Listbld – file list builder..203
File Lists and Snapshots..209
Keywords..212

Keyword-based version number checking...218
Tlibscan...221
Revision History Logging..222
Cmpr delta generator...225
Tlmerge / Diff3..233

4

NS Command – split a library...239
Retrieving by Date/Time...241
Comment Files..244
Configuration..246

Alphabetical listing of parameters..246
Configuration overview...250
Where is the Configuration File?...250
C command: Overriding Configuration Parameters...........................252
Detailed configuration parameter descriptions...................................254

 Operators and expressions for LET and IFF..................................270
Version tracking & named project levels......................................297

Conditional configuration parameters..321
Cmpr and Tlmerge/Diff3 parameters...338

PCOM & PCOMS parallel port file transfer...341
Expandir..348
Testlock...349
Touch..351
Make..352

How Make utilites work...360
Easier Keyboard Input...365
File Dates..366
Closing..367
Appendix A: Changes from TLIB 4..368
Appendix B: Library File Format..371
Appendix C: Messages..374
Appendix D: Configuration File Syntax..378
Appendix E: TLIB Version Number Syntax...381

Simplified BNF Version Number Syntax...381
Version number examples..382

Index..387

5

Copyright / License

This software is protected under United States Copyright Law and Interna-
tional Treaty provisions. The law for Copyrighted Softwareis similar to
the law for Copyrighted books, with one exception: you are authorized to
make archival copies of the software for the sole purpose of backing-up
your software and protecting your investment from loss.

This means that only one person (or computer) may use or have access to
the software (or, for multi-user licenses, the licensed number of users or
computers). The software may be freely moved from one location to an-
other so long as it is accessible from only one computer (or byonly one
user) at a time (or, for multi-user licenses, the licensed number of comput-
ers or users). If two or more computers (or users) connected by a network
have access to the software at the same time, then each computer (or user)
must have its own separately purchased copy (or a multi-userlicense must
be purchased from Burton Systems Software). This applies even if the dif-
ferent computers (or users) are using different programs from the TLIB
package.

The license restricts the number of computers (or users) whohave access
to the software, rather than just the number who happen to be using it at
any given instant in time. Thus, you may not use a license manager to re-
strict simultaneous access for the purpose of reducing the number of
licenses required.

However, for the purpose of determining compliance with this license, you
may count either computers or users. Thus, if someone with a one-user li-
cense uses two computers, it is not a violation of this license for him to
install his copy of the software on both computers, as long asonly he will
use it.

This software can be bought and sold (or even given away), as long as all
archival copies are transferred along with the original program diskette
and manual.

The manual for this software may not be copied by any means forany rea-
son without the prior written consent of the copyright holder.

6

Limited Warranty

Burton Systems Software warrants for a period of ninety (90)days from
the date of delivery that, under normal use and without unauthorized modi-
fication, the programs perform substantially in accordance with the
specifications published in the documentation and those set forth in Bur-
ton-authorized advertising material; that, under normal use, the magnetic
media upon which the programs are recorded is not defective;and that the
user documentation is substantially complete and containsthe information
which Burton deems necessary to use the program. If, during the ninety
day period, a demonstrable defect in the programs should appear, you may
return the software to Burton for repair or replacement, at Burton's option.
If Burton cannot repair the defect or replace the software with functionally
equivalent software within thirty (30) days of Burton's receipt of the defec-
tive software, then customer shall be entitled to a full refund of the
purchase price.

Burton excludes any warranty coverage for incidental or consequential
damages except for the express warranties above, and limitsthe end-user's
remedy to return of the software with manual to the dealer or to Burton for
replacement.

This statement shall be construed, interpreted and governed by the laws of
the State of North Carolina.

Note: Even after the expiration of the warranty, please do not hesitate to
contact us about any problems, questions, or suggestions which you may
have. We pride ourselves on the quality of the support which we provide
to our customers, and we want you to be satisfied.

Copyright © 1986-2003, by Burton Systems Software.

P. O. Box 4157, Cary, NC 27519-4157 USA
Telephone: (919) 481-0149 FAX: (919) 481-3787
email: support@burtonsys.com
web site: http://www.burtonsys.com/

7

TLIB

A Version Control System

What is TLIB?

TLIB ™ (pronounced “tee-libe”) is what is sometimes called a “version
control system,” “configuration management system,” or a “source code li-
brarian.” It stores all versions of any of your sources file in a single,
compact, annotated library file. Your source file is most likely a text file
containing program source code or documentation; however,non-text
“source” files (like object module libraries or spreadsheet work files) are
also supported.

TLIB is especially useful if you are a programmer, since it lets you quickly
and easily go back to an old version in the event that the latest version has
a new bug. It can also manage many of the most vexing chores associated
with the software development process, such as coordinating the modifica-
tion of source code by several programmers, maintaining andreconciling
parallel development paths, migrating/merging changes into customized
versions, and providing an “audit trail” of revision history information.

TLIB is very fast. For example, on a 100 MHz Pentium, it will Update a li-
brary file, storing the 200th version of a 750K source file (this reference
manual, as it happens) in about 4 seconds. Sluggish tools canget in the
way of your productivity. TLIB doesn't!

TLIB is easy to use. It includes both a user-friendly GUI Windows inter-
face, and command-line versions for several operating systems..

TLIB grows with your business. It works fine for small projects on stand-
alone PCs, but it also supports shared libraries over a Localor Wide-Area
Network, and multi-stage “promote” hierarchies, for big projects.

8

Requirements

TLIB™ Version Control includes executables to run on Microsoft Win-
dows™ 95/98/Me/NT/2K/XP (32-bit), Windows 3.1x (16-bit),MS-DOS™
and PC-DOS™ versions 3.0 and above, and IBM™ OS/2 versions 2.x and
Warp. For MS-DOS and PC-DOS, both real-mode and DOS-extended ver-
sions are included. The 32-bit command-line version also runs under the
WINE Windows Emulator on Linux (Intel-architecture CPUs only),
though it currently assumes case-insensitive file names.

The real-mode TLIB executable,TLIBDOS.EXE, requires at least 500K of
available “conventional” (non-extended) RAM memory. The DOS-extend-
ed TLIB executable,TLIBX.EXE , requires less conventional memory, but
also needs at least 1 MB of extended memory and a DPMI, VCPI or XMS
memory manager, such as Windows™, EMM386.EXE, or HIMEM.SYS .

An 80286 or better CPU is also required for DOS versions of TLIB; other
versions of TLIB require an 80386 or better CPU and a hard diskdrive. A
CD-ROM drive is required for installation (or TLIB can be purchased on
1.44MB 3.5" diskettes, by special order).

There is almost no limit on the size of source and library files. However,
performance degrades for source files larger than a few megabytes.

For networked development, in which two or more users will share access
to the files, either multiple copies of TLIB or a multi-user license is re-
quired. TLIB uses only basic network file support, such as file and record-
locking, so it works with almost all networks. (You can use the included
TESTLOCK tool to test your network's file/region sharing/locking.)

TLIB™ is a trademark of Burton Systems Software.
Delta™ is a trademark of OPENetwork.
IBM™ & PC-DOS™ & OS/2™ are trademarks of International Business Machines Corp.
MS-DOS™ and Windows™ are trademarks of Microsoft, Inc.
Panvalet™ and Librarian™ are both trademarks of Computer Associates International,
Inc. (and formerly of Pansophic Systems and Applied Data Research, respectively)
PVCS™ is a trademark of Merant, Inc. (formerly Intersolv Corp.)
Unix™ is a trademark of The Open Group (and formerly of AT&T Bell Labs.)

9

Introduction

If you purchased the TLIB Version Control on CD-ROM, then install it by
inserting the CD and (ifSETUP does not run automatically) runSET-

UP.EXE under Windows. (If you received TLIB Version Control via
electronic delivery, and you are reading this, then you presumably have al-
ready installed TLIB, by downloading the files into a temporary directory
and running SETUP.EXE.) The Windows-based installation program will
install a TLIB Version Control folder shortcut containing shortcuts for
tlib_doc.pdf (the electronic version of this Reference Manual) and other
documentation files, as well as for TLIB Version Control andthe TLIB
Configuration Wizard.

Converting to TLIB from other products

TLIB comes with tools to automate conversion of libraries/archives/log-
files from many other products to TLIB. At this writing, we have utilities
to automatically convert from SourceSafe, PVCS, MS Delta, Sorcerer's
Apprentice, MKS RCS, GNU RCS, and Unix RCS.

The conversion utilities are stored inCONVERT.ZIP. Unpack them by
running theCONV_UNP.BATscript. SeeCONVERT.TXTfor more instruc-
tions.

10

TLIB Version Control Features

New Features in TLIB Version Control 5.xx:
o Easy to use Graphical User Interface, with button bar, menus, right-but-
ton functionality, helpful status-bar guidance, MRUs, etc.. Honed to
smooth ease-of-use through a long beta test cycle.
o Flexible file pick-list, with multiple selection, sorting, etc..
o Full compatibility with command-line versions of TLIB and full upward-
compatibility with all past versions of TLIB.
o Direct support for the compiler-native “project files” forseveral popular
software development tools, including Visual Basic 3.0-6.0, Watcom
C/C++ 10.x, Borland Delphi and C++ Builder, Symantec VisualCafe, and
Help Magician Pro. That means you can simply “open” a compiler-native
project in TLIB, rather than specifying files with wild-cards and file-lists.
(We will also be adding support for other compilers.)
o Fully restartable multiple-file operations. TLIB optionally deselects each
file in the pick-list when done processing that file, so you can cancel the
operation (or skip individual files) and later restart the command to resume
where you left off or process the skipped files.
o A very nice, colorful, side-by-side visual compare, fully integrated.
o Easy to use Windows-based installation under Windows 3.1, Windows-
9x/Me, Win-OS/2, and Windows-NT/2K/XP. Includes an uninstaller, too,
but we doubt you'll ever use it.
o TLIB Add-Ins for Visual Basic 4.0-6.0, and for MS Developer Studio
(VC++ et al) 5.0.
o Three public APIs, for integrating TLIB with your application.
o Includes command-line versions of TLIB with support for long file-
names on operating systems which support them, as well as real-mode
DOS and DOS-extended versions.
o Unrivaled configurability. TLIB now supports over 100 different config-
uration parameters. TLIB's configuration file supports “if/endif,”
“include,” conditional loading, environment variable references, and full
expression evaluation, including parentheses and 28 different operators.
o TLIB Configuration Wizard helps you quickly configure TLIBthe way
you need it.
o Very flexible wild-card specifications, including support for file-lists,
multiple asterisks in wild-card specs (even under DOS or Windows 3.1x),
six different wild-card search modes (most of which can be combined),
and optional automatic spanning of subdirectories.

11

o Automatic translation of DOS, Unix, and Macintosh ASCII text files;
that is, text files with all three common kinds of end-of-line delimiters: LF,
CR, and CR+LF. Configurable control over which text format is generated
by TLIB when extracting (“checking out”) text files. (Of course, for binary
files no translation is ever done.)

Plus all the advantages of TLIB 5.00:
o TLIB Version Control supports all languages
o TLIB runs very, very fast. Most magazine reviewers have found that
TLIB is noticeably faster than any other version control system
o A single library file stores all versions of a source file, with date/time,
user id, and comments for each version
o Coordinates access by multiple programmers
o N-way Branching and named project-level support, for parallel develop-
ment
o Branch/level-local locking option
o TLIB's unique append-in-place forward delta system provides higher re-
liability and recoverability than any reverse-delta product
o Open architecture: there are no secrets about TLIB's file formats, nor
about where your source code is stored
o Unique Whole-Level Change Migration, eases merging of changes into
customized variants of your software, or from bug-fix/release levels into
development levels, etc.. If you have to manage lots of customized ver-
sions of one program, this feature is absolutely indispensable... and (as far
as we know) only TLIB has it
o Full, delta-based binary file support, with true adaptive deltas
o Very flexible embedded-keyword support
o Simple snapshot-based version labeling
o Automated conversion from SourceSafe, PVCS, MS Delta, Sorcerer's
Apprentice, and any of several variants of RCS
o Free tech support by phone and email. TLIB Version Control isthe sole
product of a small company, so there's no wading through tedious phone
menus and “tech support” people who have no idea what you are talking
about
o Automatic “delta” generation - only changes are stored fromversion to
version
o Coordinated control of multiple modules: “fixed” snapshotversion la-
bels, and “floating” tracked versions for each named project level
o Supports trees of subdirectories
o Can merge (reconcile) simultaneous changes, and flag conflicts, or undo
intermediate revisions without losing later changes
o “Promote” between project levels, for ISO 9001-style staged develop-
ment on large projects
o Optional reference directories for each level

12

o Revision history documents changes, and central activity journal for “au-
dit trail” of development activity, including revision comments, for entire
project
o Create file-lists by scanning source code for includes (C, Pascal, MASM,
QuickBasic, COBOL “copy”, many others)
o Highly flexible user-formatted keyword support
o Keyword-based version number verification, warns if you store an obso-
lete version, even if you disable check-in/out locking
o Efficient support of local and wide area networks, remote access nodes,
WORM optical drives
o Generate mainframe-compatible deltas in any of four formats
o Integrated with Opus Make and most good programmers' editors
o DOS-extended version included (more efficient for very large files)
o Automated conversion of archives from other version control systems
o ISO 9001-style “promote” structures
o Supports multiple, named project levels, including customization levels
o Both sparse and fully-populated project levels, and conversion between
them
o Automatic reference directory refresh, per project level
o The “EBF” fast-extract command, refreshes browse-mode files
o N-way branching
o Automatic version tracking and automatic branching
o Branch/level locking and weak (warning-only) locking
o Support for trees of subdirectories
o Comma-delimited in-line file lists
o Improved command structure, with command synonyms
o Keyword-based version number verification
o Environment variable substitutions in TLIB.CFG

o Autoset file, for “local” environment variables
o Over 100 configuration options, for customizing to your taste

13

TLIB Library Files

TLIB creates a library file for each of your source files. Thelibrary file
can contain every version of the source file which ever existed, so you'll
never again need to worry about whether you can safely erase an old
source file. However, only the changes from one version to the next are
actually stored in the library file, so it remains modest in size even when it
contains dozens or hundreds of versions.

The name of a library file is normally the same as that of the correspond-
ing source file, except for the extension. The way that TLIB determines the
extension is user-configurable, but with the most common settings a li-
brary file has the same extension as the corresponding source file except
for the second character, for which a dollar sign is substituted. Thus, for
example, the library file forXXX.PAS is named “XXX.P$S” (probably in a
different directory). This is the convention we'll use for most of the exam-
ples in this manual. However, other conventions can also be used; see p.
262.

Whenever you update a library file from a source file, the library file is ap-
pended with adeltaor `version definition' of ‘edit commands.’ These edit
commands record what changes were made to the source file since the pre-
vious version: the lines (or binary data) which were added, deleted, and
moved. The library file contains one delta for each version of your source
file. Since most of the source file is usually unchanged, thelibrary grows
in size only a little for each update. Yet you can still retrieve any version
from the library in just seconds.

14

Getting started: the TLIB Configuration Wizard

Here's a hint for using the TLIB Reference Manual:When in doubt, con-
sult the index.

After you have installed TLIB by runningsetup.exe , you need to create
a simple TLIB configuration file.

A TLIB configuration file is just a small ASCII text file, usually called
tlib.cfg , which TLIB reads when it starts up. It contains “configuration
parameters” to customize TLIB's behavior to your needs.

There are over one hundred different configuration parameters which you
can specify. However, most users need only a few of them, at least when
getting started.

To help you configure many of the most commonly needed parameters,
TLIB now comes with a configuration set-up program we call the “Config-
uration Wizard” (which replaces an older program calledTLIBCONF.EXE).
Both the Configuration Wizard and TLIBCONF work by asking you some
questions and then building an appropriate TLIB configuration file.

Even if you need to do strange and unique things, you still should begin
the process of configuring TLIB by running the Configuration Wizard.
Then edit the resulting tlib.cfg file to add your customizations.

TLIB cannot be used without a configuration file. The Configuration Wiz-
ard (or TLIBCONF) will create a starting configuration file. For simple
development environments, that might be all you need to do toconfigure
TLIB. However, for complex dvelopment environments, thetlib.cfg

file created by the configuration wizard is only a starting point. You'll still
probably need to make some manual additions to it.

Note: the rest of this chapter is out-of-date. It describes the obsolete
TLIBCONF program, which has been replaced by the TLIB configura-
tion Wizard.

Here are some examples of the kinds of questions that TLIBCONF asks:

1. LOCKING: Which best describes you?

15

A) A single programmer working alone on a project. You do not need
check-in/out locking.
(locking N , loguser N)
B) One of a group of programmers working on the same project (or the
System Librarian for a group of programmers) using a network(LAN) and
multiple copies of TLIB. You need check-in/out locking. This choice also
causes “browse-mode” source files to be set to read-only, soas to distin-
guish them from source files which are checked-out for modification.
(locking Y , readonlyb Y , replrobr Y , loguser Y)
etc...

2. FILETYPE & TABS: Which best describes the source files that you
need to manage?
A) Plain ASCII text files, with no tab characters... (entabu Y)
B) Plain ASCII text files, but with tabs... (TLIB must not do automatic
tab/blank conversions.) (entabu N)
C) Non-ASCII files, files containing binary data... (filetype binary)
etc...

3. BRANCHING: Do you often have more than one “latest” version...

4. SOURCE FILE NAMES: Might you ever need to have TLIB manage
two or more files with the same names but different extensions...

5. COMMAND & PROMPT STYLES: Do you want TLIB 5.50 to mimic
earlier versions of TLIB; would you like a verbose prompt or a terse one...

6. TREEDIRS: Do you keep all of your source files in a single work direc-
tory, or do you use a “tree” of subdirectories, grouping your source files by
purpose into the various subdirectories...

Note: TLIBCONF and the Configuration Wizard configure rather plain
prompt and help screens for the command-line versions of TLIB. If you'd
like a prettier prompt/menu and help screen, seeANSIFY.AWK, p. 333 (or,
better yet, use the Windows version of TLIB).

16

Command structure

Command-line versions of TLIB use commands which consist ofa single
command character, with optional suffix characters to modify the com-
mand's behavior or scope. (You can also use this form of TLIB command
in the GUITLIB for Windows, via “Run Manual Command” on the “File”
menu, or via the “Run” button. However, it is generally more convenient
to use the menus and/or buttons.)

For example, whenUpdating libraries, you can choose betweenFast or
regular update, betweenM inor-version-number-incremented or regular
(major) number incremented, either checking-in (unlocking) or Keeping
checked-out, etc. Thus, “UFM” (or, equivalently, “UMF”) meansUpdate
with Fast mode, and increment theM inor version number instead of the
main integer version number.

For more information on the TLIB 5.5x command structure, seepp. 59 and
330.

GUI (Graphical User Interface) versions of TLIB support thesame com-
mands and options, but they are specified by buttons, menu choices,
and/or check-boxes. This is what the main TLIB GUI window looks like:

17

The most prominent feature is a big window listing your source files.
They may be all in one main work directory, or they may be in a “tree” of
directories, with the subdirectory names shown in the “path” column. In
the pictured example, most of the files are in the main work directory, but
three of them are in the “f ” subdirectory:

In the Win32 TLIB GUI, each source file listed has a small iconbeside the
file name, which tells you something about it:

 A tiny TLIB icon is shown for source files that are under version
control (i.e., for which a corresponding TLIB library file exists).
 A red check-mark is superimposed for files that you have checked
out for modification.
 A red backslash is superimposed for files that someone else has
checked out for modification (locked), so that if you were totry to
Extract/check-out for modification it would fail. (A blue backslash is sim-
ilar, but you can still check-out the file for modification;this is only
possible if “weak” or “branch/project-level” locking is being used instead
of “full” locking -- see the "LOCKING" configuration parameter.)
 A black circle and slash means that the source file is missingfrom
your work directory.

These icons may be combined in various ways, too. For example, a black
circle and slash superimposed over a TLIB icon means that thesource file
is missing from your work directory, but the corresponding TLIB library
file exists (so you can extract the missing file from TLIB if you need it).

The “Filename” column shows your source file names (including binary
“source” files). You can click on the “Filename” header to alphabetize the
list, or click it twice for reverse-alphabetical order.

The “Size” column shows the size in bytes for each source file(or “-” if
the source file is missing from your work directory).

18

The “Attrib” column shows the DOS/Windows file attributes (“R” for
Read-only, “W” for Writable, “A” for Archive (modified), or“n/a” if the
source file is missing from your work directory. If check-in/out locking is
enabled (with the usual TLIB configuration settings), thenthe source files
that you've Extracted/checked-out for modification will have the “W”
(writable) attribute but “browse mode” files will be read-only. By clicking
on the “Attrib” column header, you can sort the list of source files to group
together those source files with the same attributes (e.g.,all the files that
you have edited, because they have the “A” attribute).

The other columns are self-explanatory, except for “Status.” Before you
attempt to do any TLIB commands, it shows “-” for each file. After you
do a TLIB command, it shows a “completion code” or errorlevelfor each
file that you attempted the command upon. “0” means success,and any-
thing else (usually “1”) indicates an error.

19

TLIB Command Summary
command page
? or ?0 Display “help” screen
A or A0 Add files to the current project level 168
AD with Delete suffix: delete from current project level 169
AF with Fast suffix: populate a sparse project level 171
AP with Promote suffix: add to promote (“p=”) level 170
AS with Specify-version suffix: specify particular version 169
AX with eXclude suffix: mark files as excluded, with v=X 169
ADF depopulate project level (make sparse) 172
APX mark eXcluded file as eXcluded in the promote level 170
C or C0 Change any configuration parameter 252
CP with Path suffix: configure library path 42
CW with Who-are-you suffix: configure user id 100
E or E0 Extract file from library 35
EB with Browse-mode suffix: do not lock 100
EBF with Fast/Freshen suffix, to refresh browse-mode files 163
ER with Reserve suffix: just lock, don't actually extract 101
ES with Specify-version suffix: specify particular version 37
EBS, EBFS combinations
F or F0 Filter file names with wild-card specs 64
L or L0 List versions 41
M or M0 Migrate changes 178
MF with Fast suffix, to quietly skip already-migrated files 178
MS, MSSwith Specify-version suffix(es): specify “to” and/or “base” 185
MFS, MFSS with both Fast and Specify-version suffix(es)
N or N0 New library create 24
NF with Fast suffix, to quietly skip existing libraries 31
NK with Keep-checked-out/check-out suffix, to keep locked 101
NS with Specify-version suffix: specify starting version 239
NFK , NFS, NFKS combinations
Q or Q0 Quit
R Reclassify/share-file
S or S0 Create a “snapshot” version label 92
SS with Specify-version suffix: specify particular version 92
T or T0 Test check-in/out lock status 102
U or U0 Update library with new version, check-in/unlock 32
UB with create-Branch suffix: make a “.1” version 70
UD with Discard-change suffix: just break lock, no update 101
UF with Fast/Freshen suffix: only update newer files 40

20

command page
UK with Keep-checked-out suffix: update and keep locked 101
UM with Minor suffix: update & increment minor version 74
US with Specify-version suffix: specify particular version 69
UBK , UBF, UBFK , UKM , UKS, UFK , UFM , UFKM combina-
tions

21

Alphabetical Command & Suffix Summary

Command Suffixes allowed Purpose Page
A D,F,P,S,U,X, wc[A/T] Add/Alter project level 168
C P,W Configure 252
E B,F,R,S, wc[L] Extract source file 35
F Filter files 64
L wc[L] List versions 41
M F,S, wc[L] Migrate changes 178
N F,K,S, wc[W] New library 24
Q Quit
S S, wc[L] Snapshot version label 92
T wc[C] Test lock status 102
U D,F,K,M,S, wc[W] Update library 32
? Help

Note #1: The order in which suffix characters are specified does not mat-
ter (except in theCOMMANDSconfiguration parameter). Thus, for example,
“EBS” and “ESB” are equivalent (both meanExtractSpecified version in
Browse mode).

Note #2: “wc[x] ” means wild-card search-mode suffixes are allowed,

and that the default wild-card search-mode suffix is “x”. The possible
wild-card search modes are:A, C, L, O, T, W; also I (include subdirecto-
ries), andN (no wild-card expansion). (Wild-card search modes affect the
way that TLIB interprets wild-card file specifications; see p. 59)

22

Alphabetical Suffix Summary

Suffix Type Commands Meaning
0 null all does nothing
A wildcard A‡,E,L,N,S,T,U,M search All levels
B regular E Browse mode (don't lock)
C wildcard A,E,L,N,S,T†,U,M search all Checked-out files
D regular A Delete from project level
D regular U Discard changes (unlock)
F regular A,E,N,U Fast/freshen
I wildcard A,E,L,N,S,T,U,M Include subdirectories
K regular N,U Keep checked-out/locked
L wildcard A,E†,L†,N,S†,T,U,M† search L ibrary files
M regular U M inor version no. increment
N wildcard A,E,L,N,S,T,U,M No wild-card expansion
O wildcard A,E,L,N,S,T,U,M search Own checked-out files
P regular A Promote
P regular C Path of library/lock files
R regular E Reserve (just lock, no extract)
S regular A,E,N,U,M Specify version number
T wildcard A‡,E,L,N,S,T,U,M search This project level
U regular A Undo (unimplemented)
W regular C Who are you (ID)
W wildcard A,E,L,N†,S,T,U†,M search regular Work files
X regular A eXclude from project level

† indicates that this wild-card search mode suffix is the default for the
indicated command.

‡ indicates that whether or not this wild-card search mode suffix is the
default for the indicated command depends upon which regular suffixes
are used.

23

N Command: create New library

The command-line version of the main TLIB program isTLIB.EXE . It is
actually a copy of one of several command-line versions:TLIB32C.EXE

(for Win32),TLIBDOS.EXE (for real-mode DOS),TLIBX.EXE (for DOS-ex-
tended protected-mode, orTLIB2.EXE (for OS/2). To run it in interactive
mode, type the program name, e.g.:

 TLIB

The GUI versions of TLIB are calledWTLIB32.EXE (Win32) and
WTLIB16.EXE (16-bit Windows, a/k/a Win 3.1x & Win-OS/2), but you
don't need to remember that because they are usually startedvia Start Pro-
grams menu shortcuts.

Note: The examples in this reference manual all show the Win32 TLIB
GUI, but the 16-bit GUI is similar.

In the TLIB Windows GUI, commands are performed by first listing and
selecting the files to be operated upon, then picking the command and op-
tions. Command-line versions of TLIB require the opposite order of
events: first you specify the command, then you specify the files (typically
via wild-cards and/or file lists).

For both GUI and command-line versions of TLIB, the first thing you must
do to run it (after installing and configuring it) is to select the correct “cur-
rent” work directory. In command-line TLIBs, this is done with the “cd ”
(change directory) DOS command.

In the TLIB GUI, select the current directory via the “Current Dir” frame:

You can click on the “...” button to browse for the desired directory, or se-
lect a recently used directory by clicking on the MRU-dropdown
button, or simply enter the desired directory in the text entry box.

24

(Or, if you click the “Mode” button to switch TLIB into “native project
mode,” the current directory will be implied by the locationof the “native”
compiler or editor project file which you select.)

In the TLIB GUI, the next step is to identify your source filesto TLIB. In
native project mode, TLIB deduces them by reading a “projectfile” that
was created by your compiler or editor (or a file list or HTML index file).
In “regular” (file-oriented) mode, you specify your source files to TLIB via
one or more wildcards and/or “@file.lis ” filelists:

Simply enter the wildcard specifications, separated by commas, and then
press Enter or click “Expand Wildcard.” (The “Add” button is similar to
“Expand Wildcard” except that it adds more files to the existing list of
foles.)

Next, select the files to be stored into TLIB, using your mouse and/or the
“Select” buttons on the left side of the screen:

The title bar at the top of the window will change to indicate how many
files you have selected:

Finally, you are ready to pick the “New libraries” command, to place your
selected source files under version control, storing the first version of each
file into a TLIB library file. You can find the command two ways:

1) The “New” menu button:

2) “Create New Library” in the command menu, which you can view ei-
ther by clicking “Command” in the top menu bar, or by typing alt-C, or by
right-clicking anywhere in the main file list:

25

When you pick the “New” command, you'll then see an options screen,
like this:

Note: Hover the mouse cursor over any check-box to see a longer de-
scription of its purpose.

Then click “OK” to start storing your source files into TLIB, and TLIB
will give you an opportunity to enter comments about each source file:

26

The “OK” button is disabled (greyed-out) until you enter a comment.

To store multiple files with the same comment, uncheck the “Always con-
firm” checkbox.

After you've completed the “New libraries” command, and stored your
source files into TLIB, the main file list will change to showupdated
icons, “Attrib” and “Status” for each file:

Command-line TLIB

When you run a command-line version of TLIB in interactive mode (i.e.,
without parameters), you will be presented with a prompt or menu. The
appearance depends on how TLIB is configured, but one possibility looks
something like this:

27

 �

�

 TLIB Version Control

�
� �

�
� �
�

 U=Update library

�

�

 E=Extract source

�

 UM=increment Minor#

�

�

 EB=for Browse

�

 US=Specify branch#

�

�

 ES=Specify version#

�

 UK=Keep locked

�

�

 ER=Reserve/just-lock

�

 UD=Discard/no-update
�

�

 EBS=Browse+Specify#

�

 UKM,UKS=combinations
�

�

� �
	
� �

�

�

 N,NF=New library

�

 L=List

�

 T=Test

�

 Q=quit

�

�

� � � � � � � � � � � � � � � � � �
	
� � � � � � � � �

	
� � � � � � � � �

� � � � � � � �

�

�

 A=Add-to/Alter projlev AP=Promote
�

 ?=help

�

�

� �
	
� � � � � � � �

�

�

 C=Configure CW=Who CP=Path of library � � �
�

�
� �
�
�>

Note that this prompt mightnot give a complete list of TLIB's commands.
Instead, it shows those commands which you are likely to need, based on
your answers to the questions asked by the Configuration Wizard or TLIB-
CONF. Another possible prompt is simply:

 TLIB command (? for help):

Note: If you don't like the prompt which the Configuration Wizard or
TLIBCONF configured for your use, you can easily customize the prompt
(and other aspects of command-line TLIB's user interface).See the
PROMPT, HELP, BANNERand COMMANDSconfiguration parameters, pp. 329
& 330.

To create a new library file for an existing source file, type“N”, for “new
library.” You will be prompted for the name of the source file:

 Create library from what source file?

You should type the name of the source file which you want saved into a
TLIB library file, then pressENTER(or RETURNon some keyboards). Multi-
ple files can be specified with wild-cards or file lists; see p. 50.

If you enteredXXX.PAS (for a Pascal program namedXXX), TLIB will at-
tempt to read the file and then create a library file called (perhaps)
XXX.P$S. If XXX.PAS does not exist, or ifXXX.P$S already exists, then
TLIB will display an error message and return to the main menu. Other-
wise, TLIB will prompt you for a comment:

 Comment line?

The comment line is your description of the source file, which you will use
to identify this version if you ever need to retrieve it from the library file.
For example, you might enter a comment like this:

28

 A program to count widgets

If you pressENTERwithout typing a comment line, TLIB will return to the
main menu without creating the library file. If you want to enter a blank
comment line (not good practice!), you can type a space before pressing
ENTER.

If your comment will not fit on a single line, end the first line with a back-
slash (\) character, and TLIB will prompt you for another comment line.
You can repeat this with successive comment lines to enter comments of
any length. (Note: If you frequently enter multi-line comments, you may
wish to configure TLIB with the “SlashCont M ” parameter, so that you
will not have to enter backslashes when typing multi-line comments; see p.
285.)

If, after entering one or more comment lines, you change yourmind, you
can abort TLIB by pressing Ctrl-Break.

After you enter your comment line(s), the library file (e.g., XXX.P$S) will
be created with your comments and withXXX.PAS's creation date associat-
ed with the first version. (Note: other information, such asthe date/time,
user ID, etc., is also usually stored in the library file; seeloguser , p.
266.)

MS-DOS users:We recommend that you use CED, RETRIEVE, DOSED-
IT, or a similar utility to enhance DOS's line editing. Thesework better
than DOS's inferior DOSKEY utility, since DOSKEY doesn't keep a sepa-
rate command history for applications (though DOSKEY is better than
nothing). It will be helpful for both TLIB comment lines and DOS com-
mand lines. (However, CED has compatibility problems with the DOS box
under some versions of Windows.) See p. 365.

Note: you needn't use the N command at all if you configureUPDATENEW

Y, since TLIB will then create a missing library file automatically, when
you try to to store the first version of your source file with the U (update)
command.

Avoiding the prompt

Important note:To avoid being prompted for a comment for each of your
files, you can run TLIB with command-line parameters, like this:

29

 TLIB N *.C,*.H short comment

This example creates new libraries for all your.C and .H files, each with
the comment, “short comment ”, and it won't prompt you for comments
for each file (unless SLASHCONT N is configured, see p. 285).

30

NF command:
Fast New library create

TLIB also supports the F (fast/freshen) suffix on the N command. The on-
ly difference between the NF command and the regular N command is that
the NF command will not complain about already-existing library files; it
just silently skips them.

In the TLIB GUI, you can select F (fast/freshen) via a checkbox:

The NF command makes it more convenient to use wild-cards to create li-
brary files for new source files (especially when you don't configure
UPDATENEW Y). For example, a dBase programmer who had created some
new source files could type one of the following commands:

 TLIB NF *.PRG
 TLIB NF *.PRG Modules added in rel2

Both commands will create the TLIB library files for all .PRGfiles for
which the library files did not already exist. The first example will cause
TLIB to prompt for the comment for each file. The second example will
just use “Modules added in rel2” as the comment, and won't prompt (un-
less SLASHCONT N is configured, see p. 285).

31

U command: Update a library

After you make a change to your source file, you can update theTLIB li-
brary and store (“check-in”) the new version by selecting “Update” in the
TLIB GUI, or by running command-line TLIB and pressing U (for
Update).

If using the TLIB GUI, first select the file(s) that you want to store, then
pick the “Update / check-in” command. You can find the command two
ways:

1) The “Update” menu button:

2) “Update / check-in” in the command menu, which you can view either
by clicking “Command” in the top menu bar, or by typing alt-C,or by
right-clicking anywhere in the main file list:

After you pick the Update command, TLIB displays an options screen:

32

Note: Hover the mouse cursor over any check-box to see a longer de-
scription of its purpose.

Then click “OK” to start storing your source files into TLIB, and TLIB
will give you an opportunity to enter comments about each source file:

When doing an U (update) command with a command-line versionof
TLIB, as with the N command you will be prompted for the file name, but
this time TLIB expects both the source file and the TLIB library file to al-
ready exist (or you can configure TLIB to automatically create missing
library files, see theUpdateNew parameter, p. 276). TLIB will prompt
you:

 Update library for what source file?

You should enter the name of the source file.

TLIB will then read both library and source files. If the latest version in
the library file is identical to the source file, TLIB will normally display:

 No changes.

(However, TLIB can be configured to add a new version even if there
were no changes; see the ForceU configuration parameter, p. 275.)

Otherwise, you will be prompted for a comment to be associated with the
new version:

 Comment line?

You might enter, for example:

 Faster version -- do I/O in big blocks.

or perhaps:

 Fix bug so it'll handle >32767 widgets

If you pressENTERwithout typing a comment line, TLIB will return to the
main menu (or skip this file and go on to the next one) without updating

33

the library. (Note: in general, pressingENTER at any TLIB prompt will
abort the operation.)

If your comment will not fit on a single line, end the first line with a back-
slash (\) character, and TLIB will prompt you for another comment line.
You can repeat this with successive comment lines to enter comments of
any length.

If, after entering one or more comment lines, you change yourmind, you
can abort TLIB by pressing Ctrl-Break; TLIB will exit leaving the library
file unchanged. Or (unless you've configuredSlashCont M or SlashCont

N) you can abort the update by entering a 0-length comment line.

Otherwise, TLIB will add the new version to the library file,recording the
date and your comments.

Delta Review

If you want to see the “delta” (changes) before entering yourcomments in
command-line TLIB, enter “?” and TLIB will display the changes on your
screen. This can help remind you of why you modified the module, so that
you can enter meaningful comments. We call this feature delta review.

After displaying the delta, TLIB returns to the “Comment line? ” prompt.

The delta format is described on pages 228 and 371.

Note: The Windows version of TLIB has a vastly better Visual Compare,
instead of Delta Review.

Safety

The U command (and the various multi-character commands starting with
U) are the only TLIB commands which modify an existing library file.
They merely append the delta to the end of the library file without chang-
ing any of the information which is already there. Thus you are unlikely to
lose any data, even if the electricity fails while you are doing an update.
Nevertheless, we recommend that you back up your library files frequent-
ly, “just in case.”

34

E command: extract latest version

To retrieve a copy of the latest version of your source file from a library
file, use the E (extract) command. You will be prompted for the name of
the file which you wish to retrieve:

 Extract what source file from library?

If you want to extractXXX.PAS from its TLIB library (which is most often
named XXX.P$S), enter XXX.PAS. If XXX.P$S does not exist, TLIB dis-
plays an error message. IfXXX.PAS already exists in the current directory,
you will be asked whether to replace it with the version from the library.
(However, TLIB can also be configured to silently replace already-existing
files, or to abort without operator confirmation; see theREPLACEparame-
ter, p. 268.)

You can do the same thing non-interactively, by putting the command and
file name on the DOS command line. For example:

 TLIB E XXX.PAS (extracts xxx.pas into the current directory)

 TLIB E SUBD\XXX.PAS (extracts xxx.pas into subdirectory .\subd)

TLIB lets you specify as little or as much as you wish at each step. So, for
example, you could run TLIB like this:

 TLIB E

and TLIB would prompt you for the file name to extract.

Or, if you run TLIB in interactive mode:

 TLIB

then when TLIB asks you for a command, you could type “E XXX.PAS” to
avoid being prompted for the file name.

By default, TLIB libraries are in “text format,” which meansthat they are
designed for storage of ASCII text files, not arbitrary “binary files.” An
ASCII source file extracted from a text-format (normal) TLIB library is
identical to the latest version which was saved in the library except that:

35

1) All lines, including the last one, will end in carriage-return/line-feed.
For input files, TLIB allows lines to end in either carriage-return/line-feed
or just a carriage-return alone (except for the last line in the file, which
needn't have either). That is, the line-feeds are optional.However, when
TLIB reconstructs the files, all lines will end in carriage-return/line-feed.

2) TLIB will not put a Ctrl-Z at the end of the file unless you configure
AddCtrlZ Y (see p. 276).

In addition, if you enable TLIB's automatic tab/blank and blank/tab con-
versions (see entabU and detabE , p. 256), then:

3) Tabs will have been converted to blanks.

4) Any lines with trailing blanks (blanks immediately preceding the car-
riage-return) will have the trailing blanks removed.

5) Lines of more than 254 characters long may be truncated or split. TLIB
cannot do blank/tab conversions in files with extremely long lines.

It is also possible to store “binary” source files in TLIB libraries. With bi-
nary format libraries, TLIB will never makeanychanges to your files. Use
the FileType Binary configuration parameter if you need to store non-
text files in TLIB libraries; see p. 294.

36

ES command: extract Specified (old) version

To retrieve an old version of your source file from a library file, use the ES
(extract specified version) command. This is an example of a“composite”
TLIB command; that is, a basic command (“E”) with one or more suffix
characters appended (“S”, for “specify version”).

After typing the ES command, you will be prompted for the nameof the
file you wish to retrieve, just as with the plain E command. Ifyou want to
extract XXX.PAS from XXX.P$S, you would enterXXX.PAS. (However, if
you wished to avoid a name conflict with the current version of XXX.PAS,
you could specify another extension, likeXXX.P2S, so long as the exten-
sion you specify still “maps to” the right library file name, XXX.P$S).

If XXX.PAS already exists, or ifXXX.P$S does not exist, TLIB will display
an error message. Otherwise, TLIB will list the dates and comment lines
for all the versions of XXX.PAS which are in the library, so that you can se-
lect the one you want. Each version's date and comment line will be
displayed preceded by a version number (the first is usuallyversion 1),
and you will be asked to choose a version:

What version number do you wish to extract ([Enter] for none
)?

Type a version number and pressENTER. TLIB will re-create the specified
version of XXX.PAS from the library. As a convenience, you can use “* ”
(asterisk) to refer to the most recent “trunk” (normal development path)
version, or “*-1 ” to refer to the next-most-recent.

If you change your mind and decide not to extract a source file, just press
ENTERalone, without a version number, and TLIB will return to the main
menu without creating the source file.

(Note:Trunk version numbers are the usual, integer (ormajor:minorpair)
version numbers. However, TLIB also allows more complex version num-
bers. For details, see p. 73, and the discussion of branching on p. 68)

Examples:

37

 TLIB ES XXX.PAS 3 (extract version 3 of xxx.pas to current directory)

 TLIB ES XXX.PAS * (extract latest trunk xxx.pas into current directory)

 TLIB ES SUB\XXX.PAS * (extract latest trunk xxx.pas into directory .\sub)

If you have a “version label” file (a.k.a., “snapshot”) thenyou can specify
the version number as “@filename”, and TLIB will read filenameto deter-
mine the version number. (If this makes no sense, don't worryabout it
now; version-label/snapshot files will be explained later.)

Example:

 TLIB ES XXX.PAS @beta.lis (extract recorded version of xxx.pa s)

You can also retrieve by date & time, instead of version number or version
label file. Simply specify the date and/or time (in TLIB's usual date/time
syntax) instead of specifying the version number, and TLIB will retrieve
the version which was current at the specified time. For details, see p. 241.
(Note: TLIB assumes - but does not check! - that the versions are stored in
the library in chronological order).

If you already know what version you want, and you don't want to see the
list of versions, you can specify the version on the same linewhen you en-
ter the file name (just separate them with a blank, as you would on the
DOS command line).

38

Command Line Parameters and
Batch Files

TLIB is easiest to run interactively, using the GUI interface. However, you
can also run command-line versions of TLIB with DOS command line pa-
rameters. Almost anything which you can do interactively you can also do
using command line parameters. This allows you to build DOS.bat files
(or OS/2 .cmd files) containing TLIB commands.

The rule is that the commands and additional arguments must be specified
on the DOS command line in the order that you would have entered them,
had you run the command-line version of TLIB interactively.If you speci-
fy only some of the required commands and arguments, then TLIB will
“lead you through” the rest, with prompts. For example, if you entered:

 TLIB N MYFILE.PAS This is my program

then a new library file would be created, probably calledMYFILE.P$S , and
the first version would be headed by the comment, “This is my program”.

However, if you had entered:

 TLIB N MYFILE.PAS

then MYFILE.P$S would be created as before, but you would be prompted
to enter the comment line from the keyboard. If you want to do an N or U
command without a meaningful comment (not recommended), you can
specify a one-character comment line, like this:

 TLIB N MYFILE x

To retrieve an old version without being prompted for the version number,
simply specify it on the command line. For example:

 TLIB ES CALC.C 23

Note that you can put as many commands on the command line as will fit,
except that no additional commands can appear after a command which
creates or modifies the library (N or U), since the additional commands
would be misinterpreted as the new revision's comment line.

39

UF command: Fast Update

The UF command (the U command with the “F” fast/freshen suffix) is
similar to the U command except that it will not update a library file unless
the library file is older than the source file. This amounts to a limited built-
in MAKE facility. It is especially useful when you are updating a large
number of source files through the use of wild-cards or file lists.

Note: the UF command is intended for use when check-in/out lockingis
disabled; that is, for a single programmer working alone. For a similar fa-
cility that is more appropriate for group projects, use the UO (update
owned files) command.

For example, if you had modified several of the “.PAS ” (Pascal language)
source files in the current directory, you could quickly andeasily add all
the changes to the corresponding TLIB libraries like this:

 TLIB UF *.PAS

Note that the UF command, like MAKE, depends upon accurate date and
time stamps. If your computer does not have a reliable real time clock, you
must either set the date and time religiously every time you start your com-
puter, or else not use the UF command.

40

L command: List versions

If you wish to see a list of the source file versions containedin a library
file, you can use the L (list) command. The list is displayed in the same
format as for the ES (extract specified version) command, described on
page 37.

The list output can be thought of as an audit trail for the development pro-
cess, since it documents every change made to the source code, along with
when the change was made, and (optionally) who made it. (Note: TLIB's
appending journal provides another kind of audit trail facility; see p. 190.)

After you enter the L command, you will be prompted for the name of the
source file for which you wish to list the versions:

 List versions of what source file?

If the library file does not exist, TLIB will display an error message and re-
turn to the main menu. Otherwise, it will display the file name, date, and
comments for each version in the library. If there are too many versions to
fit on the screen at the same time, TLIB will pause after each screen full to
give you time to read it (but only in interactive mode, not if you specified
“L filename” on the DOS command line).

To print the list of versions (revision history), or save it in a file, you can
use command line parameters and DOS file redirection, like this:

 TLIB L XXX >PRN
 TLIB L XXX >XXX.LST

You can use wild-cards and file lists to easily print a module-by-module
report of the revision history for several modules or even the entire
project; see p. 50.

41

CP command: override library Path

You can, if you wish, keep your library files in the same disk directory as
your source files. More often, however, library files are stored in a differ-
ent hard disk directory, or perhaps on a network file server or on a diskette
in a different drive.

TLIB provides the PATH configuration parameter for this situation: it al-
lows you to specify the path (drive and/or subdirectory, or a“UNC” path)
in which your library files reside. See p. 257 for details.

Sometimes, however, you may wish to override thePATH configuration
parameter and force TLIB to look in a different place for the library file(s).
For this, TLIB provides the CP (configure library path) command.

For example, if your source file is in the current directory on D: , and your
library files are on a diskette in driveB: , you could give the CP command
and enter “B:\ ” when TLIB asks you for the library file's path.

Like all TLIB commands, the CP command can also be specified on the
DOS command line. For example, to update the library file onB: with the
latest verson of D:MYFILE.TXT , you could type:

 TLIB CP B:\ U D:MYFILE.TXT

This makes it simple to prepare a tiny batch file to do the CP command
each time you run TLIB. For instance, you might use a batch file called
BLIB when your TLIB libraries are on the B: drive:

 REM blib.bat: batch file to run TLIB
 REM with libraries on the B: drive
 TLIB CP B:\ %1 %2 %3 %4 %5 %6 %7 %8 %9

Then to update the library file onB: with the latest verson ofD:MY-

FILE.TXT , you could type:

 BLIB U D:MYFILE.TXT

The CP command can also be used to specify the complete library file
name, rather than allowing the library file name to be determined by the
name of the source file. The file name must contain (or be followed by) a

42

“.” (period), since this is how TLIB distinguishes the file name from the
name of a directory.

This form of the CP command is seldom used, since it requires that you
use a separate CP command for each library file. You will generally find it
easier to let TLIB determine the library file name from the source file
name, instead of using this form of the CP command. Nevertheless, here
are a couple of examples:

 TLIB CP MYLIB.XYZ

(The library file is MYLIB.XYZ , in the same directory as the source file.)

 TLIB CP C:\LIBS\MYLIB.

(The library file is MYLIB (with no extension), in directory C:\LIBS .)

The CP command accepts exactly the same path specifications as the PATH

configuration parameter, including several rather obscure variants. For in-
stance, you can specify a list of directories for TLIB to search, or you can
force TLIB to store “lock files” (when check-in/out lockingis enabled) in
a different place from its library files. For an in-depth treatment, refer to
the PATH configuration parameter, p. 257.

43

Text File Formats

Tabs

If you use the default configuration parameters, TLIB cannot recognize the
equivalence of tabs and blanks. That is, tab and blank are considered to be
two different distinct characters.

However, if you configureDETABE Mand ENTABU Y, then tab characters
are equivalent to the appropriate number of blanks (with tab-stops as-
sumed at columns 9, 17, 25, 33, etc.). This allows the library file to be kept
as small as possible by converting multiple blanks to tabs. When a source
file is extracted from its library file, the tabs are converted back to blanks.
For details, see below and p. 255.

If you wish to convert sequences of multiple blanks into tabs, or expand
tabs into multiple blanks, you can use the TABS utility. TABSis included
with TLIB. Like TLIB, it was carefully written to be very fast. However,
at this writing it only supports “8.3” (short) file names.

To shrink a file by replacing multiple blanks with tabs, do:

 TABS IN oldfile newfile

To reverse the process, that is, replace tabs with blanks, do:

 TABS OUT oldfile newfile

You can also convert 4-space tabs to blanks (but not vice-versa):

 TABS OUT4 oldfile newfile

Do not try to run TABS with the same file as both input and output.

Note that you can use wild-cards (asterisks) in both input and output file-
names. For example:

 TABS IN *.c *.new

44

Configuring blank/tab treatment

Some TLIB users need to configure TLIB for automatic tab/blank conver-
sions, but most do not.

TLIB's tab/blank conversion algorithms are the same as those used by the
DOS TYPE and PRINT commands (i.e., tab stops at columns 9, 17, 25,
etc.). So, one way to decide whether you need tab/blank conversions is to
use the DOS TYPE or PRINT command to display a few of your files.

In general, if your files look right when displayed with theTYPE and
PRINT commands, then you can probably enable tab/blank conversions;
but if:

the indentation is wrong,

or if the lines are broken in the wrong places,

or if columns don't line up correctly,

then you probably should not enable TLIB's tab/blank conversions.

More specifically:

1) If you use an editor (like IBM's oldPersonal Editor II) which silently
converts between blanks and tabs, youshould enable TLIB's tab/blank
conversions. Otherwise, if your editor changes blanks to tabs or vice-versa,
then when you add the new version to your TLIB library file, TLIB will
think that almost every line has changed (so the “delta” added to your li-
brary file will be huge).

2) If you use an editor which lets you choose the positions on the line at
which your tab stops will fall, and does not convert the tabs to blanks
when you save the file, and you use non-standard tab stops (e.g., 3 or 4
spaces per tab), then you mustnot enable TLIB's tab/blank conversions.
The popularMultiEdit editor from American Cybernetics can be config-
ured like this; so can most word processors. However,MultiEdit can also
be configured to convert tabs into spaces; if you useMultiEdit like this,
then you can enable TLIB's tab/blank conversions.

3) If you use TLIB to manage files containing more than 254 characters
per line, then you mustnot enable TLIB's tab/blank conversions. TLIB
cannot properly convert between tabs and blanks in files which contain
lines of more than 254 characters.

45

Lines that long most commonly occur in word processing documents, such
as “Rich Text” files, and files produced byXyWrite III+. XyWrite (and
some other word processors) use Carriage Return / Line Feed to delimit
paragraphs instead of lines; this results in “lines” (really paragraphs)
which often exceed 254 characters.

Note: Many word processors, such asWordPerfectandMicrosoft Word,
use specialbinary formats to store documents. To handle these files with
TLIB, you must configure “FileType Runlen ” or “ FileType Binary ”
(or “FileType Auto ”), and TLIB will ignore the ENTABUand DETABE

settings.

Note: The StarOfficeandOpenOfficeword processors are special cases.
Their document files (.sxw , etc.) are actually compressed (“zipped”)
archives. To store one of these files under TLIB, we recommend that you
first rebuild the.sxw archive with decompressed (“stored”) xml compo-
nents. Please contact support@burtonsys.com if you need a batch script to
simplify this.

4) If you are using TLIB to manage files whichmustcontain tab charac-
ters, then donot enable TLIB's tab/blank conversions. For example, a few
MAKE utilities require that certain lines in your “makefile” begin with a
tab character. (Note: Opus Make does not have this requirement.)

To enable tab/blank conversions, add the following to the end of your
TLIB configuration file (probably TLIB.CFG), or change theENTABUpa-
rameter configured by TLIBCONF or the TLIB Configuration Wizard:

 ENTABU Y
 DETABE M

To configure varying tab treatments for different source files, or to indi-
cate that some source files need to be stored in binary format, you can use
TLIB's IF and ENDIF parameters, as in the following example:

 DETABE M
 ENTABU N
 IF *.ASM
 REM - Do tab/blank conversions only on assemble r files
 ENTABU Y
 ENDIF
 IF *.WK*,*.LIB
 REM - Spreadsheets and .lib files are not ASCII text
 FILETYPE BINARY
 ENDIF

46

End-of-file markers

DOS had two ways of marking the end of a text file. The first method
simply set the file's length to be the total number of characters in the file.
The second way was similar, except that there was one extra character ap-
pended to the end: a Ctrl-Z (ASCII code 26).

The us of a CtrlZ as an end-of-file indicator is largely obsolete, but TLIB
will accept either format as input. However, all text files created by TLIB
use the first format: there will not be a Ctrl-Z at the end (unless you con-
figure ADDCTRLZ Y, see p. 276).

47

Managing Multiple Source Files

Most programs are built from a large number of source code files. This
leads to several common questions.

The first question for developers using many source files is, “how can I
conveniently do an operation on a whole set of source files?”GUI ver-
sions of TLIB let you do this by selecting the files in a “pick list” window.
Plus, both GUI and command-line versions of TLIB support wild-cards
and file lists.

Wild-cards and file lists can be used in any command where youspecify
the name of a source file, e.g., the U (update), E (extract), N(new library),
and L (list) commands.

An example of the use of wild-cards in a U (update) command is:

 TLIB U *AWK*.C

TLIB would do a U (update) command on every.C file in the current di-
rectory whose names contain “AWK”, for example, MYAWKS.C, AWKFILE.C,
etc..

File lists are used similarly:

 TLIB U @myfiles.lis

TLIB would do a U (update) command for every file with a name listed
(one file name per line) in the text file, myfiles.lis .

Another question to consider is, “how can I be sure that I've updated all
the relevant library files” after revising a group of sourcefiles? If you
work alone (and so you do not need to use check-in/out locking), you can
just use wild-cards with the U (update) command, like this:

 TLIB U *.c,*.h

LIB will say “no changes ” for each unchanged source file, and prompt
you for a comment line for each modified source file. If you want to skip a

48

file, without doing the Update, just pressENTERwithout typing a comment
line.

You can speed up this process by telling TLIB to skip source files that are
older than the corresponding libraries, by using the F (fast/freshen) suffix,
like this:

 TLIB UF *.C,*.H

This is a very fast and simple way to add all of your latest changes to the
library files; see also p. 40.

In a networked development environment, with check-in/outlocking en-
abled, LOCKING Y(to coordinate multiple programmers), you can do much
the same thing, but you would use theUO(UpdateOwned files) command
instead of the UF command. (The “O” in “UO” is the letter O, for
“owned,” not the numeral 0.) The O (owned) suffix limits the scope of the
update command to just those files that you have checked-out/locked. O
(owned) is a wild-card search mode suffix; for more about wild-cards and
search modes see pp. 50 and 59.

A third problem for developers is, “How can I easily retrievea particular
versionof each of a set of related source files?” This is known as the “ver-
sion labeling” problem. TLIB solves it with the S (“snapshot”) command,
for labeling the set of modules and versions in a particular release; see p.
92. (Note: the S command replaces the oldTLIBSNAP program which
was included with TLIB 4.12.)

Additionally, if you need to manage multiple actively-changing versions of
a single program, you can use TLIB'sNamed Project Levels. For example,
you may be supporting one or more old releases of a software product as
you develop the next release. Or, you may be managing “semi-custom”
software, in which you have one standard version and many customized
variants of it, all of which must be continually maintained.Version track-
ing and named project levels are described starting on p. .

49

Wild-cards and File Lists

Wild-cards can be used in any command where you specify the name of a
source file, e.g., the U (update), E (extract), N (new library), and L (list)
commands.

An example of wild-cards in an E (extract) command is:

 TLIB E *AWK*.C

TLIB would extract the current version from each of the libraries.

Note that you can use as many asterisks and/or question marksas you
wish. Additionally, TLIB supports six different wild-card“search modes”
to select files in various ways; see p. 59.

Or, you can use a file list. File lists are very simple. They are usually just
ASCII text files containing file names, one per line. File lists are used sim-
ilarly to wild-cards. For example, if you had a file calledMYSTUFF.LIS

containing the lines:

 MYFILE.C
 MYJUNK.C

then this command would update the library files for both files:

 TLIB U @MYSTUFF.LIS

You could also do:

 TLIB E @MYSTUFF.LIS

to extract MYFILE.C and MYJUNK.C.

The GUI versions of TLIB can create file lists for you if you use the “Plain
File List” option of the Snapshot command. Additionally, TLIB's LIST-
BLD utility can build file lists automatically, by scanning your source

50

code for “include” references to other modules, and by combining and ma-
nipulating other file lists; see p. 203.

LISTBLD can build file lists for many languages, but not for xBase. How-
ever, dBFind, a dBase syntax checker from Sigma Six (formerly The
Software Development Factory) has this capability. dBFindcan automati-
cally generate TLIB-compatible file lists, by analyzing dBase or Clipper
source code. Sigma Six is at P.O. Box 1106-B, Hunt Valley, MD 21030,
Tel: 410-666-8129, http:/www.sigmasix.com/. (Tell SteveJohnson we said
hello.)

For compatibility withCrossRefC(a C cross-referencer tool) from Sigma
Six, we allow an optional trailing “+” after each file name, at the end of
each line in a file list; however, it is not required.

You can also put version number specifications in your file lists, if you
wish. Such file lists can be used as “version labels” to record which ver-
sions of each of a collection of files go together. However, version label
files are rarely created manually. Instead, you'll probably use TLIB's S
(snapshot) command to create version labels; see p. 92.

You can put comments in your file lists. Simply precede each comment
line with an exclamation point and blank or two exclamation points (“! ”
or “!! ”) in the leftmost two columns.

If you have files with names that begin with “!!”, you can listthem in your
file lists with an explicit directory specifiction, like this:

 YOURJUNK.C
 .\!!MYJUNK.C

Restrictions

There are several restrictions on the use of wild-cards and file-lists with
TLIB. They are:

o You cannot use wild-cards to specify multiple file lists. That is, you can-
not use specifications like @*.lis

51

o File lists can be nested, but only up to 3 levels deep. That is,file lists can
contain specifications like@ name.ext .

o When used in most contexts, file lists can contain wild-cardspecifica-
tions. That is, file lists can contain specifications like*.c and *.asm .
(Exception: you can't do this with branch version specifications. If this
makes no sense, don't worry. Branch versions will be covered later.)

o Some versions of TLIB have limited support for maintaining TLIB li-
brary files within PKZIP-archives. However, TLIB does not allow the use
of wild-cards with archived (PKZIPed) library files. You can use file lists
with archived library files, if the file list does not contain wild-card speci-
fications.

DOS errorlevels

When processing a single file, command line versions of TLIBreturn a
DOS errorlevel of zero for success or non-zero for failure, except that
there are special rules for the T (test lock status) command.

When processing multiple files (via wild-cards and/or filelists), command
line versions of TLIB return an errorlevel which is the maximum of the er-
rorlevels which would have been reported for any of the individual files,
had such a file been processed by itself (without wild-cards). This has the
effect of ensuring that if an error occurred for any of the processed files
(and the error was severe enough to have caused a non-zero error level),
then the errorlevel will be non-zero.

TLIB for Windows shows the errorlevel result for each file inthe status

column in the main window.

52

Comma-Delimited Lists of Files

TLIB also supports “in-line” comma-delimited file lists. That is, you can
do commands like:

 TLIB uf *.c,*.h Fix PTR no. 8/159

Important: donot include any blanks in the list of file specifications. The
following will not work:

 TLIB uf *.c, *.h This won't work!

the comment is “*.h This won't work! “ The problem is that “*.h ” is
part of the comment.

You can even include@file.lis references within an in-line file list, and
vice-versa:

 TLIB uf @file1.lis,@file2.lis This is a comment

Even if you specify a file multiple times, it will only be processed once.
When processing multiple files, TLIB first expands the wild-card specifi-
cations and file lists into a single internal list of files, and eliminates
duplicates, to avoid processing any file twice. This mechanism works
when using both wild-cards and file lists (both kinds: filescontaining file
names, and in-line comma-delimited lists).

This is convenient when using file lists that contain wild-cards, which
might otherwise specify the same files multiple times in different ways.
For example, the filemyprog.c is specified twice in the following com-
mand, but will only be processed once:

 TLIB u *.c,*.h,myprog.* Fix PTR no. 8/159

This also avoids idiosyncratic behavior when extracting files onto a Novell
Netware drive using wild-cards with a search mode that matched the ex-
tracted files: earlier versions of TLIB would extract each file twice
because Novell's “find-first/find-next” search implementation (unlike

53

DOS's) does not always consider an extracted file to be the same as the file
it replaced, and so it finds the file name twice. (We don't know why it was
only twice, however.)

54

Integration With Other Products

TLIB has a variety of integration features, to make it easierto use with
other products.

“Native” Project File Support

TLIB has built-in support for the compiler-native project files of many
programming languages and other development tools.

To access this feature from within TLIB for Windows, click the “Mode”
toggle button. You can then directly “open” a native-format“project file”
used by any of ten popular development tools (plus HTML and .shtml web
site files), instead of using wild-cards and file-lists to specify source files.

To access this feature from the command-line versions of TLIB, reference
the compiler's project file as if it were a TLIB file list, except that you
should specify “@@” (two @s) before the name of the project file. For ex-
ample, you could store all the source files in a VB 5.0 programcalled
myproj with this command:

 tlib nf @@myproj.vbp

Currently we support Microsoft Visual Basic 3.0*.mak and VB
4.0/5.0/6.0*.vbp projects, Microsoft Developer Studio / VC++ 5.0-6.0
projects and workspaces (*.DSP & *.DSW), Borland Delphi projects
(*.dpr), Borland C++ Builder projects (*.bpr), Watcom C/C++ 10.5
project (*.wpj) and target files (*.tgt), Symantec Visual Cafe projects
(*.prj), and Help Magician Pro (*.hmp). Also, we support the project
files of three popular programmers' editors: MultiEdit (*.PRJ), Visual
SlickEdit (*.VPJ), and CodeWright (*.PJT). Also, we support using a
“main” web site file (typically index.html , index.htm , or index.shtml)
as the project file for a web site (TLIB parses the file and follows the links
to find the rest of the web site's files).

55

You can also specify a bit-sensitive options value, within square brackets
at the end of the project file name. The bit values supported vary by
project file type, but the two most common ones are: Bit 0 set to ‘1’ means
that certain kinds of binary files found in the project are subject to version
control; bit 1 set to ‘1’ means that TLIB should scan for#include direc-
tives so that the list of files deduced includes the header files.

For example, to store the initial version of a Watcom C/C++ project into
TLIB, scanning for #include , you could type:

 tlib nf @@myproj.wpj[2]

This feature is not perfect. Some tools have idiosyncrasiesthat are difficult
to manage, such as “adjustable” include file search algorithms, and Wat-
com C/C++ include file scanning is necessarily a bit sluggish.

For the most part, TLIB's include file searching algorithm for Watcom
C/C++ projects mimics that of the Watcom compiler, except that:

o TLIB ignores system header files (files referenced with an#include di-
rective that uses<angle brackets> to quote the header file name. (This
is because it is rarely useful to store the system header files under TLIB.)
o TLIB honors the -i include directory list(s) that are stored in each target
(.tgt) file, except that TLIB ignores any include directories that reference
Make macros, such as "$(%watcom) " or "$[: ".
o TLIB ignores the %{os}_INCLUDE% and %INCLUDE%environment vari-
ables.
o Watcom's description of their include search algorithm specifies that the
first place looked is the "current" directory, followed by the directory con-
taining the "parent" file (that is, the including file, the file with the
#include directive), followed by the parent file's parent file's directory,
etc.. TLIB follows this algorithm exactly, but note that the"current" direc-
tory in this context is assumed by TLIB to be the directory that contains
the target (.tgt) file.

We plan to add support for other languages, as well. If your favorite lan-
guage uses project files that are not supported by TLIB, please give us a
call (better: send us email tosupport@burtonsys.com), and perhaps we
can add support for it.

Using native project files is very convenient in the TLIB forWindows
GUI: just click the “Mode” button, and use the “open” dialogue, and all

56

the complexity of wild-cards search modes, etc., disappears. In command-
line versions of TLIB, the lack of a pick-list for selecting among the files
in a project makes compiler-native project file support less powerful.

APIs for Integration with Windows Programs

TLIB for Windows is constructed in two parts: with a GUI “front end” us-
er interface, and a DLL “back end” version control engine. The API
(Application Program Interface) with which the GUI front end communi-
cates to the DLL is also available for use by other programs. There are
both 16-bit and 32-bit versions; the interface specification is in TLIBDL-

L.H .

The 32-bit GUI version of TLIB for Windows also supports a “mailslot-
based” interface, which allows other Windows applicationsto easily inte-
grate with TLIB for Windows via simple mailslot reads and writes. This is
usually a simpler alternative than calling the back-end DLL API

Additionally, we are in the process of implementing a Microsoft Source
Code Control interface DLL; at this writing, it is partiallyworking, but un-
released. Please contact us if you need it.

Add-In for Visual Basic

TLIB for Windows (included in the TLIB Combo Edition) has add-ins for
Visual Basic 4.0 (32-bit version), 5.0, and (beta) 6.0, to hook into the VB
IDEs. The Add-In for Visual Basic 5.0, works with the Professional, En-
terprise, and Learning Editions of VB 5.0, but not with the control-creation
edition. We also have a beta Add-In for Microsoft Developer Studio 6.0
(VC++, etc.)

Plus, TLIB can directly “open” VB 3.0, 4.0, 5.0, and 6.0 project files, as
described below. (VB.NET project groups will be supported soon, call or
email us if you need this feature.)

57

Borland Delphi and C++ Builder

TLIB can directly “open” Borland Delphi and C++ Builder project files, as
described above.

Watcom C/C++

All editions of TLIB include batch scriptsGEN_CI.* and GEN_CO.*, for
hooking TLIB into the Watcom IDE. See the file WATCOM.TXT for details.

Plus, TLIB can directly “open” Watcom C/C++ 10.5 project andtarget
files, as described below.

Microfocus COBOL Workbench

See MFCOBOL.ZIP .

Programmers' Editors

The “big three” programmers' editors, MultiEdit, CodeWright and
SlickEdit, are all integrated with TLIB. So is Brief. Others(such as ED
and The Semware Editor) may also have integration with TLIB by the time
you read this. See the editor's documentation, or call Burton tech support if
you need help.

58

Six Different Wild-card Search
Algorithms

TLIB's wild-card searching has been significantly enhanced. With TLIB
5.50, youalwaysspecify the file names (or wild-card specifications) for
thesourcefiles (instead of for the library files). However, you can instruct
TLIB to use any of six different wild-card search algorithms, by appending
any of six suffix letters to those TLIB commands which acceptsource file
names: N, U, E, L, T, S, A, M.

The first six suffixes below are called “search mode suffixes.” In addition,
TLIB supports two special suffixes, N and I:

Suffix Meaning

W “Work files” searches the existing normal source files, like the
DOS “dir ” command would do with the same
wild-card specification.

L “Library” searches for the corresponding library files.

C “Checked-out” searches for the corresponding lock files (which
normally exist only for files which someone has
checked-out/locked).

O “Owned files” like “C”, but only those files which you have
checked-out/locked.

T “This project lev” searches for names defined in the current project
level (if any). The current project level is selected
via the PROJLEV configuration parameter.

A “All levels” searches for names defined in the current project
level and/or its predecessor level(s), as determined
by the LEVEL configuration parameter for the cur-
rent project level.

N “No search mode” a special suffix used only with explicit (non-wild-
card) specifications, to disable directory look-ups
even if FIND1FILE Y is configured.

I “Include subdirs” add this suffix to make TLIB scan subdirectories
(if TREEDIRS Y is configured).

59

Note #1: as is probably obvious, the C and O suffixes only workif you
have locking enabled (LOCKING Y, LOCKING B, etc.), and the T and A suf-
fixes only work if you have tracking enabled with named project levels
(TRACK Y, PROJLEV name, LEVEL n= name...).

Note #2: the wild-card search mode is of consequence only when you use
wild-cards to specify your source files, or whenFIND1FILE Y is config-
ured (sinceFIND1FILE Y causes all file specifications to be interpreted as
if they were wild-cards).

Most of the wild-card search modes can be combined, as well. When you
specify more than one search mode, TLIB expands the list of files for each
search mode, and combines the lists, removing duplicates. The I (include
subdirs) suffix can be specified in combination with any of the six search
modes. The N (no search) suffix can only be specified by itself.

In TLIB for Windows, the search mode options are provided by check
boxes on the main screen.

The search mode suffixes can be specified in combination with the other
command suffixes:

Suffix Meaning Applicable commands
B Browse mode E

D Discard lock U

F Fast/freshen E,N,U,A

K Keep checked-out N,U

M Minor version number increment U

R Reserve lock E

S Specify version number E,N,U,S,M

The order in which suffix characters are specified is inconsequential. For
example, EBT and ETB are exactly the same command (browse-mode ex-
tract, with wild-cards matching the file names listed in thecurrent project
level).

60

The default search mode depends upon the command:

Command Meaning Default search mode
N New library create W (work files)
U Update library W (work files)
L List versions L (library files)
E Extract source L (library files)
S Snapshot L (library files)
M Migrate L (library files)
T Test lock status C (lock files)
A Add/Alter project level A (all project levels)
AP,AD Promote or Delete T (this project level)

Important note #1:The L, C and O search modes are dependent upon the
EXTENSION configuration parameter (p. 254).

Note #2:The TREEDIRSparameter determines whether or not you can use
the I (include subdirs) option. If you've configuredTREEDIRS Ythen you
can make TLIB search subdirectories by appending the I suffix (or check-
ing the Include Subdirs box in TLIB for Windows).

For example:

 TLIB ETI *.c extracts all .c files listed in current projlev

 TLIB ET *.c extracts only the .c files for current directory

Note #3:The search mode suffixes may not appear in the prompt and help
screens which are generated by TLIBCONF or the TLIB Configuration
Wizard.

Note #4: Disabling search modes in command-line versions ofTLIB:
TLIBCONF (for DOS-only versions of TLIB) and the TLIB Configuration
Wizard (for the combo version) normally configure TLIB withall com-
mands and all search modes enabled. Because of the very largenumber of
different possible TLIB commands which can be built by combining the
various search mode suffixes and regular suffixes with the basic com-
mands, we do not to require that you list all the combinationsof
commands and search mode suffixes in TLIB'sCOMMANDSconfiguration
parameter. Instead, if you list a command without any search-mode suffix
in the COMMANDSconfiguration parameter, then all search mode suffixes
will be allowed for that command. If you wish to allow only particular
search mode suffixes for a command, you may do that, too, but for that

61

command you must list all the combinations that are to be allowed, includ-
ing the search modes (specify the suffixes in alphabetical order).

TLIB 5.50's handling of wild-cards is enhanced in the following ways
from TLIB 5.00:

o The I suffix controls whether or not subdirectories are searched (when
TREEDIRS Y is configured).

o With earlier versions of TLIB, only the T and A search modes were ca-
pable of processing subdirectories, and whether they did soor not was
determined by whether or not you specified a specific directory. Neither of
these statements is now true. All TLIB commands operate on a just a sin-
gle directory, regardless of the search mode(s), unless youadd the the I
(Include subdirectories) option letter to the TLIB command, to make it
process subdirectories (if you've configuredTREEDIRS Y). This behavior
is now consistent regardless of what search mode(s) you use.

o TLIB now fully determines the list of files that a command will operate
upon before it processes the first file. (Earlier versions of TLIB processed
the files as the names were determined.) This means that if you have a lot
of files there may sometimes be a noticable pause before the first file is
processed, especially if you use theI suffix to process subdirectories, and
especially if you use several wild-card search modes in combination.

o You can now combine two or more search mode suffixes to make TLIB
find all files that would be found by any of the search modes. For example,
if you have work files for abc.c and def.c, and there are TLIB libraries for
DEF.C and GHI.C , you can useLWas the wild-card search mode to select
all three files (the "W" makes TLIB find filesabc.c and def.c , the "L"
finds makes TLIB find def.c and ghi.c , so "LW" makes if find all three).
When you specify more than one search mode, TLIB simply handles each
search mode in turn and merges the resulting lists of files.

(We mainly added the multiple-search-mode support so that TLIB for
Windows could have a default search mode that would be reasonable re-
gardless of which command was to be used. This was needed because the
GUI front end of TLIB for Windows uses a paradigm in which the user
first selects the files to be processed, then selects the operation to be
done.)

o You can now ask TLIB to tell you what files it would operate upon,
without actually doing the operation. Simply preceed the command in
question with “G1”. Thus, TLIB G1EBFL *.C will list the files that would

62

be extracted by theTLIB EBFL *.C command (Extract Browse-mode
Freshen with the "L" search mode).

63

F - Filter File Names

In TLIB's GUI Windows user interface, you can select which source files
TLIB will operate upon before issuing the TLIB command. However, in
command-line versions of TLIB, you don't have that flexibility. Instead,
you must specify the source files to operate upon by using wild-cards
and/or file-lists.

The F (Filter file names) command help improve the flexibility of com-
mand-line versions of TLIB, for specifying source files to be processed by
TLIB. The F command lets you specify a wild-card specification (or sever-
al of them, separated by commas) which TLIB will use to “filter” the file
names found when processing subsequent commands.

The F (filter) command is mainly useful in command-line versions of
TLIB. In the TLIB for Windows GUI, the main file pick list offers a simi-
lar (but more flexible) capability, so F (filter) is not needed (though it is
accessible via “Run Manual Command”).

The F (filter) command is mainly intended for selecting particular files
from file lists, though you can also use it as an “AND-clause”when speci-
fying files with wild-cards.

For example, this command would list the versions of all the.C and .H

files named in the file list ALLFILES.LIS :

 TLIB F *.c,*.h L @allfiles.lis

The filter's wild-card specifications are of the same sort as those which
you can use inIF clauses (p. 321) in your TLIB configuration file: they
can contain one or more wild-card file specifications separated by com-
mas. The wild-card specifications can have multiple, leading and/or
embedded asterisks and/or question marks in them, if you wish. However,
you cannot include directory specifications or the @filelist.ext format.

Examples:

64

 TLIB F myfile.* E @all.lis this is okay
 TLIB F *my*.* E @all.lis this is okay
 TLIB F make*.*,*.c E @all.lis this is okay
 TLIB F *.c,@xyz.lis E @all.lis illegal (“@xyz.lis ” prohibited)
 TLIB F mydir*.c E @all.lis illegal (“mydir\ ” prohibited)

Once you have specified a filter, it remains in effect until you either quit
TLIB, or until you explicitly change or disable the filter.

You can specify a period as the filter to disable file name filtering. For ex-
ample, in the following TLIB command line, the*.c filter would apply to
file names found inALL.LIS , but no filter would be used when taking file
names from BATS.LIS :

 TLIB F *.c E @all.lis F . E @bats.lis

Note #1: If you upgraded to TLIB 5 from TLIB 4, then your existing
TLIB.CFG file may define “F” as a shorthand for “UF” (fast-update/fresh-
en), via the “COMMANDS...F=UF, ...” configuration parameter. (TLIBCONF
can optionally configure TLIB this way if you say that you want TLIB 5 to
use TLIB 4's single-character commands.) If this is the case, then you can
either remove “F=” from the COMMANDSparameter, or else you can specify
F0 (“F zero”) instead of F when you want to use a filter.

Note #2: Because TLIB for Windows lets you expand wild-cardsand then
select files from the expanded list, the F (filter) command is rarely needed,
so we did not include it on the main screen. To use the Filter command in
the TLIB for Windows GUI, select “Run” and enter a manual command of
“F wildcard-specs”. The filter will persist until you reset the current direc-
tory or exit TLIB for Windows.

65

Tree-structured directories

TLIB supports keeping your TLIB library files (and/or lock files) in a
“tree” directory structure which mimics that of your source files.

To use this feature, you must do three things:

i) Configure TREEDIRS Y .

ii) Change your PATH configuration parameter (or CP command), adding
“ *\ ” at the end. TLIB will substitute the “relative path” of the source file
(relative to WORKDIR, your main work directory) for the “*\ ” in the path.

iii) Enable “version tracking” for your source files (version tracking is ex-
plained later).

For example, consider the following TLIB configuration file excerpt:

 TREEDIRS Y
 LIBEXT ??X
 LOKEXT ??Z
 PATH F:\TLIBS*\
 IF *.c,*.h
 TRACK Y
 ENDIF

Then if your main work directory isC:\WORK\ , and you have a source
files named C:\WORK\IOSTUFF\MYFILE.C and C:\WORK\MAIN.C , you
could create TLIB libraries for them like this:

 cd \work
 tlib n iostuff\myfile.c This is a comment
 tlib n main.c This is a comment

TLIB will create these library files:

 F:\TLIBS\IOSTUFF\MYFILE.C_X
 F:\TLIBS\WORK.C_X

66

Note that the F:\TLIBS\IOSTUFF and F:\TLIBS directories should al-
ready exist; TLIB will not create them for you (unless you configure
MAKEDIRS Y, see p. 315).

67

Branching: Version Trees

With branching, your version numbers can contain up to 9 decimal points,
so that, for instance, if your library contains versions 1 through 15, you
can later go back and add version 9.1. Version 9.1 is called abranchver-
sion; versions 1 through 15 are called trunk versions.

You might add version 9.1 if, for instance, version 9 was partof an earlier
release of your program and you needed to make a minor bug fix to it.
Version 9.1 is not considered the “newest” version in the library, even
though it may have been added after version 15.

Note well:Version 9.1 isnot in any sense “between” versions 9 and 10!
Do not think of the dot in “9.1” as a decimal point. Rather, thedot is just a
separator character. Version 9.1 is “beside” or “in parallel with” version
10. Version 9.1 may be either newer or older than version 10, but it is not
an ancestor of version 10. Instead, both version 9.1 and version 10 have
version 9 as their immediate ancestor.

Most TLIB version numbers are simply consecutive integers.These are the
“trunk” versions. The trunk version after version “5” (if itexists) is usually
called version “6” (or, perhaps, themajor:minorpair “5:1”). Version num-
bers containing decimal points are called “branch” versions. Version 5.1
would be the first version in a branch from version 5.

If you never have to create “maintenance releases” (bug fixes to obsolete
versions), nor maintain parallel lines of development, then you will proba-
bly always/only work on the latest versions of your source files, so you
will probably never need to use branching.

The “trunk” vs. “branch” terminology derives from the pictorial hierarchy
of version numbers. Consider a library file containing seven versions,
numbered one through seven, like this:

 oldest new est
 1 � � �> 2 � � �> 3 � � �> 4 � � �> 5 � � �> 6 � � �> 7

The arrows represent a development time line. Version 7 was derived from
version 6, which was derived from version 5, etc.. The versions are in a

68

straight sequence, like the trunk of a tree, growing from left to right (ver-
sion 1 could be called the “root”).

Usually, the next version would be called version 8, and it would be creat-
ed by editing a copy of version 7 to incorporate some new improvement.

Suppose, however, you need to make a minor revision to version 3, rather
than version 7. You would retrieve version 3 from the libraryfile with the
ES command, make your changes, and add it to the library file.However,
it really shouldn't be added as version 8, since it is not derived from ver-
sion 7. Instead, you would like to add it as version “3.1”, since it (like
version 4) is derived from version 3.

If version tracking is enabled (TRACK Y), then TLIB will create the branch
automaticallybecause it knows that you started with version 3 rather than
version 7. Otherwise, you can use theUB (update branch) or US (update
specified version)command to do this. US is very similar to U (update li-
brary), except that it allows you to specify the version number which you
wish to create.

For example, if the program was calledMYPROG.PAS, then you could let
TLIB automatically determine the new version number like this:

 TLIB U MYPROG.PAS this is my comment line

Or, you could add (branch) version 3.1 like this:

 TLIB US MYPROG.PAS 3.1 this is my comment line.

Alternately, you can use an asterisk instead of the “1” in “3.1”, and TLIB
will figure out the actual version number, like this:

 TLIB US MYPROG.PAS 3.* this is my comment line.

Both of these forms are equivalent unless version “3.1” already exists, in
which case the first form would result in an error message, but the second
form would create version “3.2”.

69

Our library file could now be depicted graphically like this:

 oldest (1-7 are trunk versions) newes t
 1 � �> 2 � �> 3 � �> 4 � �> 5 � �> 6 � �> 7
 (root)

�

�
� �> 3.1 (branch version)

If version 3.1 of your program didn't work correctly, you would need to re-
vise it again, and you could create version 3.2, and then versions 3.3, 3.4,
3.5, ..., 3.9, 3.10, 3.11, etc.. You could even go back and create versions
3.1.1, 3.1.2, etc..

You can also create additional branches from version 3, “in parallel with”
version 3.1, 3.2, etc.. The second branch from version 3 has version num-
bers which contain a parenthetical “branch number” of “2” (the number of
the branch, as opposed to the number within the branch). The first such
version, in the second branch from version 3, would be number3.(2)1, and
the library file could be depicted like this:

 oldest (1-7 are trunk versions) newes t
 1 � �> 2 � �> 3 � �> 4 � �> 5 � �> 6 � �> 7
 (root)

�

�
� �> 3.1 (branch version in 1st branch)

�

�
� �> 3.(2)1 (branch version in 2nd branch)

If you go overboard with branching, the structure of your library file can
become very confusing, resembling a sideways tree, like this:

 oldest newe st
 1 � �> 2 � �> 3 � �> 4 � �> 5 � �> 6 � �> 7
 (root)

�

�

�
� �> 3.1 � �> 3.2

�
� �> 6.1

�

�

�

�
� �> 3.1.1 � �> 3.1.2

�

�

�
� �> 3.(2)1

�
� �> 3.1.1.1

We don't recommend creating library files that look like this!

The UB (create a new Branch) command tells TLIB that you want to store
the new version as a new “something.1” branch, but let TLIB determine
the particular branch number. Like the US command, the UB command
can be used to create a new branch regardless of whether or notyou start-

70

ed with the latest trunk version. However, when tracking is enabled the
UB command will always create a new version that is a successor of the
version that you started with (unlike the US command, which will create
whatever new version number you tell it to create).

Note: you cannot combine the U (update) command's "B" suffix(create
branch) with either the "S" suffix (specify new version) or the "M" suffix
(increment minor trunk version).

The TLIB E (extract) command (and the EB command, extract forbrowse)
will generally retrieve the “current” version of a file. In the simplest case,
this is the latest “trunk” version. However, if you use TLIB's named
project levels, then it may be some other version, since which version is
current depends upon which project level is your current project level (the
current version numbers for each file are recorded in the current level's
tracking file -- but that is explained later).

(There is one exception to this rule. If you use a file list or snapshot file to
specify the extracted source files, the version number, if any, which is list-
ed in the file list or snapshot file will override the “current” version
number.)

To retrieve something other than the current version, use the ES (extract
specified version) command. For example, to retrieve version 3.1 of
MYPROG.PAS:

 TLIB ES MYPROG.PAS 3.1

You can use an asterisk in place of the last part of the versionnumber to
mean “most recent.” In the overly complex tree above:

 TLIB ES MYPROG.PAS 3.* (retrieves version 3.2)
 TLIB ES MYPROG.PAS 3.1.* (retrieves version 3.1.2)

Note that “2.0” is the same as “2”, so if there is no version 2.1:

 TLIB ES MYPROG.PAS 2.* (retrieves version 2)

The “S” in the “ES” command is an example of acommand suffix. Most of
TLIB's basic commands support one or more command suffixes,which
modify the bahavior of the basic command. (In TLIB for Windows, option
check-boxes are used in place of the command suffixes.)

71

The S suffix, as it happens, modifies the behavior of the E command to
make it accept an explicit version specification. Other suffixes modify it in
other ways. Suffixes that you can specify with the E command are B
(browse), F (fast/freshen), and R (reserve). Plus, there are seven other suf-
fixes that can be used to alter the way TLIB interprets wild-card
specifications; these are called “search mode suffixes” (p. 59).

Most of the suffixes can be combined with one another, too, athough a few
combinations are prohibited. Thus, for example, the “EBS” (or, equiva-
lently, “ESB”) command means Extract-a-Specified-version-for-Browse.

72

Version Numbers

Both major:minor “trunk” version numbers and N-way branches are sup-
ported by TLIB 5.xx. The new, extended syntax for version numbers
(which supports these features) is upwardly-compatible with the old TLIB
4.12 version numbers.

Minor version numbers

Some of our users who are used to other version control products have
asked us to support “major:minor” version number pairs for trunk ver-
sions, rather than just integers. Thus, rather than having asequence of
“trunk” versions like “1, 2, 3, 4, 5, 6, 7”, you could have a series like “1,
1:1, 1:2, 1:3, 2, 3, 3:1”.

The numbers after the colons are called “minor version numbers,” and the
“regular” numbers (before the colons) are called “major version numbers.”

Note that “1:0” and “1” are synonymous, so the second sequence of ver-
sion numbers could also have been written, “1:0, 1:1, 1:2, 1:3, 2:0 3:0,
3:1”.

There isn't really any functional difference between the regular integer-on-
ly trunk version numbering scheme and the major:minor numbering
scheme. Both are simply ways of designating a series of versions, each
version derived from the one before.

Some programmers prefer to designate “minor” changes by incrementing
the minor number, and “major” revisions by incrementing themajor num-
ber. How -- or whether -- you use minor version numbers is entirely up to
you. However, there are a few things to be aware of:

* Older versions of TLIB (e.g., TLIB 4.12) and Opus Make (prior to Opus
Make 6.0), do not support major:minor version number pairs in TLIB li-
braries. If you use them, your TLIB libraries will be incompatible with the
old releases of these programs.

73

* The use of major:minor version numbers does not affect retrieval of the
“latest” trunk version. Versions “*” and “*:*” are synonymous; both mean
“latest trunk version”.

* The U and N commands work as in previous versions of TLIB: they cre-
ate “regular” integer version numbers (that is, they increment the major
version number and set the minor version number for the new version to
zero). Thus, if you use the U command to add a new version afterversion
5:3, the new version will be version 6.

* You can use the US or UM command to force a new version to incre-
ment the minor number. With the US command, you can specify the
specific version (e.g., “5:4”), or you can use an asterisk (“5:*”). More con-
veniently, however, you can use the M (“minor”) suffix, which simply
causes the U command to increment the minor version number instead of
the major version number.

The M or S suffix can be combined with other suffixes (but not with each
other). So, for example, to increment the minor version number and still
keep the file checked-out/locked, use the UKM (or, equivalently, UMK)
command. (The K suffix, to “Keep checked out,” is explained on p. 101.)

* You cannot normally “skip” version numbers. That is, version 5:3 can be
followed by either “5:4” or 6, but not by “5:5”. However, thisrestriction
can be circumvented via the RELAXVERS parameter, p. 307.

* You cannot normally have a version numbered zero. However,this re-
striction, too, can be circumvented via the RELAXVERS parameter, p. 307.

N-way branching

What this means is that you can have as many branch versions asyou
wish, all of which call the same version “Momma.”

For example, suppose you have a standard version of moduleXYZ.PRG

and it is currently at version level 5. You could make a custommodifica-
tion of XYZ.PRG for one customer and call the new version “5.1”.

But what happens when you make another customization ofXYZ.PRG, for
another customer? What do you call it? Version 6 is what you plan to call
the next generic release, so you don't want to use that.

74

You needanotherversion 5.1! In fact, if you make a lot of customized
versions of XYZ.PRG, you might needdozensof different 5.1 versions,
each of which begins a branch of its own in the “tree” of version numbers.

Of course, you need a way to differentiate the “first 5.1” from the “second
5.1” and “5.1 number three.” So, we've expanded the version number syn-
tax by adding an optional parenthesized “branch number,” like this:

 5.(1)1 - read aloud as “the first 5.1” or “5 dot branch 1 number 1”
 5.(2)1 - read aloud as “the second 5.1” or “5 dot branch 2 number 1”
 5.(3)1 - read aloud as “the third 5.1” or “5 dot branch 3 number 1”

Note that the old syntax is still allowed; “5.1” is just a shorter way of say-
ing “5.(1)1”, or “5.1 number 1”:

 5.1 - the same as “5.(1)1”, “the first 5.1”

Also note that you can have branches from trunk versions evenif the trunk
versions are numbered with the new major:minor number pairs. For exam-
ple:

 5:2.(4)1 - read aloud as “5 colon 2 dot branch 4 number 1”, or
 maybe “the 1st version in the 4th branch from 5 colon 2”.

Plus, you can have branches off of branches, off of branches,etc., as much
as ten levels deep -- way more than you will ever need.

Complex version numbers can be kind of hard to read. Fortunately, if you
don't need them, you don't have to use them. That's the beautyof this syn-
tax: nearly everything is optional, and many users will never need anything
except plain, integer version numbers.

Note that you can substitute an asterisk for the last branch version, to
mean “latest.” For instance:

 5:2.(4)* - read aloud as “the latest version in the 4th branch from
 version 5 colon 2,” or something like that.

Note: Older versions of TLIB (e.g., TLIB 4.12) and Opus Make (priorto
Opus Make 6.0) do not support N-way branch version numbers and minor
version numbers in TLIB libraries. If you use N-way branches, your TLIB
libraries will be incompatible with the old releases of these programs.

75

See Appendix E for a more detailed description of TLIB 5.50 version
number syntax, including a formal (BNF) grammar.

Specifying versions by version label

TLIB 5.50 supports several kinds of version label files. Youuse them in-
terchangeably with version numbers to select versions, with the
@filename syntax. For instance, if you had created the snapshot version la-
bel file SNAPSHOT.X12and wanted to use it to specify the version numbers
of your .c and .h files, then the following command would extract all.c

and .h files for which there are TLIB libraries, selecting the versions
recorded in SNAPSHOT.X12:

 TLIB ES *.C,*.H @SNAPSHOT.X12

Specifying versions by date/time

As with earlier versions of TLIB, with TLIB 5.50 you can specify versions
to be extracted by date and time, rather than by version number or version
label.

However, TLIB 5 adds a restriction: If you specify a time-of-day in lieu of
a version number to select a particular version with the “ES”command,
you now must specify the time in hh:mm:ss format (not hh:mm format).
That is, you cannot specify only hours and minutes; you must specify the
seconds, as well.

This restriction was added to enable the TLIB “ES” command tocorrectly
distinguish between the major:minor version number syntaxand a time-of-
day used to select a version. Thus, “1:12” is interpreted as amajor:minor
version number specification, and “1:12:00” is time-of-day.

76

Long File Names

The 32-bit versions of TLIB have full support for Windows long file
names.

The real-mode DOS version of TLIB,TLIBDOS.EXE, does not support
long file names.

Protected mode 16-bit versions of TLIB, such asTLIB2.EXE (for OS/2)
have limited support for long file names: Paths and names arestill limited
to 80 characters total length, rather than 259, blanks are not permitted
within file names, and you can't enclose filenames in quote marks.

However, a few of the minor auxiliary programs that come withTLIB do
not support long file names.

Note: you can configure theFNAMECASEparameter to force mixed-case
filenames to upper-case; see p. 309. Similarly, theLONGNAMESconfigura-
tion parameter can be used to prevent TLIB from handling long file names:

 LONGNAMES <Y/N/M>

The three possible settings are:

LONGNAMES Yes Enables use of long file names. This is the
default for most versions of TLIB.

LONGNAMES No Disables use of long file names by TLIB.
This is the default for all versions of TLIB when running under
DOS 6.xx and Windows 3.1 or 3.11.

LONGNAMES Maybe Enables use of long file names. For the
DOS-extended command-line version of TLIB,TLIBX.EXE , and
for the 16-bit GUI version of TLIB, this setting also enables
automatic fallback to old-style (8.3) file access if long file name
access fails. This is the default setting for those versions of TLIB
when running under Windows-9x. For other versions of TLIB,

77

LONGNAMES M is equivalent to LONGNAMES Y.

The LONGNAMESparameter is permitted but ignored by TLIB for DOS
(TLIBDOS.EXE).

Here is a table summarizing long file name support by 16-bit versions of
TLIB under various operating systems:

longnames
MS-
DOS

OS/2
native

OS/2's
DosBox

Win 3.1x,
Win-OS2

Win-9x,
Win-Me

Win-NT,
Win-2K

Win-XP

TLIB for
Windows
(API &
GUI)

default n/a n/a n/a 8.3 long 8.3 8.3

N n/a n/a n/a 8.3 8.3 8.3 8.3

M n/a n/a n/a 8.3* long 8.3* 8.3*

Y* n/a n/a n/a n/a long* n/a n/a

TLIB2
(TLIB for

OS/2)

default 8.3* long 8.3* 8.3* 8.3* long 8.3*

N 8.3* 8.3 8.3* 8.3* 8.3* 8.3 8.3*

M or Y 8.3* long 8.3* 8.3* 8.3* long 8.3*

TLIBX
(DOS-

extended)

default 8.3 n/a 8.3 8.3 long 8.3 8.3*

N 8.3 n/a 8.3 8.3 8.3 8.3 8.3*

M 8.3* n/a 8.3* 8.3* long 8.3* 8.3*

Y* n/a n/a n/a n/a long* n/a n/a

TLIBDOS (any) 8.3 n/a 8.3 8.3 8.3 8.3* 8.3*

Legend:

8.3 supports short file names only
8.3* supports short file names, but this is not the best version of TLIB

to run in this operating environment, or it is not the
recommended setting forLONGNAMES in this operating
environment

long supports long file names (80 chars maximum, no spaces)
long* supports long file names, but we do not recommend configuring

LONGNAMES Y under normal circumstances.
n/a not supported

Note that you can useIFF/ELSE/ENDIF directives with the%TLIBNAME%

symbol to set configuration parameters which apply only to certain ver-

78

sions of TLIB. For example, the following would disable support by
TLIBX and TLIB for Windows for Win-95 long file names, without dis-
abling OS/2 and NT long file name support in TLIB2.EXE :

 iff ('%TLIBNAME%' eqi 'TLIBX') or ('%TLIBNAME%' eqi 'TLIBDLL')
 REM Disable Win-95 long file names:
 longnames n
 endif
 iff '%TLIBNAME%' eqi 'TLIB2'
 REM This is not needed, because it's the defau lt:
 longnames y
 endif

See also:FNAMECASE(p. 309), which determines whether file names are
translated to upper-case (or lower-case).

79

Environment variables, SET,
and the Autoset file

Referencing environment variables in your TLIB configuration file

You can reference DOS/Windows environment variables in your TLIB
configuration file. Use the same syntax that you would use ina DOS .bat

file or an OS/2 .cmd file: if you want TLIB to look up an environment
variable calledNAME, and insert the value ofNAMEat some point in your
TLIB configuration file, you simply embed the string%NAME%in the con-
figuration file at the point(s) where you wish the value to be inserted.

In other words, an environment variable (or other “set” name, as described
below) can be used as a sort of macro to be inserted in your TLIBconfigu-
ration file.

In accordance with the usual DOS convention, ifNAMEis undefined, then
%NAME% is considered to be of zero length.

If you would prefer that an error message be generated for undefined
names, then use the syntax,%!NAME%, instead. The “! ” indicates to TLIB
that it should display an error message if the name is undefined.

If having the name undefined would be catastrophic, then youmay prefer
to use the syntax,%!!NAME%, instead. The “!! ” indicates to TLIB that it
should display an error message and halt if the name is undefined.

Thus, you can chose to have an undefined name be considered equivalent
to a 0-length value (no error), or it can generate a warning message, or it
can generate a “fatal” error (which prevents TLIB from running).

Also, you can now optionally use parenthesis to enclose all or part of the
set variable name.

The ! or !! prefix determines what happens if the variable name is unde-
fined. If the variable name is defined, the ! or !! prefix has no effect.

80

 %NAME% or %(NAME)% - if NAME is undefined, it's okay (0-length)
 %!NAME% or %!(NAME)% - if NAME is undefined, it causes a warning
 %!!NAME% or %!!(NAME)% - if NAME is undefined, TLIB will not run

To use an actual, literal percent sign in the configuration file where it
would otherwise appear to be part of something of the form%NAME%, you
can double the percent sign.

For example, if your AUTOEXEC.BAT or STARTUP.CMD contained the line

 SET TMP=F:\

you could add to your TLIB configuration file the line

 help 1,"TLIB -- %%=percent sign, "%TMP%"=temp dir ectory"

and then the help screen in command-line versions of TLIB would display

 TLIB -- %=percent sign, F:\=temp directory

Note: Referencing environment variables in your configurationfile cur-
rently worksonly with TLIB itself (both command-line and GUI versions).
It does not work with the other programs in the TLIB package which read
the TLIB configuration file (CMPR and TLMERGE).

Parenthesis

The parenthesized forms allow you to dereference more than one level
deep. For instance, suppose you had the following SET variables:

 set X=BBB
 set BBBMSG=Hello

Then you could configure

 help 1,'X=%X%, and BBBMSG contains %(%X%MSG)%'

and the first line of the command-line TLIB help screen would be

 X=BBB, and BBBMSG contains Hello

Obviously, that example is a bit contrived. However, we're confident that
someone, somewhere will find a use for this sort of thing.

81

Choosing defaults to be overridden by environment variables

We've subtly changed the way TLIB parses its configuration file, so that
you can now configure TLIB to let an environment variable (orother “set”
name) override almost any configuration parameter.

The change is simply to stop parsing the line at the first blank or tab after
the configuration parameter argument (except for a few configuration pa-
rameters, mostly those which allow embedded white-space inthe
argument).

This allows you to configure, for example:

 DEFEXT %newdefext% PAS

If NEWDEFEXT is not defined, then the line is equivalent to

 DEFEXT PAS

(Note that the extra space before “PAS” doesn't matter.)

However, if you define SET NEWDEFEXT=C then the line is equivalent to

 DEFEXT C PAS

which would have been an error in TLIB 4.12, but is now equivalent to

 DEFEXT C

Thus, you've effectively configured TLIB is such a way thatDEFEXT is
PAS except when you define an environment variable (or other set-name)
called NEWDEFEXT to override it.

Here's another example:

 LOCKING %LOCKS% Y

This configures LOCKING to the value of environment variableLOCKS

(which should be eitherY, N, Weak, or Branch), but if LOCKSis not de-
fined then LOCKING is configured to Y .

Note that this technique doesn't work for the following configuration pa-
rameters:

ARCCMD COMMANDS EXTENSION HELP IF KEYFLAG LOGFLAG LOGPREFIX

82

LOGSUFFIX PATH PROMPT SET UNARCCMD

“SET” parameters in your configuration file

You can useSET configuration parameters to define pseudo-environment
variabfles, which you can reference via the%NAME%(or %!NAME%or %!!

NAME%) syntax, just like real environment variables. The syntax is just like
the DOS or OS/2 “set” command:

 SET NAME= string

The SET configuration parameter overrides any normal environmentvari-
able setting for the same name.

The autoset file

You can create a file in the current directory calledAUTOSET.BAT(under
DOS or OS/2's DOS box), orAUTOSET.CMD(in OS/2 protected mode),
which contains more pseudo-environment variable definitions. This file is
called the “autoset file.”

The first time TLIB encounters a%NAME%reference in a configuration pa-
rameter, it will look for the autoset file, and if one is foundTLIB will read
it. The autoset file should contain “SET NAME=unquoted-string” commands
(in the usual DOS & OS/2 format). These commands override anynormal
environment variable settings.

This gives you a way to have something resembling “local” environment
variables: names for which the definition depends upon yourcurrent direc-
tory. By referencing such names in your TLIB configuration file, you can
make TLIB's behavior depend upon your current directory, even if you use
a single TLIB configuration file regardless of which directory you are
working in (perhaps by setting your TLIBCFG environment variable).

Note that the autoset file does not actually cause changes toyour DOS or
OS/2 environment settings (unless you run it as a batch file). The autoset
file only affects %NAME%references embedded in TLIB configuration files
(and in configuration lines specified via the C command). Inparticular, the
autoset file does not affect the use of theTLIBCFG environment variable to
specify the location of the configuration file.

83

Note: to make TLIB2.EXE read AUTOSET.BAT instead of AUTOSET.CMD,
see the AUTOSET configuration parameter, p. 292.

Precedence of different kinds of SET names

The SET configuration parameter works like an environment variable or a
“set” command in the autoset file. The syntax is the same, too:

 SET name=something

Like set commands in the autoset file, theSET configuration parameter
does not really alter DOS (or OS/2) environment variables, but that dis-
tinction is mostly academic, since set names can be used exactly like
environment variables in TLIB.

There are three ways to define set names:

- With a DOS or OS/2 environment variable

- With a “set” parameter in the TLIB configuration file

- With a “set” command in the autoset file

If the same name is defined in more than one way, the followingprece-
dence rules are used:

o Environment variables have the lowest precedence. They canbe overrid-
den by SET commands in either the TLIB configuration file or the autoset
file.

o SET parameters at the beginning of the TLIB configuration file (before
the first %NAME%reference in the configuration file) have lower precedence
than SET commands in the autoset file.

o SET parameters at the end of the TLIB configuration file (after the first %

NAME%reference) have higher precedence thanSET commands in the au-
toset file.

In other words, the autoset file'sSET commands are effectively inserted
into the configuration file just before the first %NAME% reference.

84

Predefined pseudo-environment variables

TLIB 5.50 has over 50 predefined specialSET variables of the form
“TLIBCFG: name”.

Most of the TLIB configuration parameter values can be referenced in this
way. For instance,%TLIBCFG:projlev% is the value of thePROJLEVcon-
figuration parameter (name of the current project level). Similarly, %

TLIBCFG:id% is the current user ID.

One use of this feature is to allow you to display configuration parameters
in the prompt, help or banner.

Restrictions:

A) The following configuration parameters do not have%TLIBCFG:name%
variables defined for them:

AATTR, BANNER, D3COLLIDE, D3FLAG2, D3FLAG3, ENDIF, HELP, I F,
INCLUDE, JOPTIONS, KEYFLAG, LOGFLAG, LOGPREFIX, LOGSUFFIX,
PROMPT, REM, SET

B) You should not reference%TLIBCFG:name%if configuration parameter
“name” is defined in anIF /ENDIF block. Doing so will not cause an error,
but the behavior may change in future editions of TLIB Version Control.

You can also get the path\name of the TLIB configuration file(s), as if they
were environment variables, from within the configurationfile(s), via the
%tlibcfg: ...% syntax. Two forms are allowed:%tlibcfg:cfgfile% and
%tlibcfg:curfile% .

For example, to display the path\name of the main configuration file when-
ever TLIB starts, you could configure:

 numbanner 1
 banner 1,"config file='%TLIBCFG:CFGFILE%'"

Even if you are using include directives,%TLIBCFG:CFGFILE%is the name
of the first/main configuration file, not the included configuration file. To
get the name of the current configuration file, use%TLIBCFG:CURFILE%.
For example, in a "master"tlib.cfg intended to be included from other
tlib.cfg files, you might configure this:

85

 numbanner 2
 banner 1,"main/first config file='%TLIBCFG:CFGFIL E%'"
 set masterfile=%TLIBCFG:curfile%
 banner 2,"master config file='%MASTERFILE%'"

Note the use of a temporarySET variable to store a copy of%
tlibcfg:curfile% . It is needed because by the time that TLIB displays
the BANNER, it is no longer reading configuration files, so there is no "cur-
rent" configuration file.

Additionally, the following predefined pseudo-environment variables can
be referenced within TLIB configuration files:

 %TLIBOS% (may be: DOS, OS2, or WINDOWS)
 %TLIBMODE% (may be: REAL or PROT)
 %TLIBNAME% (may be: TLIB, TLIBX, TLIB2, or TLIBDLL)
 %TLIBPROG% (may be: EXE or DLL)
 %TLIBWORDSIZE% (may be: 16 or 32)

Example (try adding these 2 lines to your tlib.cfg file):

 Say %TLIBNAME%.%TLIBPROG% is running
 Say in %TLIBMODE% mode (%TLIBWORDSIZE%-bit).

Example:

Suppose TLIB.CFG contains:

 PROJLEV %CurLevel%
 LEVEL n=test d=D:\TEST\ p=release
 LEVEL n=release d=D:\RELEASE\

prompt 1,'Hi, %TLIBCFG:id%! Current level = %
TLIBCFG:projlev%'

And AUTOSET.BAT(or AUTOSET.CMDfor TLIB2.EXE under OS/2 or NT)
contains:

 set curlevel=test
 set tlibid=Dave

then the first TLIB prompt line would be:

 Hi, Dave! Current level = TEST

86

Note: %NAME%and %TLIBCFG:name% references in the prompt, help and
banner screens are evaluated “late,” so that they always reflect the current
values (rather than the values in effect when the configuration file was
read). In all other contexts, however, such references are evaluated imme-
diately, as the TLIB configuration file is read.

TLIB also supports an extension to this syntax for referencing the current
work directory path, which allows you to use pieces of your work directo-
ry path at other places in your TLIB configuration file, in other
configuration parameters.

Thus, for example, if you have a large number of projects, youcan config-
ure TLIB with a “generic” project level that is named the sameas
whatever your current work directory is.

The syntax is an extension of the%TLIBCFG:WORKDIR%construct which
lets you specify one or two numbers to select which parts of the path you
want.

Suppose that%TLIBCFG:WORKDIR%is “C:\WORK\ABOMB\”. This path is
considered to have three parts: part #0 is the drive/root (“C:\ ”), part #1 is
the top subdirectory (“WORK”), and part #2 is the lower subdirectory
(“ABOMB”).

The syntax to specify specific parts of the path is:%
TLIBCFG:WORKDIR:nn: mm%, wherenn is the number of the left-most part,
andmm is the number of the right-most part. (Also, ifmm=nn, that is if
you only want one part of the path, you can leave out the “: mm”.)

For example, if %TLIBCFG:WORKDIR% is “C:\WORK\ABOMB\” then:

 %TLIBCFG:WORKDIR:0:0% = "C:\"
 %TLIBCFG:WORKDIR:0% = "C:\"
 %TLIBCFG:WORKDIR:1% = "WORK"
 %TLIBCFG:WORKDIR:2% = "ABOMB"
 %TLIBCFG:WORKDIR:1:2% = "WORK\ABOMB"
 %TLIBCFG:WORKDIR:0:1% = "C:\WORK"
 %TLIBCFG:WORKDIR:0:2% = "C:\WORK\ABOMB"
 %TLIBCFG:WORKDIR% = "C:\WORK\ABOMB\"

You can also count the parts from the right-most, by specifying negative
numbers. The right-most (lowest level) directory is part-1 . This is useful
when you want the current directory name, but don't know how “deep” it
is.

87

So for the example above, part2 can also be specified as part-1 , and part
1 as part -2 :

 %TLIBCFG:WORKDIR:-2% = "WORK"
 %TLIBCFG:WORKDIR:-1% = "ABOMB"

To experiment with this feature, useSAY or BANNERor PROMPTto display
the results, like this:

 set xxx=%tlibcfg:workdir:2:-1%
 set yyy=%tlibcfg:workdir:-1%
 say Note: xxx=‘%xxx%’ yyy=‘%yyy%’

Then run TLIB to see what valuesxxx and yyy get. (In TLIB for Win-
dows, click Run or View Log to see messages in the status log.)

Warning: Be sure that if you configure eitherTREEDIRS Yor WORKDIR,
you do sobefore referencing %tlibcfg:workdir% , to ensure that TLIB
deduces the correct work directory!

Here's an example of how you might use this feature to set up a generic
project level, whose name was deduced from the name of your current
work directory:

 set dir=%tlibcfg:workdir:-1%
 level n=%dir% d=\\server\sys\levels\%dir% a=Y
 projlev %dir%
 ! createtf y <-- this is optional

Here's a similar, but fancier configuration, which definesa generic ISO-
9001-style 3-level “promote” structure:

 set dr=%tlibcfg:workdir:-1%
 level n=%dr%_DEV d=x:\levs\%dr%\dev\ a=y f=y p=%dr%_TST i=%dr%_REL
 level n=%dr%_TST d=x:\levs\%dr%\tst\ w=n f=y p=%dr%_REL
 level n=%dr%_REL d=x:\levs\%dr%\rel\ w=n
 ! Developers set projlev like this:
 projlev %dr%_DEV
 ! Testers should configure:
 ! projlev %dr%_TST

88

Lots of ways to set
your TLIB User ID

TLIB supports several different ways of setting the TLIB User ID. You
can set theID configuration parameter in your TLIB configuration file, or
you can use the CW (“configure who”) command on the TLIB command
line with command-line versions of TLIB, or in TLIB for Windows you
can set a User ID override which will be stored in the TLIB.INI file.

The ID configuration parameter defaults to%TLIBID%, so that theTLIBID

environment variable can also be used to set your user ID (e.g., in your au-
toexec.bat file, “SET TLIBID=DAVE”). In the event that you use more than
one method to sent your user ID, the order of precedence is:

[1] In TLIB for Windows, the TLIB.INI override, set viaFile -> Con-

figuration Options -> Set User ID. (highest priority)
[2] The CW (“configure who”) command in command-line TLIBs
[3] The ID configuration parameter
[4] The TLIBID environment variable (lowest priority)

Note: In TLIB 4.12 and earlier, the order of precedence was different:

[1] The W (“who”) command (highest priority)
[2] The TLIBID environment variable
[3] The ID configuration parameter (lowest priority)

Network name look-up

Under Windows-NT, you can configureID %USERNAME%to set TLIB's us-
er ID to the usual environment variable.

For DOS, Windows, and OS/2, TLIB may be able to interrogate your net-
work software to find your network login ID, depending upon what kind of
network you have. (We are very grateful to Mr. Mark Evans for extensive
help implementing this feature.)

89

There are several “special” TLIB user ID's which you can set,each of
which will be translated in a different way by looking up the actual name
which you are using on your network. The special names are:

NETNAME
Looks up the NETBIOS login ID (under MS-DOS
and Windows), or the LAN Manager login ID
(under OS/2).

NOVELL Looks up the Novell login ID.

NOVELL2 Looks up the Novell login ID (alternate method).

MACHINE Looks up the “machine name.”

LANTASTIC

Looks up the Artisoft Lantastic login ID, but only
under DOS and Windows. One caveat: if you are
logged into two different servers with two different
user names, there currently is no way to predict
which user name will be returned.

%USERNAME%
Use the Windows-NT/2K/XP USERNAME

environment variable.

To make TLIB look up your network user ID, just use theID configura-
tion parameter (or the TLIBID environment variable, or the “CW”
command) to specify one of the special*name* names as your TLIB user
ID.

Because of the great variety of networking software in use today, there is
no guarantee that any of these special user IDs will necessarily work with
your network. However, trying them out is easy. Just run the command-
line version of TLIB interactively, select the “CW” (configure who) com-
mand, and enter each of the four special names, in turn, and see what
happens. In TLIB for Windows, just add an experimentalID configuration
parameter to the end ofTLIB.CFG , or you can use Run manual command.
Note that if you are using OS/2, you should do this test from a DOS box as
well as at the regular OS/2 command prompt. Example:

 TLIB CW *LANTASTIC*

Or configure:

90

 ID *LANTASTIC*

Also, note that we currently use two different approaches toimplementing
the DOS real mode *NOVELL* name look-up.

Additionally, TLIB can store a user ID override in itsC:\TLIB.INI file.
To use this feature, in TLIB for Windows chooseFile -> Change User

ID and the “Always ” override button; see p. 251.

91

S command:
Snapshot version labeling

An important problem for developers using many source filesis coordinat-
ing them all. Consider what happens when you need to reconstruct an old
version of a program. If it is made with just one source file, you simply run
TLIB and retrieve the desired file. But if there are 20 different source files,
you are faced with the prospect of manually selecting the proper version
from each of 20 different library files -- a tedious and error-prone process.

To solve this problem, TLIB provides the S command (which replaces the
old TLIBSNAP utility). The S command takes a “snapshot” of the current
state of each of the library files for a set of related source code files, so
that later you can easily reconstruct the version. You wouldtypically use
the S command whenever you release a new version of your program. The
S command will create a “snapshot file” (sometimes called a “version la-
bel file” or “class”), which is a kind of file list that contains version
numbers as well as file names.

Command line syntax:

 TLIB S snapshot-file wild-cards-or-@filelist
 TLIB SS snapshot-file wild-cards-or-@filelist version-spec

Using the snapshot to retrieve old versions

A snapshot created by the S command is simply a file which records a
“snapshot” of what source files you are using and what their current ver-
sion numbers are at a particular time. It is a text file containing file names
and version numbers.

If you ever need to reconstruct that version of your program,simply re-
trieve the snapshot file and use it as a file list, as input to the TLIB E
(extract) command. TLIB can use a snapshot as a special form of file list
which specifies both file names and version numbers. All theproper
source files will be automatically retrieved. For example,if you have a

92

snapshot namedbeta.snp , then the following command would retrieve
the recorded versions of all the files listed within it:

 TLIB E @beta.snp

Alternately, you can use a snapshot to specify just version numbers, select-
ing the files in which you are interested in some other way. For instance, if
you had a snapshot calledbeta.snp , for the “beta test” release of your
program, the following command would extractmyfile.c and myfile.h

from their TLIB library files, taking the version numbers from beta.snp :

 TLIB ES myfile.c,myfile.h @beta.snp

The TLIB ES command requires two parameters: (1) the file names that
you want to retrieve, and (2) the version numbers. In the following exam-
ple, both are specified as @beta.snp .

 TLIB ES @beta.snp @beta.snp

Thus, these two commands do the same thing:

 TLIB E @beta.snp this is the fast way
 TLIB ES @beta.snp @beta.snp this way is slower

What version numbers are recorded

The S (snapshot) command records the “current” version numbers for your
source files. That is, the S command records the version numbers which
the E command would extract.

In the simplest case, whenprojlev is not configured, the current version
numbers are simply the latest (highest) “trunk” version numbers.

If you are using named project levels (p. 139), the current version numbers
are those that are currently listed in the project level tracking file for the
current project level (or perhaps in a “parent” project level).

A special case is when “projlev = ” (or, equivalently, “projlev

equals ”) is configured. This is used occasionally for special purposes, but
isn't recommended for most users. With this configuration setting, there is

93

no named project level, and the current version numbers are those record-
ed in the work directory tracking file.

In summary, the S command records the latest trunk versions unless PRO-

JLEV is configured to a named project level (in which case the versions
which are current in that project level are recorded), or unless PROJLEV =

is configured (in which case the version nubers for tracked files are taken
from the work directory's tlibwork.trk file).

Creating a snapshot

Note: If you are using project level tracking (pp. 299 , 139 & 143) with
fully-populated project levels (also explained later), you may have little
use for the S command. Simply saving a copy of your project level track-
ing file will do the trick, since it contains all the module names and
version numbers that you are using.

However, if you are not using project level tracking, or if your project lev-
els are “sparse” (that is, they contain only those files thatdiffer from a
parent level), then you'll need to use the S (snapshot) command to make
version labels.

Example 1: Snapshot the current versions of all files defined in all active
project levels (the current level and its parent levels):

 tlib sa snap.xxx *.*

Explanation: The “A” search mode suffix causes TLIB to examine the pro-
mote-to and/or inherit-from level(s) as well as the currentlevel. The “*.* ”
wild-card spec says that we want to record all of the files.Snap.xxx is the
output file.

Example 2: Snapshot all library files, recording the latest trunk versions,
without regard to your project levels.

 tlib ss snap.xxx *.* *

Explanation: The default search mode (“L”, for library files) is used, since
no wild-card search mode is specified. The “*.* ” file specification indi-
cates that all library files are to be searched. The “S” suffix indicates that
you wish to specify the version numbers, and the version number specifi-
cation given was “* ” (which means latest trunk versions).

94

Note #1:You can use this form even if you are not using project level
tracking.

Note #2:Like the old TLIBSNAP program, this form requires that TLIB
read all the TLIB library files in order to determine what thelatest trunk
version is for each file. Thus, it may take several minutes ifyou have a
large number of TLIB library files.

Example 3: Add additional source files to an existing snapshot:

 tlib s snap.xxx @snap.xxx,myfile.*,@extras.lis

Explanation: In this example,snap.xxx is presumed to be an existing
snapshot file, to which you wish to add bothmyfile.* and all the files
listed in extras.lis .

TLIB processes your three input file specifications in the order given, and
it contains logic to ensure that no name will be processed more than once,
so if any of the additional files were already recorded insnap.xxx , they
will remain unchanged. (The additional files aremyfile.* and the files
listed in extras.lis .)

To make this case work, TLIB detects the fact that the output snapshot
file, snap.xxx , is also used as an input file. To avoid clobbering it, TLIB
writes the output to a temporary file, and when done processing all of your
input files, TLIB will copy the temporary file to snap.xxx .

Note #1:This ability to list the output snapshot file as an input file, as
well, obviates the need for the old TLIBSNAP “A” (append) command.

Note #2:TLIB looks for your TMP (or, as a 2nd choice,TEMP) environ-
ment variable to determine where the temporary file should be created.
The temporary file is usually named “$TLIB_TM.2 ”, but you'll probably
never see it, since TLIB deletes it when done.

Example 4: Alter an existing snapshot, changing old version numbers,
and/or adding additional files:

 tlib s snap.xxx myfile.*,@extras.lis,@snap.xxx

Explanation: This example is just like the last one, except that @snap.xxx

is given as the last input file specification rather than thefirst. This has the

95

effect of using the current version numbers formyfile.* and the files in
extras.lis , rather than the old version numbers that were already given
in snap.xxx .

Note #1:You will probably want to put your snapshot files under version
control, by storing them in a TLIB library file. This will allow you to store
comments with each snapshot to record the purpose of the release, and it
will avoid the necessity to keep inventing new names for yoursnapshot
files. The TLIB for Windows GUI interface makes this convenient by of-
fering the “Immediate Store in Library” check-box.

Note #2:In command-line versions of TLIB, the S command normally dis-
plays one dot (period) or comma for each source file that it finds, as an
“activity indicator.” If TLIB can determine the version number without
reading the TLIB library (e.g., because the version number is found in a
project level tracking file), then a dot is displayed. If TLIB must read the
library file, then a comma is displayed.

If you wish to suppress these periods and commas (as well as several other
“noisy” TLIB messages), you may configureQUIET Y, or run TLIB with
the -q option as the first command-line parameter.

96

Check-In/Out locking:
concurrent access control

This feature is for use when more than one programmer may be working
on a program. It is disabled unless you specifically enable it in the TLIB
configuration file. So, if yours is a one programmer shop, you needn't
bother to read this chapter.

If you enable “locking” in your configuration file, then TLIB will create,
modify and and examine “lock” files to control which programmer cur-
rently “owns” a library, to ensure that two or more programmers are not
working on the same file at one time.

The Purpose of Check-in/out Locking

Check-in/out concurrency control (“locking”) is designedto solve a prob-
lem faced by developers who share responsibilities for a large
programming project. The problem is that sometimes two different pro-
grammers may decide to change the same source file at the sametime. If
neither one knows that the other is working on that file, thenthe result will
be that each of them has a version which is down-level (out of date) in
some respect. Then, after they each update the library file (with the TLIB
U command), the newest version in the library file will be missing some
improvements which are present in the second-newest version, and vice-
versa.

At best, the problem will be discovered early, and the programmers will
have to reconcile their differing versions (manually, or with DIFF3 or
TLIB's Migrate command). At worst, a “fixed” bug will be “unfixed” in
the latest version, with potentially expensive consequences.

The solution is simple: just make sure that only one programmer is work-
ing on a module at a time. A manual procedure to ensure this would
involve keeping a notebook for “checking out” each source file. Before ex-
tracting a source file from its library file to make modifications, a
programmer would first “sign it out” in the notebook. If someone else was
in the process of changing the file, the programmer would seein the note-
book that the file was currently “checked-out” to the other person, and

97

would know not to change the file until the other person had finished with
it and “checked it in” again.

TLIB automates this process. Instead of a notebook for “signing out” each
file, TLIB keeps a “lock” file. The lock file contains the name of the pro-
grammer who is currently working on the corresponding source file. When
no one has a module signed out, then the lock file does not exist, and the
library is said to be “unlocked”.

The lock file is similar in purpose to a Unix SCCS “p-file.”

Weak Locking and Branch/Level Locking

TLIB supports two regular locking modes, plus two special modes. The
regular modes are:

 LOCKING N “None” (disabled -- no locking)
 LOCKING Y “Yes” (full, whole-library locking)

With LOCKING Nconfigured, TLIB doesn't track who is working on a
module, and doesn't restrict the storage of new versions. Inthis mode, the
“E” and “EB” commands are equivalent, as are the “U” and “UK” com-
mands.

LOCKING N is intended for use by individual programmers, working alone.

With LOCKING Yconfigured, TLIB allows just one programmer to work
on any particular module. If a second programmer tries to extract (check-
out) the module for modification (the “E” command), he will be greeted
with an error message which tells him that the first programmer is already
working on the module.

LOCKING Y is suitable for most multi-programmer development projects
which do not utilize multiple teams working concurrently ondifferent lev-
els of code at the same time.

TLIB's two special locking modes,LOCKING Band LOCKING W, allow for
concurrent development on a single module by multiple programmers.

The special concurrent-development modes are:

98

LOCKING B “Branch” or “level” locking. Check-out locks only the
current project level, although warnings will be
generated when another programmer checks out the
module from another project level. (Project levels are
explained later.)

LOCKING W “Weak” or “warning-only” locking. Check-out is
allowed by any number of programmers
simultaneously, even on the same project level, but a
warning is displayed if you check-out a module that
someone else is already working on.

In order of “strength” of locking, the four modes are:

 LOCKING N (weakest)
 LOCKING W
 LOCKING B
 LOCKING Y (strongest)

If you intend to use the AP command (in TLIB for Windows,Add/Alt ->

Promote) to “promote” modules to “higher” assurance levels, then you
should useLOCKING B instead of LOCKING Y, so that having a module
checked-out at a “lower” level won't interfere with promoting it to the
higher level. (The AP command and “promote levels” are used for “staged
development” on large, multiple-programmer projects; see“promote” in
the index.)

Warning: LOCKING B(branch or level locking) should only be used with
named project levels for which “s=New” or “ p=something” has been con-
figured in the LEVEL configuration parameter, or for which there is no
“ i= something” linkage, since only the current project level will be locked.
(These fields of theLEVEL configuration parameter are explained under
“Configuring Your Project Levels,” p. 141.)

Note that programmers can mix and match locking levels by changing the
LOCKINGconfiguration parameter, either withIF /ENDIF blocks in the con-
figuration file or with TLIB's C (configure) command. If a programmer
locks a module withLOCKING Yconfigured, then all other programmers
will be denied modification-access (unless they configureLOCKING N).
However, if the module is locked withLOCKING Bor LOCKING Wconfig-
ured, other programmers will still be allowed to check-out the module for
modification (though forLOCKING Bit will only be allowed on a different
project level).

99

CW command: Configure Who you are (set User ID)

Before he can check a file in or out, a programmer must give hisname
(“user ID”) to TLIB via the ID configuration parameter or theCW(config-
ure who) command; see p. 89.

(Note: the user ID should not contain blanks.)

E and U commands revisited

The locking parameter changes the behavior of the E (extract) and U
(update) commands. Whenlocking y is configured, the E command
causes the file to be “checked-out” for modification by the current user; if
the file was already checked-out to someone else, the E command will fail.
When locking is enabled, the U command will cause the file to be
“checked back in” when the library is updated with the new version; the
file must have been already checked-out to the current user,otherwise the
U command will fail. Note that even if the U command didn't update the
library because there were no changes to the source file, thefile will still
be checked-in/unlocked (but see theFORCEUparameter, p. 275 , if you
want to store a new version even when there are no changes).

If you enable or disable locking, you may also want to use thePROMPT,
HELP and COMMANDSconfiguration parameters to customize the user inter-
face for command-line versions of TLIB; see p. 329.

When locking is enabled (LOCKING Y is configured), TLIB's E (extract)
command is similar to the Unix SCCS “get -e ” command, the RCS “co

-l ” command, and the IBM PDL “lget ” command; and TLIB's U (up-
date) command is similar to the Unix SCCS “delta ” command, the RCS
“ci ” command, and the IBM PDL “lput ” command.

EB command: Extract for Browse

Sometimes you may wish to extract a source file from the library file with-
out checking it out. If you do not intend to modify the source file, there is

100

no need for the library to be locked. To extract the latest version without
checking it out, the EB (extract-for-Browse) command is available. It
works just like the E command, except that the lock file is ignored.

Note: The EB (browse mode) commands will never replace a source file
which you already have checked-out for modification, regardless of how
you have set theREPLACEconfiguration parameter. It will, however, re-
place a browse-mode copy of a source file, if you've configured REPLROBR

Y (see p. 282 for details).

When locking is disabled the E and EB commands are exactly equivalent.

UK command: Update and Keep locked

Less often, you may wish to add a version of your source file tothe library
file without checking it back in. You might do this if you had finished one
of several changes to a source file, and were ready to start working on the
next change. To do this, you can use the UK (update-but-Keep-checked-
out) command. The UK command works just like the U command, except
that the lock file is not altered (it is still examined to ensure that you have
already checked-out the file).

Similarly, the NK command works just like the N command, to create a
new library file, storing the first version of your source file, except that the
NK command leaves the source file checked-out/locked so that you can
make additional changes to it.

When locking is disabled the U and UK commands are exactly equivalent.

With locking enabled, TLIB's EB (extract-for-Browse) command is similar
to the Unix SCCS “get ” command and the RCS “co ” command, and
TLIB's UK (update-but-Keep locked) command is similar to the RCS “ci

-l ” command.

UD (discard changes) and ER (reserve) commands

If you check-out a source file, intending to modify it, but later change your
mind, you can use the UD (check-in, discarding changes) command to
check it back in (unlock it) without updating the library file. As with the U

101

command, if you mistakenly attempt to check-in a file which you do not
have checked-out, TLIB will display an error message.

It is also possible (though rarely necessary) to check-out (lock) a file with-
out actually extracting it from the library file, with the ER(reserve)
command. As with the E command, if the file cannot be checked-out be-
cause someone else already has it, TLIB will display an errormessage
telling who has the file checked-out.

Note that the library file need not exist for you to use the ER command to
“reserve” it. Thus, you can use the ER command to reserve/lock a source
file name before creating it, to ensure that nobody else can create a source
file with that name. When you finally get around to creating the TLIB li-
brary with the N command, the source file will be checked-in/unlocked
just like with the U command.

With locking enabled, TLIB's UD (check-in/discard changes) command is
similar to the RCS “rcs -u ” command and the IBM PDL “lusing (re-

lease ” command, and TLIB's ER (check-out/reserve) command is similar
to the RCS “rcs -l ” command and the IBM PDL “lusing (reserve ”
command.

Note that the UD and ER commands are seldom used.

If locking is disabled, the E (extract) and EB (extract for browse) com-
mands are equivalent, as are the U and UK commands, and the UD and
ER commands have no function.

T command: Test lock status

The T (test) command can be used to test the check-in/out (lock) status of
library files. If used interactively, the T command just displays informative
messages indicating who has each file checked-out. If the T command is
specified using DOS command line parameters (typically in a.BAT file),
the DOS errorlevel is set as follows:

 0 - checked-out to current user id
 1 - not checked-out to anyone
 2 - checked-out to someone else

102

As with all TLIB commands, if multiple files are specified (with wild-
cards or a file list), then the errorlevel returned is the highest of the error-
levels which would have been obtained by testing each file individually.

To test check-in/out status, the T command examines lock files, not library
files. However, it will display a warning message if the corresponding li-
brary file does not exist (except when using PKZIP-compressed/archived
library files).

By using wild-cards or file lists to specify a group of sourcefiles or library
files, you can use the T command to produce a simple report listing the
check-in/out lock status of each file. To store the report ina file (or print
it), use DOS output redirection. For example:

 tlib t c:\libs*.* >report.lst

Note: To test in a batch file whetheranyone(including you) has any files
checked-out, you can use an “if exist ” test to check for the existence of
the lock files.

Examples

Example #1: Suppose a programmer named “Dave” has his TLIB library
files on LAN-shared disk driveG: in subdirectory \TLIB . He needs to
change a source file calledMYFILE.C . He can check-out and extractMY-

FILE.C from its library file like this:

 tlib cw Dave e myfile.c

After he is done making his changes, he could add the new version to the
library file, checking it back in like this:

 tlib cw Dave u myfile.c

Note that the “CW” command can be omitted if the “id ” parameter is
specified in the TLIB configuration file (or if the “set tlibid=Dave ”
DOS or OS/2 command has been issued).

Example #2: A programmer named Jane needs a copy ofMYFILE.OBJ , to
be linked with some other files. She wishes to extract a copy of the source
file, MYFILE.C , which she will compile to produce MYFILE.OBJ . Since she

103

does not intend to changeMYFILE.C , she should use the EB command to
extract it, to avoid locking it:

 tlib eb myfile.c

If she had accidentally extractedMYFILE.C with the E command, like
this...

 tlib cw Jane e myfile.c

...then she could check it back in with the UD (discard changes) command:

 tlib cw Jane ud myfile.c

In other words, the EB command is equivalent to an E command followed
by a UD command.

Also, the UK (update-and-Keep-locked) command is equivalent to U (up-
date) followed by E (check-out). Conversely, the U command is equivalent
to UK followed by UD.

Related configuration parameters are:

 LOCKING, READONLYB, REPLROBR, DELETESRC, LOGUSER, and ID.

Novell Netware users should also configure:

 DATAPATH Y

104

Security

There is now a semi-secret “patch point” which can be used to force TLIB
to look in one and only one place for its configuration file. This is de-
signed to add to the control available to you if you are a “system librarian”
who is administering a project with a large number of programmers. By
using this mechanism, you can prevent users from casually changing their
configuration parameters.

If you wish to use this feature, you may want to:

A) Disable the “C” command via the COMMANDS configuration parameter.

B) Use the %name%syntax to enable users to set certain, specific configu-
ration parameters.

C) Call us to find out the patch procedure (it is not in the manual).

With the configuration file's path “hard-wired” to a network directory, to
which you can control write-permission, you can prevent users from
changing their TLIB configuration files. By using this in combination with
judicious use of environment variable references in the configuration file,
you can allow users to change only certain configuration parameters, and
not others.

Because TLIB's user interface is configurable, the abilityto restrict config-
urability also provides you with the ability to restrict access to unwanted
commands.

In addition, you can restrict access to the TLIB library and lock files by
distributing them among several directories on the networkfile server, and
granting users read/write access or read-only access or no access to the
several directories based upon their needs.

See also pp. 244 and 260.

105

Version tracking &
Named Project Levels

“Basic version tracking” is for automatic branching and automatic version
labeling on very small projects. It is intended for single-programmer
projects which do not utilize check-in/out locking.

What makes this form of version tracking “basic” is thatPROJLEV is not
configured at all (or is configured to one of the special pseudo-names, “* ”
or “=”). Because there are no named project levels, TLIB has to manage
only one tracking file (at a time).

For more complex development environments, “advanced version track-
ing” (with named project levels) provides additional features and greater
flexibility; it is explained later.

If you configure TRACK Ythen TLIB will maintain (in your working direc-
tory) a “version tracking file” called TLIBWORK.TRK. It will contain the full
list of those files in the directory that you have extracted from or updated
into a TLIB library, the version number for each module, and sometimes
some additional information about some of the modules.

The information inTLIBWORK.TRKis similar to the “snapshot version label
file” created by the S command (or the old-format snapshot file generated
under TLIB 4.12 by the TLIBSNAP program), but the file formatis differ-
ent.

Like a snapshot file,TLIBWORK.TRKcontains a full list of module names
and version numbers, so you can use it like you would use a snapshot ver-
sion label file. To “take a snapshot,” you can use the S (snapshot)
command, or you can simply save a copy ofTLIBWORK.TRK, perhaps by
using TLIB's U (update) command to store the latestTLIBWORK.TRKin its
own TLIB library:

 TLIB U TLIBWORK.TRK This version fixes problem nu mber IR759

Unlike TLIBSNAP, however, in its snapshot files and in theTLIB-

WORK.TRK tracking file TLIB 5.50:

106

A) Doesnot store the file name or path of the associated TLIB library file.
This simplifies things if you need to move your TLIB library files around,
but it means that you are responsible for using consistentPATH and
LIBEXT configuration settings to ensure that TLIB finds the correct library
files.

B) Does not store a REMark line for each module.

C) Doeshave the ability to track a “tree” of subdirectories. To utilize this,
you must set a theTREEDIRSconfiguration parameter (p. 300). Configure
TREEDIRS Y, and optionally configure theWORKDIRparameter (p. 304) to
tell TLIB which directory is the “root” of your “tree” of working directo-
ries.

If tracking is enabled and you extract a file with the E or EB command,
you can optionally configure TLIB so that you will get the version of the
file indicated by the entry inTLIBWORK.TRK, instead of the latest “trunk”
version). This behavior is selected by configuring:

 PROJLEV =

However, by default (withPROJLEVnot configured), the extract will get
the latest trunk version, just as if version tracking were not enabled (which
is appropriate for most users).

Of course, you can always extract a different version by specifying a spe-
cific version number with the ES command, and theTLIBWORK.TRKentry
will be adjusted accordingly, regardless of how thePROJLEVconfiguration
parameter is set.

Automatic branching

TLIBWORK.TRKenables TLIB to “know” what versions of each module you
are working on, so that the U (update) command can automatically store
them as branch versions when that is appropriate.

When would that be appropriate? When storing the new versionas a
“trunk” version number would effectively “undo” changes from an earlier
version. In other words, if you started with something otherthan the latest
trunk version.

107

Thus, for example, if the latest trunk version was number 23,and you ex-
tracted version 22 and made changes to it, when you store the new version
it should be as version 22.1 (a branch from version 22), sincethe new ver-
sion doesnot include the changes that were made to create version 23. It
would be a mistake to store the new version as 24 (the next trunk version),
since that would undo whatever changes were in version 23.

However, if tracking is not enabled, then TLIB will not have arecord of
what version you are working on, so it will store the new, modified version
as version 24 (unless you use the “US” command and manually force it to
store the new version as a different version number).

By enabling version tracking (configuringTRACK Y), you can avoid this
pitfall.

To control TLIB's automatic branching feature, configure the AUTOBRNCH

parameter; see p. 298.

To disable automatic branching but still have TLIB maintainthe TLIB-

WORK.TRK file, you can configure:

 PROJLEV *

Extracting to a temporary file

Suggestion: it is advisable to configure TLIB to track only certain files
(your source files). So, you should add something like the following to the
TLIB configuration file (or let TLIBCONF do it for you):

 TRACK N
 IF *.C,*.H,MAKEFILE.*
 TRACK Y
 ENDIF

This will allow you to extract a temporary copy of an old version of a
source file without causing an entry to be added to the tracking file.

For instance, if you wished to examine the first version of a file called
FOO.C, you could do “TLIB EBS FOO.C1 1” (assuming that yourLIBEXT

configuration parameter is chosen such thatFOO.C and FOO.C1 both “map
to” the same TLIB library file). (See also p. , for another wayto extract to
a temporary file.)

108

Since “*.C1 ” files are not tracked,FOO.C1 will not be recorded in the
tracking file.

Note that theTLIBWORK.TRKfile is always kept as read-only, to prevent its
accidental deletion.

Also note that even if you store the various versions ofTLIBWORK.TRKin a
TLIB library, they will not be tracked. That is, TLIB will notput a “TLIB-

WORK.TRK” entry in the TLIBWORK.TRK file, itself.

Note also that you can explicitly useTLIBWORK.TRKas if it were a file list
or snapshot file, extracting all the modules named in it. Use the “@” syntax,
like this: “TLIB ES @TLIBWORK.TRK”.

Semi-custom software

You can you use TLIB's version tracking to help simplify maintenance of
multiple, customized versions of your software. This is explained later.

Saving disk space

When you are not working on a particular customized version,you can
save disk space by deleting the source code, keeping only thetracking file
and the TLIB libraries. See “Saving Disk Space”, p. 199.

Merging fixes

The M (“migrate”) command can be used to merge changes from one level
of code into another, all at once. For instance, if you support “semi-cus-
tom” software, with one “standard” level and many customized levels, you
can use the M command to migrate fixes from a new “standard” level into
any of your customized levels.

The M (migrate) command uses TLMERGE (or DIFF3) where necessary
to merge fixes into customized modules, and copies those modules which
have not been customized, and records the migration historyin specially-
formatted TLIB comments so that future migrate commands cantell which
changes have already been migrated, to avoid erroneous attempts to merge
the same changes again.

This is described more fully under “M - Migrate Changes” (p. 178).

109

Configuration

The following configuration parameters are provided to support basic ver-
sion tracking: TRACK, TREEDIRS, WORKDIR, TRACKEXT, DOTDOTOK.

Additionally, the following configuration parameters areprovided to sup-
port named project levels: CREATETF, LEVEL , PROJLEV, REFSUBDIR.

110

Tracking File Terminology

“Version Tracking File”
(or “Tracking File” for short)

A Tracking File is a simple “flat file” database used by TLIB to track ver-
sion numbers and other information about the source moduleswhich you
maintain under version control. Tracking files are usuallynamed “TLIB-

WORK.TRK” (but the .TRK extension can be changed via theTRACKEXT

configuration parameter).

A tracking file resides in either a “work directory” or a “reference directo-
ry” which may (or may not) also contain copies of the tracked source files.
By default, the current work directory is usually the current directory (or
perhaps its parent directory), but you may wish to use theWORKDIRconfig-
uration parameter to change it.

If TREEDIRS Y is configured, then the “work directory” (and the “refer-
ence directory”) is just the “top” directory in a tree of related
subdirectories, and the tracking file records not only the module names,
but also the “relative paths” from the top directory to the subdirectories in
which the tracked modules reside.

“Work Directory Tracking File ”

This is a tracking file which resides in the current work directory and is
used to keep track of the current versions of the modules which you have
(or last had) copies of in that directory. IfTRACK Yis configured, then
there is always one of these. If the work directory tracking file doesn't ex-
ist, then TLIB will create it.

“Current Project Level Tracking File ”
(or “project level file” for short)
(or “PROJLEV File” for even shorter)

This is a tracking file which resides in the “reference directory” of the cur-
rent “named project level,” if any. If you are using named project levels,

111

then you must useLEVEL configuration parameters to tell TLIB about
them, and you must also use thePROJLEVconfiguration parameter to se-
lect which of your project levels is the current one.

One of the things which theLEVEL configuration parameter tells TLIB
about each project level is where its reference directory is.

Different project level files may be “current” at differenttimes, but at any
one time there is only one current project level file.

Named project levels are used for “advanced version tracking” (explained
below).

“Other Project Level Tracking Files”

If “promote-chains” (multiple assurance levels) or customized version lev-
els are used, then one or more other (non-current) tracking files may also
be accessed by TLIB (this is explained later). However, onlythe current
project level file (and the work directory tracking file) will usually be
modified by TLIB. (Exception: when “s=Old ” is configured for the current
level.)

112

What Are Tracking Files and Named Project
Levels Good For?

The short answer to this question is that TLIB uses Tracking Files to im-
plement several important features, one of which is “Named Project
Levels.”

Named project levels are principally used for just one thing: managing
multiple variants of the same project or program. If there are two or more
versions of your project or program which are being actively changed, then
you need to use TLIB's named project levels. But if there is only one ver-
sion (i.e., “the latest version”) that is subject to modification, then you
probably do not need to use TLIB's named project levels.

1) For version labeling.

Version labeling is the process of tying together all the versions of all the
modules that make up a product.

A version label (or “snapshot”) is simply a file which records the version
number of each module that is part of a release of your product. That is,
the version label file is a file that contains [module name, version number]
pairs.

Creating a version label ensures that (using TLIB) you can easily recon-
struct that release of your product at a later date.

Before you release a version of your software, make sure that you have up-
dated TLIB libraries (checked-in all the source modules). Then use TLIB's
S (snapshot) command to create a version label file. The S command con-
sults your project level tracking file(s) to determine the correct version
numbers.

Alternately, in simple development environments, creating a version label
can be simply a matter of making a copy of the tracking file.

Although the snapshot and tracking files have different formats, they con-
tain similar information, and TLIB can use them interchangeably. So, if a

113

tracking file exists which already contains the needed version number in-
formation, you can simply copy it instead of using the “S” command. This
will work...

o if you're using “basic version tracking” (no named project levels), so that
a copy of the work directory tracking file is usable as a version label; or,

o if you have just one named project level, so that a copy of its tracking
file is usable as a version label; or,

o if you have several project levels but the current project level is “fully
populated” (fully-populated vs. “sparse” project levels are described later),
so that a copy of the current level's tracking file is usable as a version la-
bel.

To save the copy, you can simply use the DOS copy command to copy the
tracking file to another file with a different name. Or you can make it more
compact by using COPYTRAK with the “-s ” option.

Other users will need to use TLIB's S (snapshot) command to make the
version label, rather than simply copying the tracking file. This is required
when the needed information is distributed among several tracking files
(due to “sparse” chained project levels, as explained later), or when you
have tracking disabled for some (or all) of your source files.

Regardless of how you create you version label files (with the S command
or by copying the tracking file), you'll probably find it convenient to store
them in a TLIB library. With TLIB, you can keep you version labels under
version control! This has the advantage of reducing file clutter and allow-
ing you to associate comments with the version label file.

2) For automatic branching.

Simply by setting the correct current project level, you canensure that
TLIB will utilize the correct branch development paths whenupdating
TLIB libraries and extracting source modules. This works either with or
without check-in/out locking enabled.

3) For keeping multiple assurance levels of code (“promote chains”).

This is the classic “staged” approach to managing large software develop-
ment projects. For example, you could have a development level, a test

114

level, and a release level. The AP (“promote”) command lets you “pro-
mote” the status of a particular version of a module from one level to the
next. Think of “promoting” a source file from the development level to the
test level as “throwing it over the wall” to the QA team.

4) For change migration.

TLIB 5.50 supports the “M” (migrate changes) command (p. 178), which
can use version tracking files to make it easy for you to migrate changes
from one level of code to another, even for entire library levels. For in-
stance:

o If you used a branch project level to do maintenance on an early release
of your software, you could use M (migrate) to apply all the fixes in all the
modules onto the latest release.

o If you used a branch project level to maintain a customized version of
your software, you could use M (migrate) to add the latest “standard”
modifications to the customized version.

115

Supported Development Environments for
Version Tracking

Several different environments are supported, with one, two or more track-
ing files used, depending upon the environment.

1. Single programmer, single development line, one current code level.

This is the simplest environment. There is only one work directory (or per-
haps a tree of subdirectories) in which source code normally resides.

Check-in/out Locking is normally disabled in this environment (since the
purpose of check-in/out locking is to keep track of which programmer is
working on which modules, which is unnecessary in this environment).

TLIB maintains just one tracking file (TLIBWORK.TRK), which resides in
the work directory (or the “top” directory of the tree). (This is “basic ver-
sion tracking.”)

You need not configure PROJLEV or LEVEL at all.

In fact, even the use of version tracking is optional. You maybe perfectly
satisfied to disable tracking (TRACK N) and simply use the S (snapshot)
command to create version labels when you make a new release.This is
(roughly) how TLIB 4.12 did things.

2. Single programmer, several development lines (customized ver-
sions).

This environment is similar to #1 except that there is one directory (or a
tree of subdirectories) for each customized version.

Check-in/out Locking is normally disabled in this environment.

TLIB maintains a tracking file (calledTLIBWORK.TRK) for each of the cus-
tomized versions. Each tracking file resides in the corresponding work
directory (or the “top” directory of each tree). However, only one tracking

116

file is in use at any given time (the tracking file used is the one in the cur-
rent work directory, or the top of the tree of directories).

One approach is to configure “PROJLEV =” and not use named project lev-
els at all. This is the “basic version tracking” approach.

However, for more flexibility you'll probably prefer to define each work
directory as the reference directory for a named project level. This allows
you to differentiate between the “standard” level and the “customized lev-
els,” so that customized modules are automatically stored as branch
versions in the TLIB libraries. You would use theb=1 option on theLEV-

EL configuration parameter for each customized version to “force”
branching when you store modified modules for that version,along with
the c=nn option to select consistent branch numbers for each customized
version

Note that with this approach it is not necessary for you to explicitly config-
ure the PROJLEVor WORKDIR parameters, since TLIB will notice that
you are working in the reference directory for one of your configured
project levels, and will automatically setPROJLEVand WORKDIRaccord-
ingly.

3. Two or more programmers working together using a network
(LAN) and working on a single line of development.

Check-in/out Locking is normally enabled in this environment, to keep
track of which programmer is working on which module(s).

The TLIB libraries reside on a shared-access network file server, and indi-
vidual programmers check source modules in and out from the server.
Each programmer has his own, private work directory (or treeof subdirec-
tories), usually on his local hard disk.

In this environment there are several tracking files maintained by TLIB:
one tracking file for each of the programmers' work directories (or trees of
subdirectories), and at least one shared “project level” tracking file which
resides on the LAN file server. Thus, when any particular programmer is
using TLIB Version Control, TLIB must simultaneously utilize two track-
ing files.

If you need to “stage” development (e.g., between “development,” “test,”
and “release” levels), then there will be several named project levels, with
programmers first storing their changed modules at the rough level (e.g.,

117

“development”), and later “promoting” them to a higher assurance level.
The linkage between levels is established via the p= and i= options on the
LEVEL configuration parameters.

The “current project level tracking file” resides on the Network file server
and tracks the current level for the whole project.

The “work directory tracking file” resides in the programmer's private
work directory (or in the top directory of the tree of workingsubdirecto-
ries).

All of the tracking files are named TLIBWORK.TRK.

The location of the (shared-access) project level trackingfile is determined
by the PROJLEV and LEVEL configuration parameters.

4. Two or more programmers working together using a network
(LAN) and working on multiple lines of development.

This environment is similar to #3, except that there is one directory (or a
tree of subdirectories) for each customized version.

Check-in/out locking is enabled.

There is (at least) one project level, and, hence, one project level reference
directory and tracking file on the server for each of the customized ver-
sions of the software. However, there is still just one directory (or tree of
subdirectories) on the server for all the TLIB libraries and lock files.

For each of the project levels, you'll have to configure aLEVEL parameter
in your TLIB configuration file, and for each customizationlevel you
should specify the “b=1” and “b=nn” options on theLEVEL parameter (you
would not do this on theLEVEL parameter(s) for the standard version of
the software).

This is a rather complex development environment, and it is discussed
more thoroughly later on.

118

Where the Files and Directories Belong

With TLIB, you will have only one set of TLIB libraries, regardless of
how many project levels (variants of your software) you have. In a multi-
ple-programmer project, the TLIB libraries will reside in a shared directory
on the file server.

In addition, if you use named project levels (to manage multiple variants
of your software), then there will also be one project level reference direc-
tory for each of the named project levels. In a multiple-programmer
project, this, too, will be in a shared directory on the file server.

Note that since the TLIB libraries are not tied to any specific project level,
they should not normally reside in any of the project level reference direc-
tories, nor in a subdirectory of any of the project level reference
directories.

119

Handling Semi-Custom Software With
Basic Version Tracking

Note: this chapter is soon to be revised; you may call for freetechnical
support if you need to use TLIB to manage customized software.

How can you use TLIB's tracking file to simplify maintenanceof multiple,
customized versions of your software product?

If yours is a large project, in which multiple programmers will be working
on (different parts of) the same customized version of the project, you will
need to utilize the “advanced version tracking” and named project levels,
which are explained later.

If yours is a small project, and you are the only programmer, you may be
able to use the basic tracking support, without named project levels, as de-
scribed in this section. However, you still may prefer to useadvanced
version tracking (with named project levels), for greater flexibility.

The constraint for “basic tracking” is this: you must haveonesubdirectory
(or one tree of subdirectories) for your “standard” version, and one for
each of your customized versions. That one directory servesas your work
directory when you are working on the associated customizedversion of
your software project.

You needn't actually have copies of the source files in each of these direc-
tories at all times, but you must have the directories, because each of the
customized versions will have aTLIBWORK.TRK file in its work directory
which records the modules and version numbers for that variant of your
software product.

When you are working on a particular customized version of your software
product, you must make that customization's work directorythe “current”
directory. It is the directory which contains the tracking file (TLIB-

WORK.TRK) for that customized version of your software product. Then
when you use TLIB to extract or update your files, TLIB can usethe cur-
rent TLIBWORK.TRK file to retrieve the right versions - and store new
modifications in the correct branches.

120

To make TLIB retrieve the versions recorded inTLIBWORK.TRKwhile ex-
tracting, you'll need to configure:

 PROJLEV =

To create the initial tracking file for the “standard” version of your soft-
ware, you can simply configure TLIB to track your source files, then
create the work directory, and then extract all the correct versions (use the
E or EB command, perhaps with the@snapshotor @filelist syntax). Or, if
you already have the source files in the directory, you can use the U com-
mand to update the TLIB libraries; those modules which haven't changed
will not actually be updated (unless you configureFORCEU Y), but the en-
tries in TLIBWORK.TRK will still be added.

To create the initial tracking file for a customized version, you must first
create a work directory for the customized variant, then youmust create its
tracking file using COPYTRAK's “-c ” option (note that this isnot neces-
sary if you are using advanced version tracking and named project levels).

“COPYTRAK -c” simply copies a tracking file and addsc=N fields for each
module to the copy. This field tells TLIB to force creation ofa branch if
you make a new modification (customization) while working on this cus-
tomized version of the module. (With advanced version tracking, the b=1

option on the LEVEL parameter is used to force branch creation, instead.)

121

Tracking file format

A TLIBWORK.TRK “tracking file” is a fixed-line-length ASCII text file
which TLIB uses as a simple database.

It consists of an indefinite number of lines (records), eachexactly 128
bytes in length (including carriage-return and line-feed). The 126th byte of
each line is always a period. The first 125 bytes are available to store in-
formation. You can think of the tracking file as a simple “flat file”
database, with fixed record size and variable-length fields within each
record.

This information about the format of version tracking filesis provided to
satisfy your curiosity.

It should not usually be necessary for users of TLIB to examine or modify
a TLIB tracking file, but since it is a normal, ASCII text file, you can do so
if the need arises.

Each record (line) contains a “key” and one or more “fields.”

The “key” is the first thing in the record. It begins in column1 and ends
with a blank.

The fields are of the form “a=value” where “a” is a single lower-case let-
ter, and “value” is text which does not contain any blanks. The fields are
separated from one another by a single blank, and the unused portion of
the record is blank-filled.

The first record (line) in a tracking file is special. It begins with a key of
“ !!* ”, and it is used to record a “project level name.”

Except for the first record in the file (which has the special“ !!* ” key), the
key is always a file name (possibly prefixed by a “relative path”) for a file
which you keep under TLIB version control. Under DOS and OS/2, the
key is case-insensitive (that is, it does not matter whetherit is upper-case
or lower-case), because the file names of these operating systems are case-
insensitive.

122

Summary: Tracking files contain two kinds of records:

1) The first record (“header” record) in a tracking file is special. It has the
special key “!!* ”, and currently has only has one field:

 n= project-level-name

This field is used only in the special “!!* ” record at the beginning of each
tracking file, and are it is normally only present in projectlevel tracking
files (rather than work directory tracking files). It is used as a consistency
check by TLIB, to ensure that thed= field in the LEVEL configuration pa-
rameter for the project level indicates the correct directory.

The name should match then= field of the LEVEL configuration parameter
for the project level.

For example, if file F:\TRUNKS\TLIBWORK.TRK contains n=TRUNK in
the !!* record, then the TLIB configuration file should contain the line,

 LEVEL n=TRUNK d=F:\TRUNKS\ ...

2) Most of the records (one per tracked source file) have the source file
name as the key, and contain one or more of the following fields:

v= version number (always present, except for “d eleted”
names)
 c= customization flag (occasionally present)

It may also contain these “internal use only” fields with which you needn't
concern yourself:

 l= library size when module was extracted
 t= “tipness”
 s= lock status (unimplemented)

Each record is used to store information about a particular module being
tracked. The key is a file name (possibly prefixed with a “relative” path)
for a file which you keep under TLIB version control.

Under DOS & OS/2, the key is case-insensitive.

123

Details:

 v=

The “v=” field is usually present. It contains the version number for this
module, in standard TLIB 5.50 syntax. Note that it is always a“fixed”
(“non-floating”) version number (that is, it cannot contain an asterisk).

If the v= field is absent, then the record is just a place holder for thekey,
in case you should someday add that file name to the tracking file (perhaps
with the “A” command). These place holder records are created when the
“AD” command is used to delete file names from a project level. The use
of place holder records enables TLIB to ensure that records will not
“move” in the tracking file, a constraint which lets TLIB create and cache
its internal indices more efficiently.

Note: The rest of this chaper is just included for completeness; you prob-
ably will never need this information.

 c=

The “c=” (“customization”) field is not often used, since theb=1 option
on the LEVEL configuration parameter is usually more convenient. Ifc= is
absent, the TLIB U command will attempt to extend the librarywith the
next sequential version, only creating a new branch if necessary. If c=N

then this module has not yet been customized, but if you update the TLIB
library with a new version then a new branch will be created even if the
next sequential version does not yet exist (this is useful asan initial value
for the records in the tracking file for a “newly-cloned” variant of your
software product). Ifc=Y then TLIB has already created a new branch for
this variant of the module; it should never be necessary to do so again.

 t= and l=

These fields are used by TLIB to optimize the operation of theF (fast) suf-
fix option on the E (extract) command. These fields are not necessary for
the operation of TLIB, and you will not “break” anything by deleting these

124

fields, except that if these fields are deleted then the “fast-extract”/“fresh-
en” commands (EF, EBF, EFS, etc.) may do superfluous extracts.

The “l= ” (library-file-length) field is used to record the length of the TLIB
library file at the time that the corresponding source file was last extracted
into that directory. When TLIB stores a new version number for a module
in a tracking file, it either deletes thel= field (if the source file isnot up-
to-date in that directory), or it stores the length of the library file in the l=

field (if the source file is up-to-date).

TLIB libraries always grow and never shrink, (because TLIB only appends
to them, without changing the old portion), so if someone hasstored a new
version of the source file, thel= fields in each of the tracking files will in-
dicate the wrong (shorter) lengths, which implies that the source file might
need to be refreshed.

More precisely, if you are specifically extracting the version recorded in
the tracking file (e.g., via the “TLIB EBF @TLIBWORK.TRK” syntax), then
the source file needs to be refreshed only if thel= field is missing; but if
you are extracting some other version then the source file needs to be up-
dated if the library has grown since the current version was extracted.

The “t= ” (tip-version-indicator) field is used in combination with the l=

and v= (version-number) fields to determine when TLIB can safely skip a
file while doing “fast-extracts” (EBF, EBFS, etc.), even ifyou do fast-
mode extracts with different specified “floating version numbers” (con-
taining asterisks) on different occasions.

The details of how TLIB creates and uses the t= fields are rather complex.
The presence of thet= field just makes it possible for TLIB to determine
under a greater variety of circumstances when it can avoid unnecessary ex-
tracts during “fast extract”commands.

There are three possibilities for the t= field:

1) If the t= field is absent, it means that nothing is known about the “tip-
ness” of the version, or it is not a tip version.

2) If t=L , it means that the specified (“v=”) version number is the very last
version in the library file (so long as the library file is still equal to the
length indicated by the l= field).

125

3) If t=T , it means that (if the library file is still the length indicated by the
l= field) then the specified version number is a tip version, though not the
last version in the library.

This will be true, for example, if thev= version is the latest trunk version,
but there is a branch version that is more recent. It will alsobe true if the
v= version is the latest version in a particular branch, but another trunk or
branch version is more recent.

The absence of thet= field is never a serious problem. At worst, it will
cause TLIB to do unnecessary re-extracts when a fast-extract command is
done. So, if you build a tool which directly manipulates TLIBtracking
files, it can just delete the t= and l= fields and not worry about it.

126

Advanced Version Tracking
& Named Project Levels

Note: this chapter is soon to be revised; you may call for freetechnical
support if you need to use TLIB to manage customized software.

“Advanced Version Tracking” is the use of one or more “named project
levels” to represent the various lines of development or staging levels for
your project. This feature provides automatic branching and automatic ver-
sion labeling for multiple-programmer teams in networked environments,
even when there are multiple lines of development or severaldifferent
“current” levels of code.

To support named project levels, TLIB 5.50 simultaneously uses at least
two tracking files: the work directory tracking file, and the project level
tracking file.

Work Directory Tracking File:

One tracking file is used to track what is in your “work” directory. It is
usually namedTLIBWORK.TRK and it resides in the work directory (or in
the top directory of a “tree” of work directories). In a networked environ-
ment, each programmer will have one of these in his private work
directory. This tracking file is sometimes called “the workdirectory track-
ing file.”

The location of the work directory tracking file is determined by the
WORKDIRconfiguration parameter (which can reference an environment or
autoset variable, if you wish).

WORKDIRusually defaults to “.\ ” (the current directory), but under some
circumstances it defaults to a parent directory of the current directory if
you've configured TREEDIRS Y .

Note that the default may not be what you want if you specify explicit
paths for your source files when using TLIB!

127

The only reason TLIB needs a work directory tracking file is to keep track
of what versions of your source files you currently have. This is necessary
for automatic branching, and to implement the F (fast/freshen) suffix op-
tion for the E (extract) command.

Project Level Tracking File:

The other tracking file is used (perhaps simultaneously) byall of the pro-
grammers on the team. It is also usually namedTLIBWORK.TRK, but it
resides in a shared-access “reference” directory on the network, and it
tracks which is the current version of each module in a “current project
level.”

This tracking file is called a “project level tracking file.”

Note: If you are a single programmer working alone, and you only have
one current version of your programs, you may not need to use named
project levels and project level tracking files.

The location of the project level tracking file is determined by the PRO-

JLEV configuration parameter, which is normally set to a “set” name,
which is usually resolved by aSET configuration parameter or aSET com-
mand in your autoset file (but can also be resolved by an environment
variable). There is an example below showing how to set this up.

There can be many project levels (and thus many project leveltracking
files), but only one of them is the “current” project level tracking file, as
determined by the PROJLEV parameter.

When you Extract (check-out) a module, the version number for that mod-
ule in the project level tracking file determines which version is retrieved
(unless you use the S suffix with the E command, to specify a particular
version). When you Update a library (check-in a source file), the version
number from the work directory tracking file tells TLIB whatversion you
started with when you began editing that file.

This, in turn, determines the new version number for the module (which
may be a branch). However, a warning will be issued if the version num-
bers in the two tracking files are not consistent (this is rare, but it could
happen, for instance, if someone else had disabled locking and stored a
new version without telling you).

128

Setting Up Your Project Level Tracking Files

Note: this chapter is soon to be revised; you may call for freetechnical
support if you need to use TLIB to manage customized software.

Setting up Work Directory Tracking Files:

There is no set-up required for work directory tracking files. They will be
created and updated as necessary when you extract source files and update
TLIB libraries.

Setting up a Project Level Tracking File for the “mainline” version:

In a multi-programmer environment, you'll need to set up least one project
level tracking file and its associated reference directory(for tracking
“trunk” or “main-line” versions). This requires the following steps:

A) Create a “reference directory” on the file server, named mnemonically.
If your file server is the “F: ” drive, you might name this directory
F:\TRUNKS . If you use a “tree” of subdirectories to contain your source
files, create the needed subdirectories, too. TLIB will notcreate the direc-
tories automatically (unless you configure MAKEDIRS Y , see p. 315).

For example, suppose you have a project for which source files are kept in
a main directory and also in two subdirectories calledIOSTUFF and
SCREENS, respectively. Then you could create the reference directory and
its subdirectories like this:

 MD F:\TRUNKS
 MD F:\TRUNKS\IOSTUFF
 MD F:\TRUNKS\SCREENS

Note: If you use a “tree” of subdirectories, configure TREEDIRS Y .

B) Invent a mnemonic name for this project level. You may want touse
the name of the directory from step (A). The name should be entirely al-
phanumeric (no punctuation characters), and all upper-case.

129

C) Edit your TLIB configuration file (usually TLIB.CFG).

i) Add a LEVEL configuration parameter to your TLIB configuration file,
like this. At a minimum, this parameter must specify the name(n=) and di-
rectory (d=) for the project level. You may also wish to configurea=Y to
cause modules to be automatically added to the project level tracking file.

For example, if the name that you invented wasTRUNKS, and the directory
you created in step (A) wasF:\TRUNKS\ , then an appropriateLEVEL con-
figuration parameter would be:

 LEVEL n=TRUNKS d=F:\TRUNKS\

The directory name must be a fully-qualified drive and path ending in a
back-slash. (E.g., “F:\TRUNKS\ ”, not TRUNKS\ or F:TRUNKS\).

Note: see “Configuring Your Project Levels” (p. 141) for more informa-
tion on configuring the LEVEL parameters.

ii) If you are using a tree of subdirectories for your source files, you should
also add “TREEDIRS Y” to your configuration file:

 TREEDIRS Y

iii) You should also configure the PROJLEV parameter.

If you will have only one project level, set PROJLEV to the name you chose
in step (B):

 PROJLEV TRUNKS

If you will have more than one project level, it is better to set PROJLEVto
reference a “set” name. Then you can select the current project level by
defining the name in yourAUTOSET.BAT files with a SET command (or
with an environment variable).

You use what whatever name you like. For this example, we chose
“PROJECT”:

 PROJLEV %!!PROJECT%

Note that the “!! ” causes TLIB to display an error message and halt if the
name PROJECT is not defined.

130

iv) Add the following temporary configuration parameter tothe end of the
TLIB configuration file:

 CREATETF Y

The name “CREATETF” is short for “Create Tracking File.” This parameter
will cause TLIB to automatically create the project level tracking file if it
does not already exist.

When you are finished setting up your project levels, it is a good idea to
delete this parameter or change it back to the default, CREATETF N.

v) Save the modified TLIB configuration file.

D) Or, If you did not configureCREATETF Y, then you must manually cre-
ate a TLIBWORK.TRK tracking file in the new reference directory.

The easiest way to do this is to use the POKETRAK utility, setting the n=

field in to first (!!*) record to the name you chose in step (B).

For example:

 POKETRAK F:\TRUNKS\TLIBWORK.TRK !!* n=TRUNKS

This creates a 1-record tracking file,F:\TRUNKS\TLIBWORK.TRK , with
your chosen project level name recorded in it.

E) If you configured PROJLEV to a “set” name reference, like%!!

PROJECT%, then use an environment variable or (more likely) an autoset
file “set” command to define the name which you chose in step (C,iii) to
be the project level name you chose in step (B).

For our example:

 SET PROJECT=TRUNKS

Now, when you create or update your TLIB libraries, the project level
tracking file (F:\TRUNKS\TLIBWORK.TRK) will be used by TLIB to record
the current version numbers of each source module.

131

Setting up Project Level Tracking Files for branch versions:

If you will need to make changes to more than one version of your soft-
ware, then you need an additional project level tracking file and reference
directory for each such variant.

There are many reasons for having additional project levelsof your soft-
ware. For instance,

o Customized versions for special customers

o Multiple assurance levels, such as Release vs. Test vs. Development

o Multiple supported releases of the product

o Maintenance or “bug fix” levels

To create a branch project level, you follow much the same procedure as
you followed to create the mainline project level. The differences are in
steps (C) and (E), and perhaps (D):

C) In your TLIB configuration file:

You will now have a LEVEL parameter for each of your project levels,
defining each of the project level names and their corresponding reference
directories.

In the LEVEL parameter for each branch/customization level:

o Specify the i= namesfield of the LEVEL configuration parameter to indi-
cate which “main-line” level(s) the new level is based upon.

o Specify the b=1 and c=nn fields of the LEVEL configuration parameter,
to force branching in the level if it will be used for alternate development
paths (bug fix levels, customization levels, etc.). We recommend that you
select values ofnn which are even multiples of 5 or 10. However, you
should not specifyb=1 if the level is for “staged” development, such as a
“development” or “test” level for mainline code, since revisions at that
level should be stored as trunk versions.

For step (C,iii), above, you should configurePROJLEV to be a current
project variable, so that you can change the current projectvia an environ-
ment variable or autoset command.

132

(There is no need to have more than oneTREEDIRSconfiguration parame-
ter.)

E) Whenever you plan to use TLIB to extract (check-out) a sourcemodule
or update a TLIB library (check-in a module), you must set thecurrent
project level to be one of the project levels you have configured. If you fail
to do so, TLIB will exit with an error message (due to the “!! ” which you
configured in the PROJLEV parameter in step (C)).

D1) You can configure “CREATETF Y” to make TLIB automatically create
the new project level tracking files. Alternately, you can create an empty
(0 to 3 byte) tracking file with a text editor, or with a DOS command like
“echo.>\refdir\tlibwork.trk ”. TLIB will replace the empty tracking
file with a proper one. Or, you can use the POKETRAK utility tocreate it,
like this:

 POKETRAK F:\CUSTOM1\TEMP.TRK !!* n=CUSTOM1

D2) As an alternative to using theb=1 option, you can create your new
project level tracking file with the COPYTRAK utility, using the -c

switch (run COPYTRAK with no parameters for help).

Start with the tracking file for the predecessor release, from which this
new variant is derived. For example:

 COPYTRAK -c F:\TRUNKS\TLIBWORK.TRK F:\CUSTOM1\TLI BWORK.TRK

Then set the name in the special “!!* ” record with POKETRAK. For ex-
ample:

 POKETRAK F:\CUSTOM1\TLIBWORK.TRK !!* n=CUSTOM1

Creating the new tracking file this way (with COPYTRAK) makes the new
level initially “fully populated” (as opposed to “sparse”), which may be
convenient for some users. Alternately, you can populate the a new branch
level with the AF command. (Sparse vs. fully populated levels, and the AF
command, are explained later.)

Setting up for branch versions with “chained” Project Levels:

Unless you used COPYTRAK to create your branch/customization project
levels, then the initial tracking files for those levels areempty. All the
source files are simply “inherited” from the parent level. As you customize
various source files and store the new (branch) versions into the TLIB li-

133

braries, the branch/customization project level trackingfile will grow to
record the customized source files.

This is called a “sparse” project level, because it only explicitly lists the
modules which differ from the parent (standard) level.

Alternately, if you use COPYTRAK (as described in D2, above)to set up
your branch/customization level tracking files, the initial tracking file lists
all of your source files - both the customized ones and the non-customized
ones. Thus, if a new version of a module is stored in the “standard” project
level, it will not affect the customized level.

This is called a “fully-populated” project level.

Each approach has both advantages and disadvantages. The main advan-
tage of fully-populated levels is that changes to the standard version will
not interfere with developers who are working on the customized version.
The disadvantage is that someone will eventually have to migrate those
changes into the customized variant. However, TLIB's M (migrate) com-
mand usually makes this a fairly painless process.

However, to avoid the migration chore, at least some of the time, you may
prefer to use sparse project levels. A sparse “customized” project level
contains only those modules which have actually been customized, with
the rest of the modules “inherited” from the “predecessor” (a.k.a. “stan-
dard” or “parent” or “base-line”) project level.

For a sparse project level to work correctly, you must tell TLIB which oth-
er level is the parent level upon which the sparse customization level is
based. You do this via thei= field in the LEVEL configuration parameter
for the customized level. Simply set thei= field to the name of the stan-
dard (base-line) project level. Then if your current project level is the
customized level, when you extract a module its version number will be
determined by the customized project level tracking file ifthe module is
listed there, and otherwise by its entry in the standard project level.

In other words, the two project levels are “chained” together by the exis-
tence of the i= field.

To set up for chained project levels, the only difference is in step D,
above. Instead of creating an initial customized project level tracking file
which contains all the modules (D2), you create an empty tracking file
(D1). If you have configuredCREATETF Y, then TLIB will do it for you;
otherwise, you can create it manually with the POKETRAK utility, setting

134

the n= field of the “!!* ” (header) record to the name of the customized
level:

D1) For example:

 POKETRAK F:\CUSTOM1\TEMP.TRK !!* n=CUSTOM1

One thing to be aware of if you use this approach: a version label is no
longer just a copy of the tracking file. Instead, it must alsocontain the
modules “inherited” from the base-line project level.

For this reason, TLIB includes the S (“snapshot”) command. The S com-
mand can create a version label file that lists both the customized source
files (found in the current level) and the uncustomized source files (found
in the parent level). That is, it also lists all the “inherited” modules from
the base-line project level (and/or promote levels).

Sorting a tracking file

COPYTRAK can also be used to sort tracking file, if you specify the -s

option:

 ATTRIB -R F:\CUSTOM1\TLIBWORK.TRK
 REN F:\CUSTOM1\TLIBWORK.TRK TEMP.*
 COPYTRAK -S F:\CUSTOM1\TEMP.TRK F:\CUSTOM1\TLIBW ORK.TRK
 DEL F:\CUSTOM1\TEMP.TRK

TLIB doesn't care whether the tracking file is sorted or not,but you may
wish to sort it for aesthetic reasons. Do not do this, however, when another
user is running TLIB, since TLIB “remembers” the locations of the various
records in a tracking file, and does not expect them to move.

135

How TLIB Uses the Tracking Files

Which tracking files are updated by TLIB, and when

When a module is retrieved, the version number is stored in the work di-
rectory version tracking file. The version number is not, at that time, stored
in any other tracking files.

When the TLIB library for a module is updated (a new version isstored),
then both the work directory tracking file and the appropriate project level
tracking file (if any) are updated with new version numbers for the mod-
ule.

The “appropriate” level is usually the current level, but ifthe module was
retrieved from an “inherits-from” level, then that level may be used, in-
stead, depending upon how you have set the optionals= field on the
LEVEL configuration parameter for the current level.

How the Various Version Tracking Files Are Used By TLIB to Deter-
mine the Version Number of a Retrieved Module

If TLIB is retrieving a module andPROJLEVis set to a current level which
is configured with p= (promotes-to) and/ori= (inherits-from) field, then
TLIB may also utilize these “predecessor” levels to determine the version
number of the extracted source module.

If the user explicitly specified the desired version, or if the module is listed
in the current project level file, then thep= and i= fields have no effect.
Otherwise, thep= and i= levels are examined, looking for a higher assur-
ance level version of the module. If the module is not found inany of the
levels, then the latest trunk version is used.

Step #0: If the user specified a particular version (either directly or through
the use of a file list), then that version number is used and the version
tracking file(s) are ignored.

Step #1: If “PROJLEV *” is configured, or if PROJLEVis not configured at
all, then the latest trunk version of the module is used.

136

Step #2: If “PROJLEV =” is configured, then the version specified in the
current work directory tracking file is used. If the module is not listed in
the work directory tracking file, then the latest trunk version of the module
is used.

Otherwise, PROJLEV is the name of the current project level, so...

Step #3: If the module is listed in the current project level tracking file,
then that entry is used to determine the version number of theretrieved
module.

Step #4: Otherwise, if there is ap= field, then that level is examined to de-
termine the version number of the retrieved module.

Step #5: If the module name is not found in thep= (“promote-to”) level,
then the i= (“inherits-from”) level(s) are examined in the order specified,
until a level is found which contains the module.

Step #6: If the module name has not been found in any of the above steps,
then use the latest trunk version of the module.

Note that TLIB does not automatically chain-together multiple “predeces-
sor” levels. That is, the only levels that TLIB examines are the current
level and the levels specified in thep= and/or i= fields of the current lev-
el. The p= and i= fields of the predecessor levels are ignored.

[Limit: While trying to determine the version number of a module, TLIB
will examine at most 30 “predecessor” levels of the current project level.
This seems to be wildly excessive, which is fortunate, sincereading lots of
project level tracking files would slow TLIB appreciably.]

137

Configuration Parameters for Version Tracking

The following new configuration parameters are the most important ones
provided to support version tracking:

TRACK <Y/N/Maybe>

Enable/disable basic version tracking. You should useIF /ENDIF blocks to
enable tracking for only those source files which are part ofyour product.
That way, you can check-out “temporary” copies of old versions of source
files (naming them “file.c1 ” for instance, instead of “file.c ”) without
having them tracked. If you use TLIBCONF to set up your TLIB configu-
ration file, it will create the neededIF /ENDIF and TRACK parameters.
Default is TRACK N . See p. 297.

LEVEL n= name d= path p= name i= names s= {Old/New/Q/Changed}
a={Y/N/Q} r= {Y/N} b= n f= {Y/N}

LEVEL is used to tell TLIB various things about your named project levels,
which are only used for “advanced version tracking.”LEVEL is explained
under “Configuring Your Project Levels” (p. 141).

Note: though theLEVEL parameter is shown here on two lines, it must be
all on one line (of at most 254 characters) in your TLIB configuration file.

WORKDIR path

Allows you to specify the “root” of a “tree” of subdirectories which con-
tain your source code. This is the directory which will contain the tracking
file, TLIBWORK.TRK. You need not specify a drive letter. Since the “tree”
of subdirectories cannot span multiple disk drives, TLIB does not track the
drive letter. You would not normally configure this unless you also config-
ure TREEDIRS Y . Default is usually “WORKDIR .\ ”. See p. 304.

138

TREEDIRS <Y/N>

Enable/disable tracking of “relative subdirectories.” Enable this if you
wish for TLIB to track a “tree” of related subdirectories as one logical
unit. There will be only one version tracking file for the entire “tree” of di-
rectories, and each “key” will contain a relative path alongwith the file
name and extension for source files which reside in the “lower” subdirec-
tories. If you configure this, you should probably also configure WORKDIR

(previous page). Default is TREEDIRS N . See p. 300.

PROJLEV name

Used to select the name of a “current project level.” The nameshould be
defined by a LEVEL configuration parameter.

Alternately, if name is if the form%!! name%, then you can use an envi-
ronment variable or autoset “set” command to select the current project
level name.

See also p. 299 , and below.

PROJLEV

If you want TLIB to always retrieve the latest trunk version of every mod-
ule (unless you specify an explicit version number), but youdo not want to
disable TLIB's automatic branching support (which is triggered when you
store a modification of an old version for a tracked module),then you can
configure PROJLEVwith no name (or don't configurePROJLEVat all, since
this is the default).

This would normally be done only for small projects which rarely involve
branch versions.

See also p. 299.

PROJLEV *

If you want TLIB to always retrieve the latest trunk version of every mod-
ule (unless you specify an explicit version number), and if you want it to
store new versions as trunk version numbers regardless of whether they're

139

based upon the latest trunk version (that is, if you want automatic branch-
ing disabled), then you can configure “PROJLEV * ”.

This would normally be done only for small projects which do not involve
branch versions.

See also p. 299.

PROJLEV =

If you want TLIB to consult the work directory tracking file to determine
the versions to be extracted, then you can configure “PROJLEV =”.

In a multiple-programmer environment, this causes TLIB's E(extract)
command to always retrieve the version thatyou were last working on,
even if someone else has stored a newer version of the module.

This is inappropriate for most users.

See also p. 299.

CREATETF <Y/N>

The CREATETFparameter is used to tell TLIB to automatically create miss-
ing project-level tracking files (“createtf” is short for “create tracking
file”). You can configure CREATETF Yif you would like TLIB to create
project level tracking files automatically. However, you must still create
the required reference directories manually. See p. 298.

SET name=unquoted-string

The SET parameter defines names to be used by TLIB like environment
variables or autoset names. You can reference “set” names ofany kind in
the TLIB configuration file via%name%or %!name%or %!! name%syntax
(use the “! ” if you want an error message to be displayed ifnameis unde-
fined, or use the “!! ” if you want a fatal error to occur ifname is
undefined). The three kinds of “set” names (environment variables, autoset
file “set” commands, and configuration file “set” parameters) are dis-
cussed starting on p. 80. Also see p. 270.

140

Configuring Your Project Levels

How named project levels can be linked to one another

This section explains how TLIB 5.50 “links together” several different
project levels (and their associated tracking files) in an “inheritance
chain.”

You'll recall that previous sections explained:

o What a “tracking file” is, and how TLIB uses tracking files tokeep track
of the version numbers for the various related modules whichmake up a
“level of code” for a project.

o How tracking files fall into two classifications:

1) The “local” tracking file for the current work directory (the “work di-
rectory tracking file”), which keeps track of the modules that you have
checked-out, and

2) Shared-access “project level tracking files” which keeptrack of the cur-
rent checked-in modules at one or more “project levels.” (These project
level tracking files are what this chapter discusses.)

o That every project level has an alphanumeric name and an associated
“reference directory,” and that for each project level you must provide a
LEVEL configuration parameter which gives, at a minimum, the nameof
the project level and the path to its reference directory.

For example, if you had a project level named “test,” and its reference di-
rectory was f:\test\ , then you would configure:

 LEVEL n=TEST d=F:\TEST\

o That the PROJLEVconfiguration parameter is used to tell TLIB which of
your project levels is the “current” one. (If you have several project levels,
you can use a%name%substitution and aSET name defined in an autoset
file or environment variable to select between them.)

141

In this section, we tell how you can describe relationships between the var-
ious project levels, such as:

o One (or more) project levels “customize” another project level.

o A project level is a newer version based upon an earlier, stable release.

o A project level is a “lower assurance level,” from which modules can be
“promoted” to the next “higher assurance level.”

Three configuration parameters are used to tell TLIB about the relation-
ships of the various levels of code in your system:TRACK, PROJLEVand
LEVEL.

The TRACKconfiguration parameter enables or disables tracking altogeth-
er. It should be specified within anIF /ENDIF block to enable or disable
tracking for particular file names.

The PROJLEVconfiguration parameter specifies the name of the “current”
project level, which should be one of the project levels described via LEV-

EL configuration parameters.

The LEVEL configuration parameters each describe one project level,one
of which should be the one named in the PROJLEV parameter.

Detailed descriptions of these three parameters are:

TRACK <Y/N/Maybe>

Configure TRACK Yto enable tracking.TRACK N(disabled) is the default.
TRACK Yenables tracking.TRACK Maybe(or TRACK M) enables tracking
only for those files that are already being tracked. See p. 297.

Example:

 ! Enable tracking for all C++ source files, exc ept for
 ! those with names starting with “temp”.
 TRACK N
 IF *.c,*.h,*.cpp,*.hpp,makefile.*
 TRACK Y
 IF temp*.*
 TRACK N
 ENDIF
 ENDIF

142

PROJLEV name

wherenameis the name of the current project level, which should be one
of the project level names defined via the n= name field in a LEVEL config-
uration parameter (see below).

There is only one current project level at any given time, so there should
be only one PROJLEV configuration parameter.

See pp. 299 and 139.

LEVEL n= name d= path p= name2 i= names s={Old/New/Q/Changed}

a={Y/N/Q} r={Y/N} b= n c= nn f={Y/N} w= {Y/N}

Note: though theLEVEL parameter is shown here on two lines, it must be
all on one line (of at most 254 characters) in your TLIB configuration file.

There must be oneLEVEL configuration parameter for each project level.
The required fields are:

n=namegives the name of the project level; it should match the name in
the header of the tracking file.

d=path gives the path of the reference directory for this project level; the
reference directory must contain the project level's tracking file. You
should specify a fully-rooted path, including both a drive letter and a lead-
ing backslash.

For example, this would be fine:

 level n=dev d=f:\devdir\

But these are not good:

 what's wrong
 level n=test d=z: (no leading backslash)
 level n=rel1 d=g:rel1\ (no leading backslash)
 level n=cust d=\cusx\ (no drive letter)

143

The optional fields are:

p=name2(Promote-to field) gives the name of the “promote-to level”to
which modules can be promoted (when you have verified that they are cor-
rect).

Implementation note: for thep= level, to implement the AP (promote)
command, TLIB has to load into memory all tracking file entries (in con-
trast to the i= levels, where just those that are not also in the current level
will have to be loaded). Thus,i= may end up being somewhat less “cost-
ly” than p= linkage.

i= names(Inherit-from field) gives the name of “inherits-from levels” to
which TLIB will refer to find modules that are not defined in this project
level. If more than one level name is specified, then the names must be
separated by commas (with no spaces).

If the i= field lists more than one inherit-from level, then the levels will
be searched by TLIB in the order they are specified.

If both p= and i= fields are specified, then TLIB looks first at thep= lev-
el, and only examines thei= levels if the module isn't defined at thep=

level. That is, thep= level (if any) is also implicitly listed as the firsti=
level. Thus, the following twoLEVEL configurations are exactly equiva-
lent:

 LEVEL n=dev d=d:\dev\ p=test i=rel1,rel0
 LEVEL n=dev d=d:\dev\ p=test i=test,rel1,rel 0

r=N (Automatic reference directory refresh disabled) This means that
TLIB will not automatically maintain up-to-date copies of your source
files in the reference directory for this level. (You can still use the EF or
EBF (fast extract) command to populate the reference directory whenever
you wish.) r=N is the default.

r=Y (Automatic reference directory refresh enabled) Ther=Y field causes
TLIB to automatically store up-to-date copies of your source modules in
the reference directory for this level. Whenever you do a TLIB command
which changes the project level tracking file entry for a source module,
(esp., when you update a TLIB library with a new version for this level),
TLIB will also refresh the associated reference copy of the source file in
the reference directory.

Note: see also the REFSUBDIR configuration parameter.

144

f=Y (Full) indicates that this level is intended to contain a full set of source
modules. Promoting (with the AP command) from this level will copy the
source module into the promote level, but the module will still be listed in
this level.

f=N (Sparse) indicates that this level is intended to contain only those
source modules which differ from the ones in its parent levels. Promoting
(with the “AP” command) from this level willmovethe source module in-
to the promote level, deleting it from this level.

The default is “f=N ” (sparse).

Note that thef= field has no effect upon the “top” project level (the level
with no i= or p= fields).

a= & s= These two similar fields which tell TLIB what you would like
done when you store a new version of a source file with the U or Ncom-
mand, in two different situations:

1) when the source file was previously unlisted, altogether; and

2) when the source file was previously only listed in an i= level.

a=... (Add-new field) tells what you would like done when a new source
file (one which was not previously listed in either the current project level
or any predecessor level) is stored with the U or N command.

There are three choices: Yes , No , and Query ; see below.

s= ... (Store-to field) tell what you would like done when a new version of
an old source file is stored with the U (update) command, but the source
file was previously listed only in an “inherits-from” (i=) level, not in the
current level. The new version can be listed in either the old(i=) level, or
the new (current) level.

There are four choices:New, Old , Query , and query-if-Changed ; see be-
low.

Warning: “LOCKING B” (branch locking) should only be used with project
levels for which s=new has been configured in theLEVEL configuration
parameter, or which have ap= (promote) linkage, or which have noi=
links configured, since only the current project level will be locked.

145

a=y (Add-new field = Yes) indicates that if a module is checked-in via the
U (update) or N (new-library) command, and the module was neither part
of the current project level nor inherited from a parent level (i.e., it was an
“untracked module”) then the module will be added to the current project
level.

a=n (Add-new field = No) indicates that if an untracked module is
checked-in via the U (update) or N (new-library) command, then the mod-
ule will not be added to any project level. Thus, this module will remain
untracked (except in the local tracking file).

If you configure a=n , you can still use the A command (add/alter projlev)
to add your source files to the current project level.

Note: configuring TRACK Nis more efficient thanTRACK Ywith a=N in
the LEVEL parameters, sinceTRACK Nwill avoid the overhead of reading
the tracking files. So, you may wish to useIF /ENDIF blocks to exclude
frequently referenced but untracked files, even if you alsouse a=N in the
LEVEL parameters.

a=q (Add-new field = Query) indicates that if an untracked module is
checked-in, TLIB will query the user about whether or not to add the mod-
ule to the current project level tracking file. The question asked is,

Module filename.ext was previously untracked. Do you wish t

o add it to project level name (y/n)?

“a=Q” is the default, unless your current work directory is also the current
project level reference directory.

Note: If your current work directory is the current project level reference
directory, then thes= field is ignored, and TLIB behaves as ifa=y and
s=new were both configured.

s=new (Store-to field = New) indicates that if a module was found inan
“inherits-from” (i=) level, then when the module is checked-in with the U
(update) command, it will be added to the current (“new”) level.

Note that this is always what TLIB does with modules found in ap= (pro-
mote-to-and-inherit-from) level, regardless of the s= field.

146

Also, note that if you are usingLOCKING B(branch/level locking), then
you should also configures=new on the LEVEL configuration parameters,
since TLIB will only lock the current level.

s=old (Store-to field = Old) indicates that if a module was found in an “in-
herits-from” (i=) level, then when the module is stored the new version
will be recorded in that level (rather than the current level). This is typical-
ly specified for “customization” levels, where most modules are not
customized, and the programmer would like changes to those modules to
be stored in the “standard” levels. This field should not be specified unless
you have also specified an inherits-from (i=) level: this field does not af-
fect a “promote-to” (p=) level.

s=Q (Store-to field = Query) indicates that TLIB should ask the user to de-
cide whether to add an “inherited” module from an inherits-from (i=) level
into the current (“new”) project level, or, instead, put it back into the origi-
nal (“old”) project level in which it was found. The questionasked is
usually:

 Do you wish to add module FILENAME.EXT to pro ject level
 NEWNAME? Choose “Y” for yes; or choose “N” to update t

he
 entry in project level OLDNAME; or press ESC t o enter i

t
 in neither. (y/n/Esc)?

However, if the correct version number is already listed in the i= level for
this source file, then TLIB just asks whether you wish to add it to the cur-
rent level. This usually happens when the U command reports that there
were “no changes” in your source file, so that a new version is not created.

s=Q is the default (but if your current work directory is also thecurrent
project level reference directory, TLIB behaves as ifs=New, regardless of
how you've configured it).

s=C (Store-to field = query-if-Changed) is a “smarter” variation on s=Q, in
which TLIB tries to avoid asking you questions if it seems obvious how
you would probably answer.

s=C is just like s=Q when you are storing a new version of your source file
with the U (update) command.

However, if there were no changes to the source file, so that the U com-
mand doesn't store a new version, and the version number in the
predecessor (i=) level is already up-to-date for this source file, then TLIB

147

will not ask you whether you wish to add the source file to the current lev-
el.

Instead, what TLIB does in this case is determined by thea= field. If a=N

or a=Q is configured (the usual case), the source file will not be added to
the current level. If a=Y is configured, TLIB will go ahead and add the
source file to the current project level, but only if f=Y is configured.

Note #1: If your current work directory is the current project level refer-
ence directory, then thes= field is ignored, and TLIB behaves as ifs=new

and a=y were configured.

Note #2: configuring s=Old or s=Q should also affect the operation of
branch locking (“LOCKING B”) when a module is E(xtracted) from ani=
(inherits-from) level, since TLIB should lock the module atthat level in-
stead of the current level. However, this is not implementedin TLIB 5.50.
Instead, TLIB 5.50 always locks the current level whenLOCKING Bis con-
figured, so you should always configures=New on your LEVEL parameters
if you use LOCKING B .

b=1 (Branch = 1-deep) indicates that this project level contains customiza-
tions which should not normally be stored as “trunk” (integer) version
numbers. You will probably also want to specifyc=nn, to specify a char-
acteristic branch number for each level at which you've configured b=1 ;
see below.

b=0 (Branch = 0-deep) is the default, which allows new versions to be
stored as trunk (integer or major:minor) version numbers where possible.

c=mm (Created branch number preference) You can configure “c=nn”
(wherenn is an integer) to tell TLIB what branch number you prefer be
used when TLIB is creating a new branch version. The “branch number” is
the (parenthesized) number of the branch, not the number of the version
within the branch.

If TLIB creates a new branch to store a new version of any file for this
project level, TLIB will try to use nnn as the branch number (or, if branch
nn already exists, TLIB will create the next-higher unused branch version
number).

This is for aesthetics; by using thec= option, you can make all the branch
versions for a particular level share the same branch number(though the
branches may still sprout from different trunk versions).

148

Suppose, for example, that you use theU command to store a revision to
version 6 of FOO.C, but version 7 of FOO.C already exists. Then TLIB
must create a branch version from version 6. If, in theLEVEL parameter
for the current project level you have specifiedc=15 , then TLIB will cre-
ate the new branch version as “6.(15)1 ”.

You may want to usec=nn in combination with theb=1 option (which
forces branch creation).

For example, suppose that TLIB.CFG contains:

 LEVEL n=STD d=H:\TLIBLEVS\STD\ a=Y
 LEVEL n=CUST1 d=H:\TLIBLEVS\CUST1\ i=STD b=1 C=10
 LEVEL n=CUST2 d=H:\TLIBLEVS\CUST2\ i=STD b=1 c=20

If the current version ofBAR.C is 7, and you customize it for levelCUST1,
then the new version created by theU (update) command would (by de-
fault) be 7.(10)1 , instead of7.1 [7.1 is equivalent to7.(1)1 , since the
default branch number is 1].

w=N (Non-Writable level) Configure “w=N” to tell TLIB that this is a “non-
writable” project level, at which the U (update) and E (check-out for modi-
fication) commands are prohibited. This is provided for the convenience of
users who must comply with ISO 9001, which mandates a 3-levelpromote
structure, and prohibits direct updates to the upper levels. Under the ISO
9001 scheme, all work must be done at the lowest project level, and then
promoted to the upper levels with the AP command.

w=Y (Writable level) This is the normal setting and the default.

Here's an example of how you might use “w=N”:

TLIB.CFG contains:

 LEVEL n=REL d=H:\TLIBLEVS\REL\ w=N
 LEVEL n=TEST d=H:\TLIBLEVS\TEST\ p=REL w=N f=Y
 LEVEL n=DEV d=H:\TLIBLEVS\DEV\ p=TEST i=REL f=Y a =Y

In this example,DEV (the development level) is the “lowest” level (with
the highest version numbers), which is where the development work is
done. All Updates must be done at theDEV level. It promotes toTEST and
inherits from REL .
The “upper” levels (REL and TEST) are non-writable, because “w=N” had
been configured.

149

The “f=Y” used in this example means that the levels are “fully-
populated” (not sparse). For details about why you might prefer sparse vs.
fully-populated levels see p. 171.

Here is an example of sevenLEVEL statements from a TLIB configuration
file which defines a fairly complex set of seven project levels:

 ! Define 3-level promote chain (DEVELOP -> TEST -> REL2)
 ! for the “regular” version, which also “chains-ba ck”
 ! (inherits from) the previous release (REL1):
 LEVEL n=DEVELOP d=f:\stddv\ p=TEST i=REL2,REL1 s=N EW
 LEVEL n=TEST d=f:\test\ p=REL2 i=REL1 s=NEW
 LEVEL n=REL2 d=f:\release2\ i=REL1 s=NEW

 ! Define the previous (now stable) release level, REL1:
 LEVEL n=REL1 d=f:\release1\

 ! Define a 2-level “promote-chain” (CUST1DEV -> CU ST1R2)
 ! for a customized variant of the regular version:
 LEVEL n=CUST1DEV d=f:\c1dv\ p=CUST1R2 i=CUST1R1,TEST,REL2,REL1 b=1 c=20
 LEVEL n=CUST1R2 d=f:\c1r2\ i=CUST1R1,REL2,REL1 b=1 c=25 s=NEW

 ! The previous release (CUST1R1) of the customized variant:
 LEVEL n=CUST1R1 d=f:\cust1r1\ i=REL1 b=1 c=15 s=NE W

Here's a drawing of the relationships between the project levels defined in
the above example, with the “oldest” (most stable) levels on the right:

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�

 DEVELOP

�

� � � �>

�

 TEST

�

� � � � �>

�

 REL2

�

� � � � �>

�

 REL1

�

�

�

 � �>

�

�

 � �>

�

�

 � �>

�

�

�
� � � � � � � � �
�

�

�
� � � � � � � � �
�

�

�
� � � � � � � � �
�

�

�
� � � � � � � � �
�

�

�

�

�

�

�

 � � � � � � � � � � �

�

 � � � � � � � � � � �

�

 � � � � � � � � � � �

�

�

CUST1DEV

�

�
	

�

 CUST1R2

�

�
	

�

 CUST1R1

�

�
	

�

�

� � � � �>

�

�

� � � � �>

�

�

�
� � � � � � � � �
�

�
� � � � � � � � �
�

�
� � � � � � � � �
�

In this drawing, the boxes indicate the seven project levels, the double hor-
izontal arrows indicatep= (promotes-to-and-inherits-from) relationships,
and the single arrows indicate i= (only-inherits-from) relationships.

This diagram is inexact, since it does not show the complete list of i= (in-
herits-from) library levels which TLIB searches when looking for a
module. However, these would normally be defined in “chains.” For in-
stance, if level DEVELOP inherits from TEST, and TEST inherits from

150

REL2, then DEVELOPwould normally be configured to inherit fromREL2

(as a “second choice”) as well as from TEST .

The actual levels & the order in which they are examined by TLIB is de-
termined by the p= and i= fields, and the order in which you have
specified the levels in the i= field.

Promote chains

Promote chains implement a classic “staging” approach to software project
management, with successively “higher assurance levels” containing suc-
cessively more rigorously-tested (but older) versions. Consider the
following promote chain:

 DEVELOPMENT � � �> TEST � � �> RELEASE1

In this example, a new version of a module would be first stored in the
DEVELOPMENTlevel, then it is promoted to theTEST level, and then pro-
moted to the RELEASE1 level.

Note that the “highest” level (RELEASE1, in our example) contains the old-
est modules and, consequently, the lowest version numbers!

We would configure the three levels like this:

 LEVEL n=development d=d:\dev\ p=test i=release 1
 LEVEL n=test d=d:\test\ p=release1
 LEVEL n=release1 d=d:\rel1\

When programmers are working on “rough” code, they would setPRO-

JLEV to DEVELOPMENT. This could be either by a special TLIB
configuration file or by configuring “PROJLEV %!!CURRENT%”, and requir-
ing the programmers to “SET CURRENT=DEVELOPMENT” before running
TLIB (or, more conveniently, put “SET CURRENT=DEVELOPMENT” in their
autoset file).

When a programmer is satisfied that his changes are correct,he uses the
AP command to “promote” the changed modules to the next level(level
TEST in our example).

When someone responsible for testing the modules at theTEST level is
working, they would setPROJLEV to TEST. When they are satisfied that

151

the modules are adequately tested, they promote them to the next level
(level RELEASE1 in our example).

Note that there is nothing magical about the namesDEVELOPMENT, TEST

and RELEASE1, nor about having three assurance levels. You can name
your levels anything you wish, and you can have as many or as few of
them as you wish, within reason. (But if you have a promote chain ten lev-
els deep, you should probably reexamine your strategy!)

The evolution of LEVEL structures

When the RELEASE1level of code is actually shipped, development begins
on the next release. At this time, all modules (source files)have been pro-
moted to the RELEASE1 level.

The goal is to develop a new, improved “RELEASE2” level of code. Some
of the modules will be the same as inRELEASE1, but some will be new or
changed.

The plan is to use the oldDEVELOPMENTand TEST levels for the new code.
Modules will be promoted from theDEVELOPMENTlevel to the TEST level,
as before, but then they will be promoted from theTEST level to the RE-

LEASE2 level (instead of theRELEASE1level). So, the newRELEASE2level
must be inserted in the chain “above” theTEST level (so that promotes
work correctly) but “below” theRELEASE1 level (so that RELEASE2can
“inherit” the unchanged modules from RELEASE1).

The new chain looks like this:

 DEVELOPMENT � � �> TEST � � �> RELEASE2 � � �> RELEASE1

The single-line arrow connectingRELEASE2 to RELEASE1 indicates that
you cannot actually promote modules fromRELEASE2to RELEASE1(be-
cause RELEASE1 has been shipped and is stable), but thatRELEASE2

“inherits” some unchanged modules from RELEASE1.

We would change the configuration to look like this:

 LEVEL n=development d=d:\dev\ p=test i=release2 ,release1
 LEVEL n=test d=d:\test\ p=release2 i=release1
 LEVEL n=release2 d=d:\rel2\ i=release1 s=new
 LEVEL n=release1 d=d:\rel1\

152

(Note that the order in which the fourLEVEL configuration parameters are
placed in the TLIB configuration file is of no consequence.)

In this example, the module first exists on theRELEASE1level. Then it is
checked-out, modified and stored (with the TLIB “U” command) in the
DEVELOPMENTlevel. Then, when the programmer is satisfied with the mod-
ule, it is promoted to the TEST level.

When testing is complete, the module is promoted again, to the RELEASE2

level, where it stays.

A Larger Example

Other uses for “linked” levels are also possible. For instance, in the fol-
lowing diagram, double arrows indicate a promote chain, andsingle
arrows indicate “inherits-from” linkages used for customizations:

 DEVELOPMENT � � �> TEST � � � � �

�
� �>

 � � �> STDREL
 CUST1DEV � � �> CUST1REL � � �

�

� �>

�

�

 CUST2DEV � � �> CUST2REL � � � �
�

In this example, there are three assurance levels for a “standard” version of
the software, plus two customizations of the standard version, each of
which has two assurance levels.

We would configure the seven levels like this:

 LEVEL n=development d=d:\dev\ p=test i=stdrel
 LEVEL n=test d\d:\test\ p=stdrel
 LEVEL n=stdrel d=d:\std1\
 LEVEL n=cust1dev d=d:\cust1\ p=cust1rel i=stdrel b=1 c=10
 LEVEL n=cust1rel d=d:\c1r1\ i=stdrel b=1 c=15 s= new
 LEVEL n=cust2dev d=d:\cust2\ p=cust2rel i=stdrel b=1 c=20
 LEVEL n=cust2rel d=d:\c2r1\ i=stdrel b=1 c=25 s= new

Another Example

153

In the following diagram, double-width arrows indicate a promote chain,
and single-width arrows indicate customizations:

 DEVELOPMENT � � � � � �>
 � � � �> TEST � � � � � �

�

� � �>

�
� �>

 � � � � � �
� �

 � � �> STDREL
 CUST1DEV � � � � � � � �> CUST1REL � �

�

� �>

�

�

 � � � � � � �
�

�

 CUST2DEV � � � � � � � �> CUST2REL � � �
�

As in the previous example, there are three assurance levelsfor a “stan-
dard” version of the software, plus two customizations of the standard
version, each of which has two assurance levels. However, inthis variant,
the chaining is slightly more complex.

 LEVEL n=development d=d:\dev\ p=test i=stdrel
 LEVEL n=test d=d:\test\ p=stdrel
 LEVEL n=stdrel d=d:\std1\
 LEVEL n=cust1dev d=d:\cust1\ p=cust1rel i=test,st drel b=1 c=10
 LEVEL n=cust1rel d=d:\c1r1\ i=stdrel b=1 c=15 s=n ew
 LEVEL n=cust2dev d=d:\cust2\ p=cust2rel i=test,st drel b=1 c=20
 LEVEL n=cust2rel d=d:\c2r1\ i=stdrel b=1 c=25 s=n ew

How does this differ, functionally, from the previous example?

In this example, the customized “development levels” (CUST1DEVand
CUST2DEV) derive from a less stable level of the standard version (the
TEST level). Thus, if CUST1DEVis the current project level and you extract
a module which has not previously been customized (that is, it is not listed
in CUST1DEVor CUST1REL), then you will get the version currently in the
TEST level (if it is not in the TEST level, it will be retrieved from the
STDRELlevel, as before). If the chaining were set up as in the previous ex-
ample, and you extracted a not-yet-customized module, thenyou would
get the version listed in STDREL, rather than TEST .

154

Administering Multiple Project Levels

It may not always be obvious which project levels should be branches, and
what you should do when you need another project level. This section is
intended to advise you.

Scenario #1a:
Development level + Release level
For small to medium-sized projects
(Sparse REL2)

You started your project with just one project level, calledREL1, which
contains the trunk versions of your preliminary specifications and source
code while it is under development. Now, however, the code isworking,
and you are ready to “release” what you have, either to your customers or
to an internal Test Department for further testing. As bug reports come in,
the development team will have to give priority to fixing theproblems. In
the meantime, however, they will begin development of the next major re-
lease.

Recommendation:

First, be sure you've updated all the TLIB libraries with thelatest level of
code (checked-in all modules).

Since this is release time forREL1, you need to use the S command to cre-
ate a “snapshot” version label file which records the revision numbers for
each source file at this point in time - otherwise, it will notbe easy for you
to recreate this version in the future. (Actually, since youhave only one
level, you could simply save a copy of the tracking file, instead of using
the S command.)

Hint: you may wish to store the version label file into a TLIB library of its
own.

155

Now you need to “split”REL1. That is, you need two project levels: one to
track fixes to the new release, and the other to track the new development
work for the next major release.

Change your TLIB configuration file to describe two levels instead of one:

Old:

 LEVEL n=REL1 d=f:\rel1\ a=Y r=Y

New:

 LEVEL n=REL1 d=f:\rel1\ r=Y b=1 c=5
 LEVEL n=REL2 d=f:\trunks\ a=Y r=Y i=REL1 s=new

Initially, the two levels are effectively the same:REL1 will be a fully-pop-
ulated more-or-less-stable level which contains the released version,
perhaps with bug fixes.REL2 will be the “rough” level where the develop-
ment team stores the new, incomplete enhancements which will eventually
become the second release of your product.

The “main” long-term development path is the work on the nextmajor re-
lease (REL2), so that should be the “trunk” level, which means that the
released version (REL1) should now be tracked with a “branch” project
level. That's why we configured b=1 for the REL1 level.

We can represent the inheritance chain like this:

 REL2 � � � � �> REL1

Initially, REL1 and REL2 effectively contain the same versions of each
module (since REL2 inherits all “missing” source files from REL1).

When you make modifications to the modules in theREL2 level, the new
versions of the source code will be stored as trunk versions in the TLIB li-
braries.

However, if you make modifications to modules in the REL1 level (say, for
fixing bugs), the new versions of the source code will be stored as branch-
es in their TLIB libraries. This happens automatically because of theb=1

field in the LEVEL parameter for REL1 .

156

An Alternate Recommendation:

You can defer creation of the new REL1 project level, if you wish.

If you think that you may not need to do maintenance on this release, then
you needn't create the newREL2 project level at this time. Just be very
sure that you save a version label, and you can keep using the old REL1

level for work on your second release (though the choice of names is obvi-
ously poor).

Then, if it later develops that you need to create a project level for mainte-
nance ofREL1, you can do so by creating a new level, and then initializing
it with the saved version label files. For example, if your saved snapshot
version label file is calledREL1V1.SNP, then you can populate the new
level with the old versions be making the new level your current project
level and using the A (add/alter project level) command like this:

 TLIB A @REL1V1.SNP

Note that REL1V21.SNP can be either a snapshot file created with the S
command, or a saved & renamed copy of the oldTLIBWORK.TRKtracking
file for REL1 . TLIB will work equally well with either one.

Modules which are unchanged from the first release need not be part of
the REL2 level; they will be “inherited” from the old REL1 level.

Scenario #1b:
Development level + Release level
For small to medium-sized projects
(Fully-populated REL2)

This is an alternative solution for the same scenario described above as
“Scenario #1a...”.

Rather than makingREL2 inherit from REL1, you can simply set upREL2

to be another fully-populated project level.

One way to do this is to use COPYTRAK as described in (D2, p. 133) to
make a new, fully-populated tracking file for REL2 . Then use POKETRAK
(or a text editor) to change then=REL1 to n=REL2 on line1 (be sure that

157

you don't change the length of the line -- it must be exactly 126
characters).

Alternately, you can set upREL2 as described in scenario #1a, above, and
then use the AF command to fully-populate the new level:

 TLIB AF *.*

You can, if you wish, also convert from a fully-populatedREL2 level to a
sparseREL2 level. First, you must first add ani=REL1 field to the LEVEL

configuration parameter forREL2 (if it isn't already there). Then you use
the ADF command to remove fromREL2 those modules which are defined
as the same version in REL1 :

 TLIB ADF *.*

Scenario #2:
Development level + Test level + Release level
For large projects

In this scenario, you will use multiple project levels to implement different
“assurance levels.”

The “lowest” assurance level in this example is called TRUNKS. It is similar
to the REL2 level of scenario #1, above.TRUNKSis used for “first try”
rough code, for main-line development.

There is no guarantee that code from theTRUNKSlevel is working at any
given time.

A TEST level will be used for modules which the developers believe are
working correctly; this level is the level of code which the Test Depart-
ment tests for its “system tests.”

A third level, called RELEASE, is used for modules which the Test Depart-
ment has “blessed.”

 TRUNKS � � �> TEST � � �> RELEASE

158

(Note: there is nothing sacred about this three-level structure; you may use
as many or few assurance levels as you wish (30 is the limit, but more than
four or five would be very unusual.)

As in scenario #1, the trunk versions should be for main-line development.

The TEST level is a “promote-to” project level fromTRUNKS. Because the
main development process begins at theTRUNKSlevel, any changes made
directly at the TEST level should be branches. Therefore, you may want to
use the “b=1 ” and “c=nn” fields in the LEVEL configuration parameter for
TEST.

Similarly, the RELEASElevel is a “promote-to” level fromTEST. You will
create theRELEASEproject level for the first time when the firstTEST ver-
sion has “passed” system test.

Questions & Answers for Scenario #2:

Q.1: When should a snapshot version label file be created?

A.1: Whenever you “ship” a version, and whenever you think you just
might possibly someday have a reason to need to know what was in a level
of code. When in doubt, save it! You can avoid a proliferationof saved
snapshot files by storing them in a TLIB library.

Q.2: What happens when a bug is discovered in the development(TRUNKS)
level of code?

A.2: This one is easy. The developer makesTRUNKShis current project
level, then he uses “TLIB E ” to extract (check-out) the defective source
file(s) into his work directory (perhapsC:\WORK\), he fixes the bug, and he
uses “TLIB U ” to store the fix. TheTRUNKSlevel's tracking file is automat-
ically updated. Note that the current/work directory should be a private
directory used just by this developer, perhaps on theC: drive. It should
not be the project level's reference directory.

Q.3: What about a bug discovered in the TEST level of code? The bug then
presumably exists in both the TEST level and the TRUNKS level.

A.3: You have two choices:

a) You can make the fix directly in theTEST level. In this case, you (the
programmer) makeTEST the current project level; then use “TLIB E ” to

159

extract (check-out) the defective source file(s); then use“TLIB U ” to store
the fixed version.

The TEST project level tracking file will be automatically updated.How-
ever, you'll eventually need to migrate the fix back “down” into the
TRUNKSlevel using the M (migrate) command, and perhaps manually cor-
rect any “change collisions” which DIFF3 reports.)

b) If the TRUNKS(development) level has not incorporated any new code
which would preclude its inclusion in theTEST level, you should probably
make the fix on theTRUNKSlevel, then promote the fix to theTEST level
with the AP command.

Q.4: What about a bug discovered in theRELEASElevel of code? The bug
may also exist in the TEST and TRUNKS levels.

A.4: You have three choices:

a) You can make the fix in theRELEASElevel, then later migrate it down
into the TEST and TRUNKS levels with the M (migrate) command. Or,

b) You can make the fix in theTEST level, then promote it (with the AP
command) to the RELEASE level, and later migrate it down into the
TRUNKS level. Or,

c) You could even make the fix in theTRUNKS(development) level, and
then promote it to theTEST level, and from there to theRELEASElevel.
However, before doing this you should verify that there is nothing in the
TRUNKS level modules which would “break” the RELEASE level code.

Scenario #3:
Semi-custom Software

In this scenario, you will use multiple project levels to maintain cus-
tomized versions of the software.

If you're read scenarios #1 and #2, above, this one may seem simple. The
TRUNKSlevel will be for your “standard” version. You will create one or
more “customized” versions by creating branch project levels from the
TRUNKS level.

160

When the time comes to bring a particular customized versionup to the
level of the standard version, use the M (migrate) command toadd the
TRUNKS level changes to the branch levels.

If, as in scenario #1 or #2, you have more than one “standard version” (of
differing vintages), then you can create the customized version from any of
the “standard” versions (e.g., REL1 or REL2 in scenario #1).

Using Load-Time Conditionals

Sometimes you may have two or more different work environments, so
that you need to configure TLIB two or more ways. TheIFF directive is
ideal for this.

For example, a TLIB user we know has several different products, each of
which gets slightly customized for each of perhaps as many as50 or 60
customers. A particular developer may work on several products, and on
both standard and customized variants of each.

Warning: the following description of how we set up TLIB for this cus-
tomer assumes familiarity with TLIB's named project level mechanisms. If
you're new to TLIB, you'll probably find it befuddling.

This customer has a work directory for each variant of each product, in a
tree like this:

 c:\work\product1\std\ “standard” directory for product 1
 c:\work\product1\cust1\ 1st customized directory for product 1
 c:\work\product1\cust2\ 2nd customized directory for product 1
 etc.
 c:\work\product2\std\ “standard” directory for product 2
 c:\work\product2\cust1\ 1st customized directory for product 2
 c:\work\product2\cust2\ 2nd customized directory for product 2
 etc.

The goal was to configure TLIB so that the current project level, library
path, etc. would all be deduced by TLIB automatically from the current
work directory, all with a singleTLIB.CFG file (to be placed in the TLIB
executables directory). Here's an excerpt from the TLIB.CFG file:

 ! Get name of the current directory, and of the di rectory
 ! above it. The current directory is the customer name,

161

 ! and the directory above it is the product name:
 set CUST=%tlibcfg:workdir:-1%
 set PROD=%tlibcfg:workdir:-2%
 set REFDIR=d=\\acme\sys\levls\%PROD%\%CUST%
 set STDDIR=d=\\acme\sys\levls\%PROD%\std
 ! There must be an "ordinal.inc" file in each pro j level
 ! reference directory, with a single line like thi s:
 ! set ORD=20
 ! That sets the branch noumber for customized vers ions of
 ! each module stored at the level. In effect, the ordinal
 ! is a customer number. We recommend that the ordi nals NOT
 ! br adjacent integers. Instead, space them by 5 or 10
 ! (e.g., use 5, 10, 15, 20, etc.)
 ! In "standard" (%PROD%_std) levels, the ordinal s hould be:
 ! set ORD=1
 include %REFDIR%\ordinal.inc
 ! There is just 1 set of library files for all t he custom
 ! (and std) variants of each product, of course:
 path \\acme\sys\libs\%PROD%\
 ! Current proj level is determined by current di rectory:
 projlev %PROD%_%CUST%
 ! Standard level (which might also be the curren t level):
 level n=%PROD%_std d=%STDDIR%\ b=0 c=1 a=y
 ! Last, if current level is a customized level, we must
 ! also configure the LEVEL parameter for the curre nt level:
 iff ('%CUST%' nei 'std')
 level n=%PROD%_%CUST% d=%REFDIR%\ i=%PROD%_std b=1 c=%!ORD% a=y
 endif

For more information on load-time conditionals (IFF/ELSE/ENDIF) see p.
323.

162

EBF command: Fast-Extract
(extract only changed files)

TLIB 5.50 adds support for a “fast extract” operation, intended for quickly
refreshing (“freshening”) browse mode files in your working directories
and reference directories. You use it by adding the “F” option to your ex-
tract commands, as in these examples:

 TLIB EBF @TLIBWORK.TRK or
 TLIB EBFS <wild-card-spec-or-@filelist> *

Read “EBF” (or, equivalently, “EFB”) as “Extract/browse/fast”. Read
“EBFS... *” as “Extract/browse/fast/latest-trunk-version”.

For “fast extracts” to work, you must be using version tracking (that is,
you must have configured TRACK Y or TRACK M).

If you are using check-in/out locking (e.g.,LOCKING Y), then you'll proba-
bly want to configure READONLYB Yand REPLROBR Yto use this
command to refresh browse mode files in your work directory.

This command is somewhat symmetrical with the “UF” (fast update) com-
mand which, if you work alone (and withLOCKING Nconfigured), makes
it easy to “freshen” your TLIB libraries by storing your latest changes.

However, unlike the UF command, the EF (fast extract) command does
not work by comparing file dates. Instead, it works by setting and examin-
ing three fields, “v=”, “ l= ” and “t= ”, in the tracking files (TLIBWORK.TRK).

Also, unlike the UF command, fast extracts are mainly used innetworked,
multiple-programmer shops. Such programmers normally have locking en-
abled, so they normally use “UO” (“update owned files”) instead of “UF”
when they want to update/check-in all changed files.

Note: the old FASTEBFT.BAT kludge is obsolete in TLIB 5.50, thanks to
major performance improvements in the EBF command.

163

Reference directories

A reference directory is the directory associated via thed= field of the
LEVEL configuration parameter with a named project level. By default, the
reference directory contains only the TLIBWORK.TRK file, so the name “ref-
erence directory” is, perhaps, a bit misleading.

However, if you wish, the reference directory can also contain “reference
copies” of a complete set of source files for the project level (which is why
we call it a reference directory). TLIB 5.50 can automatically maintain ref-
erence directories for any or all of your project levels.

If you wish for TLIB to keep up-to-date reference copies of your source
files in the reference directories for one or more project levels, simply con-
figure r=Y in the LEVEL configuration parameter for those levels.

For project levels withr=Y configured, TLIB will automatically copy the
source file into the reference directory whenever you update the TLIB li-
brary with a new version at that project level.

Note that this feature doesnot respect theOLDDATE Yconfiguration pa-
rameter; the reference copy always gets the current date/time, so that your
MAKE utility can correctly rebuild dependent modules. Thisis a subtle
difference between using r=Y and using the EF or EBF command to im-
plement reference directories.

See also theREFSUBDIR(below) and FORCEREFR(p. 306) configuration
parameters.

164

The REFSUBDIR configuration parameter.

Syntax:

 REFSUBDIR directory-name

This configuration parameter can be used in combination with an IF /EN-

DIF block when you are not usingTREEDIRS Ybut you need to keep the
reference copies of your include files in a different directory from the ref-
erence copies of your main source files.

Why would you need to do this? The usual reason is a problem with the
directory search order used by most compilers when reading include files.
Usually, when searching for an include file included by a particular main
source file, the compilers first look in the directory containing the main
source file.

Unfortunately, if the main source file is a reference copy, and the include
file is one that you have checked-out into your personal workdirectory
and have modified, then that search order iswrong! It will cause the old,
unmodified version of the include file to be used instead of the one that
you are trying to test! For reference directories to work properly, youmust
somehow prevent the compiler from reading the reference copy of an in-
clude file when you also have a modified version of that include file
checked-out into your work directory.

Note that this same problem occurs when you have “customization” levels
for the support of semi-custom software versions. The danger is that a cus-
tomized include file may not be used when compiling a main source file
which has not been customized.

If you are programming in C, you may be able to avoid this obnoxious
compiler behavior simply by using<angle braces> instead of " quote
marks" in your #include directives (though this does not work for all
compilers).

Alternately, you can separate your include files from your main source
files by configuring eitherTREEDIRS Y(if you also keep them separated
into a “tree” of subdirectories in your work directories), or REFSUBDIR(if
you keep all the files together in one work directory).

165

For example, if you are programming in C, you might configure:

 LEVEL n=main d=f:\main r=Y
 REM - Ref copies of header files go in F:\MAIN\IN C subdir
 IF *.h
 REFSUBDIR inc
 ENDIF
 PROJLEV main

Note that (despite theREMark in that example) theREFSUBDIRparameter
applies toall of your project levels; you cannot configure aREFSUBDIRfor
just one project level (unless, of course, you have only one project level).
Thus, for example, if you were to configure “REFSUBDIR INCL”, then
you'd also need to create anINCL\ subdirectory in each of your project
level reference directories (except for project levels which don't haver=Y

set in the LEVEL parameter).

However, there are several caveats to remember when using REFSUBDIR:

a) Do not useREFSUBDIRin combination withTREEDIRS Y(doing so will
confuse TLIB).

b) REFSUBDIR will not solve the problem of the compiler reading the
wrong include files if you “nest” your include directives (that is, if your in-
clude files include one another)! (Think about it.)

c) If you manually refresh the files in aREFSUBDIRsubdirectory, be sure
that you do so only when theWORKDIRdirectory (by default, the current
directory) is the main reference directory for that projectlevel. Otherwise,
TLIB will not find and use the proper project level tracking file, and it will
create a bogus work directory tracking file in yourREFSUBDIRsubdirecto-
ry.

There are also two special forms of theREFSUBDIRconfiguration parame-
ter, (and these forms can be used in combination with TREEDIRS Y):

“REFSUBDIR nul” prevents storing reference copies altogether. (Think of
nul as the “bit bucket”).

“REFSUBDIR” (or “ REFSUBDIR .”) disables REFSUBDIR, just as if you had
not configured it at all.

These special forms can be used, in conjunction withIF /ENDIF blocks, to
enable and disable the creation of reference copies for various files. For in-

166

stance, the following could be used if you wanted reference copies only of
.c files, and not anything else:

 REFSUBDIR nul
 IF *.C
 REFSUBDIR
 ENDIF

167

A (add/alter project level)
and AP (promote) commands

These commands are used with TLIB 5.5x's named project levels (a.k.a.,
advanced version tracking).

Most of these commands are working in TLIB 5.54. However, twocom-
mands marked with asterisks do not yet work; they are plannedfor a future
version of TLIB.

The “A...” commands are:

 A command: Add-to/Alter a project level or file list
 Legal suffixes are [D,F,P,S,U,X] (plus search mode suffixes):
 A or A0 - Add files to the current project level
 AP - (with Promote suffix: add to promote (p=) level)
 AS - (with Specify-version suffix: specify version number)
 AU* - (with Undo suffix: go back to previous version number)
 AX - (with eXclude suffix: mark files as excluded, “v=X”)
 AD - (with Delete suffix: delete from current project level)
 AF - (with Fast suffix: populate a sparse project level)
 Combinations:
 APU* - (undo promote)
 ADF - (depopulate (make sparse) a project level)
 APX - (mark eXcluded file as eXcluded in the promote level)
 (“ * ” means commands planned for a future version of TLIB)

 Note #1: Default wild-card search mode is A (all project levels) except for
AP and AD, for which the default search mode is T (this level).

 Note #2: If PROJLEV is not configured, these commands won't work.

The A (add/alter project level) command

The A command is used to add modules to the current project level. This
is mainly for those who have configureda=N in their LEVEL configuration

168

parameter, so that modules are not automatically added to the current
project level by the N (new library) and U (update library) commands.

Note: it is frequently useful to specifiy theW (workfiles) search mode suf-
fix with the A command (i.e., make it the AW command).

The AS (add/alter project level, specifying version) command

The AS command is just like the A command, except that it allows you to
override (“specify”) the default choice for the initial version number that
will be recorded in the project level tracking file for the added modules.

Note that if you have configured TLIB for automatic reference directory
refresh (“r=Y ”) in the current project level, then the A and AS commands
will also cause an automatic extract of the source file(s) into the reference
directory.

The AX (eXclude source file) command

The AX command is for handling “obsolete” source files, for which there
are TLIB libraries, but which are no longer used in your program. Use the
AX command to mark a module as “excluded” (obsolete) in the current
project level (though it may still be in use in other project levels).

Under most circumstances, the E (extract) command will not extract ex-
cluded files that are specified by wild-cards. To make the E command find
and extract the files anyhow, use the S suffix to specify explicit version
numbers (e.g., * for latest trunk versions).

Note that if you have configured TLIB for automatic reference directory
refresh, then the AX command will also (in most cases) erase the reference
copy of the source file from the reference directory. (Implementation note:
eXcluded source files are indicated by v=X in the tracking file.)

The AD (delete from project level) command

To remove a module from the current project level, use the AD (delete)
command.

169

The AD (delete) command is similar to the AX command only for a
project level which has no ‘parent’ (i= or p=) levels. If the current level
has a parent level, then the two commands have quite different effects.

The AD command effectively “undoes” the A command. Thus, after you
use the AD command to delete a module from the current projectlevel, the
current version of that module will be determined by the promote or inher-
its-from levels.

This is not true of the AX (exclude) command. The AX command isused
to indicate that a module is obsolete (not used at all) at the current project
level. Thus, the AX command effectively “blocks” the modulefrom
TLIB's view, even if the module is still listed in a parent level. Thus, the
“A” (all levels) wild-card search mode will not find an excluded source
file, regardless of whether the source file is listed in other levels.

The AD (delete) command can only be done for source files thatare listed
in the current project level. The AX command, however, can bedone for
any source file.

The AP (promote) command

The AP command adds or changes a module in the current “promote” lev-
el, as determined by thep= field of the current project level'sLEVEL

configuration parameter. That is, it “promotes” a module.

If you have configured TLIB for automatic reference directory refresh
(r=Y) in the promote level, then the AP command will also cause an auto-
matic extract of the source file(s) into the promote level'sreference
directory.

Note: the AP command cannot be used to promote a module which is
locked (checked-out for modification) at the promote-to level. Further-
more, if LOCKING Yis configured, then a module which is locked atany
level is effectively locked atall levels. Therefore, if you want to be able to
promote a module which someone has checked-out and locked, then you
should configure LOCKING B (branch locking) instead of LOCKING Y .

The APX (promote-exclude) command

To promote an ‘excluded’ (obsolete) module, use the APX (promote-ex-
clude) command. This will mark the file as excluded in the promote level

170

instead of the current level (or, if “LEVEL ... f=Y ” is configured, the APX
command will mark the module as excluded in the promote levelas well
as the current level).

Note that a source file must already be marked as excluded in the current
level (via the AX command) before you can use the APX command to
mark it as excluded in the promote level.

Full vs. Sparse project levels:

The behavior of the AP (promote) command is affected by the “f= ” (“full”
vs. “sparse”) field of the LEVEL configuration parameter.

Specify “f=Y ” for levels which will contain the full set of source modules
for your project. Specify “f=N ” for “sparse” levels, which only contain
modules that are different from those in the parent (“p=” and/or “i= ”) lev-
els.

If “ f=Y ” (full) for the current level, then after you promote a source file it
will be defined in both the current level and the promote level (with the
same version number, of course). That is, the AP (promote) command
copies the module into the promote level.

If “ f=N ” (sparse), then after you promote a source file, it will be defined in
only the promote level. That is, the AP (promote) commandmovesthe
module into the promote level, deleting it from the current level. This is
the default.

The AF (make-level-full) command

To fully-populate a sparse project level, by adding to it allsource files
which are listed in parent levels but not in the current level, use the AF
command, like this:

 TLIB AF *.*

The F suffix, in this context, “filters out” all files which are already listed
in the current project level, so that those files will not be affected by the
command.

171

You would normally use the AF command after first adding thef=Y (full)
field to the LEVEL configuration parameter for your current project level.
However, the operation of the AF command is not affected by the f=

field.

Note: You can also use the F suffix when adding source files to a project
level with the A command, if you also specify an appropriate wild-card
search mode suffix (e.g., W, for workfiles, or L for library files). For ex-
ample, if you wanted to add.c and .h files in the current directory to the
current project level (skipping those which are already listed in the current
project level), you could use the following command:

 TLIB AFW *.c,*.h

The ADF (make-level-sparse) command

The reverse of the AF command is the ADF command. It makes a project
level as sparse as possible, by removing from it any source file which is
listed as having the same version numbers that it has in a parent level. To
make the current project level as sparse as possible, use theADF com-
mand like this:

 TLIB ADF *.*

The F suffix, when used in combination with the D suffix, “filters out” all
files which have different version numbers in the parent levels as com-
pared to the current level.

You would normally use the ADF command after first changingf=Y to
f=N (sparse) in theLEVEL configuration parameter for your current project
level. However, the operation of the AF and ADF commands is not affect-
ed by the f= field.

Locking:

If locking is enabled, then you may not Add/Alter a module's entry in a
project level tracking file with the A, AX, AP family of commands when
someone else has the module checked-out/locked at that level, except for
LOCKING W (weak locking) mode.

This is a good reason to use LOCKING B instead of LOCKING Y .

172

Also, if you have the module checked-out/locked, or if someone else has it
locked at a different level inLOCKING B(branch/level locking) mode, then
a “Note: ” message will be displayed to that effect.

EXAMPLE #1: Defining a 3-level hierarchy, and using “AP” (pr o-
mote)

Suppose that you have decided upon a 3-level staging scheme for the pro-
gram that you are developing. The old, already shipped versions are in
level REL1 (which probably will not change). The prospective next release
versions are in levelTEST, where your Quality Assurance (QA) depart-
ment is pounding on them to flush out bugs that the developersmay have
overlooked. The “rough” versions which the developers are working on
are in level DEVL .

The TLIB configuration looks something like this:

 locking b
 level n=rel1 d=f:\rel1\ r=Y
 level n=test d=f:\test\ i=rel1 r=Y s=new
 level n=devl d=f:\devl\ p=test i=rel1 r=Y
 workdir c:\work\
 projlev %!!PROJECT%

“Projlev devl ” is appropriate for developers working on the next re-
lease, but “projlev test ” is appropriate for the QA department, so in this
example we let an environment variable set the current project level. The
developers would useSET PROJECT=DEVL, and members of the QA de-
partment would useSET PROJECT=TEST. The SET command could be in
either your DOS AUTOEXEC.BATfile (or CONFIG.SYS for OS/2), or in
TLIB's AUTOSET.BAT file (AUTOSET.CMD for OS/2).

Note that the order of theLEVEL configuration parameters in your TLIB
configuration file is inconsequential.

Since there are reference directories for each level, and since r=Y is con-
figured for each level, TLIB will maintain “reference copies” of the source
files for each level. (However, we do not recommend using thereference
copies for purposes which could keep the files open for more than a few
seconds, since this could prevent TLIB from properly updating them; for
this reason, letting a source-level debugger use the reference copies is gen-
erally a bad idea.) Someone who is responsible for supporting the existing
code which customers are using would use the code at theREL1 level, but

173

someone who was responsible for testing the next release would work with
the TEST level code.

Now, suppose that a particular module,XYZ.C, is at version 12 in level
REL1, and is not defined at theTEST or DEVL levels (because it has not
been changed for the new, upcoming release). However, suppose that you,
a programmer working on the next release, identify a change that must be
made in XYZ.C to support a new feature.

Your current project level isDEVL, so when you check-out/lock the mod-
ule, TLIB looks first in F:\DEVL\TLIBWORK.TRK to determine the version
needed. SinceXYZ.C isn't listed there, TLIB next looks in the promote lev-
el, which is TEST (because of thep=test field in the LEVEL configuration
parameter for levelDEVL). Since the module isn't defined there, either,
TLIB looks at the REL1 level (because of thei=rel1 field in the LEVEL

configuration parameter for level DEVL).

Note that the levels do not automatically “chain.” That is, the levels that
TLIB consults are determined solely by thep= and i= fields for the cur-
rent project level (DEVL). Since REL1 and TEST are not the current level,
their p= and/or i= fields have no effect.

TLIB records in the work directory tracking file,C:\WORK\TLIBWORK.TRK,
the version number of XYZ.C which you have checked-out.

Now, you make your changes to XYZ.C and update the TLIB library with a
new version, number 13. The current versions are:

 DEVL TEST REL1
 XYZ.C v=13 v=12

However, in the course of your debugging, you find and fix several bugs in
your changes, storing the new versions each time. Finally, you decide that
you've gotten it right. The current versions are:

 DEVL TEST REL1
 XYZ.C v=16 v=12

Because you've finished your modification toXYZ.C, and are satisfied that
it is correct, you can now “promote” it to theTEST level, thus making the
new version available to the QA department.

The TLIB command to promote XYZ.C to TEST is:

174

 TLIB AP XYZ.C

Now, the current versions are:

 DEVL TEST REL1
 XYZ.C v=16 v=12 (sparse, “LEVEL n=DEVL f=N ...”)
or
 XYZ.C v=16 v=16 v=12 (full, “ LEVEL n=DEVL f=Y ...”)

At this point, you go on to work on other things, while someoneelse tests
the next release, at levelTEST. When he identifies a problem inXYZ.C, he
tells you about it, so you again check-out the module with theE command,
fix it, and store it with the U command.

Now, the current versions are:

 DEVL TEST REL1
 XYZ.C v=17 v=16 v=12

Then you can promote it to the TEST level, just as you did before:

 TLIB AP XYZ.C

Now, the current versions are:

 DEVL TEST REL1
 XYZ.C v=17 v=12 (sparse, “LEVEL n=DEVL f=N ...”)
or
 XYZ.C v=17 v=17 v=12 (full, “ LEVEL n=DEVL f=Y ...”)

The use of multiple project levels allows developers to workwith the very
latest “rough” versions, storing as many rough versions as they wish, even
as testers are working with more stable versions. Both the developers and
the testers can work with their chosen level of code without in any way in-
terfering with people who are supporting customers in the field who still
have the old version.

EXAMPLE #2: Adding a bug-fix level

175

Continuing with the above scenario, suppose that a bug is reported in the
REL1 version, but you do not wish to make the fix directly in theREL1 lev-
el because you will still need to have the originalREL1 around for some
reason (say, because some customers are still using it). What should you
do?

Insert another level “between” REL1 and TEST , like this:

 REM -- added a bug fix level, REL1FIXES
 level n=rel1 d=f:\rel1\ r=Y
 level n=test d=f:\test\ r=Y i=rel1fixes,rel1 s=new
 level n=devl d=f:\devl\ p=test r=Y i=rel1fixe s,rel1
 level n=rel1fixes d=f:\rel1fix\ r=Y i=rel1 s= new

We had to make two changes:

1) We defined aLEVEL configuration parameter for the newREL1FIXES

level.

2) We added the newREL1FIXES level to the i= nameslists of DEVL and
TEST. Since we wantDEVLand TEST to “inherit” the changes fromREL1-

FIXES in preference to the oldREL1 versions, we listedREL1FIXES ahead
of REL1 in the i= names lists for DEVL and TEST .

Now the TEST and DEVL levels will automatically inherit the fixes that
you make in REL1FIXES, so long as the fixes are in modules that are not
explicitly listed in the DEVL and TEST tracking files.

For modules that are listed inDEVL or TEST, perhaps because they have
changed, you can use the M (migrate) command to add the fixes to DEVL

and TEST (the M command utilizes DIFF3 where necessary to merge
changes).

EXAMPLE #3: Adding a customization level

Suppose that, as with example #2, you need to make changes to the old
REL1 level of your program after you've already started making changes (in
the DEVL and TEST levels) for the next major release. However, the
changes are not bug fixes. Instead, you wish to build a customized variant
of REL1 (perhaps for sale to Acme Corp., an important customer), andyou
don't want the changes to be “inherited” by the newTEST and DEVL lev-
els.

176

This scenario is similar to example #2, since you need to add another level
for the new version of your program, which is a modification of the ver-
sion in level REL1, and you need to leaveREL1 unchanged. As in example
#2 the new level should chain back (via itsi= list) to the REL1 level, so
that it will “inherit” all the unchanged modules from REL1 .

However, unlike example #2, these changes are not intended for incorpo-
ration into the next release, so the TEST and DEVL levels should not inherit
from the new level.

Here, we've added the new level (calledACME) to the TLIB.CFG from ex-
ample #1:

 REM -- added a customization level, ACME
 level n=rel1 d=f:\rel1\ r=Y
 level n=test d=f:\test\ r=Y i=rel1 s=new
 level n=devl d=f:\devl\ p=test r=Y i=rel1
 level n=acme d=f:\acme\ r=Y i=rel1 b=1 c=10 s =new

Note that all three of the originalLEVEL parameters are unchanged; the
only thing we did was add the newACMElevel, and set it to chain back to
the REL1 level. Unlike example #2, we did not add the new level to thei=

lists for DEVL and TEST .

One other difference is that we configured the “b=1” and “c=nn” options
for the ACMElevel. While not strictly necessary, this is always a good idea
for “customization” levels, since it ensures that the new versions you cre-
ate for Acme will be stored as branch versions, leaving the trunk versions
available for “main line” development (so that the modules in DEVL and
TEST will contain trunk versions).

EXAMPLE #4: Using both bug-fix and customization levels

Suppose that we had a bug-fix level, as in example #2, and we wished to
add a customization level, as in example #3. We start with thelevels de-
fined in example #2, and add a new level (ACME), just as in example #3,
except that it is probably appropriate to make theACMElevel inherit the
fixes from REL1FIXES , like the DEVL and TEST levels do:

 level n=rel1 d=f:\rel1\ r=Y
 level n=test d=f:\test\ r=Y i=rel1fixes,rel1 s=new
 level n=devl d=f:\devl\ p=test r=Y i=rel1fixes,rel1
 level n=rel1fixes d=f:\rel1fix\ r=Y i=rel1 s=new
 level n=acme d=f:\acme\ r=Y i=re1lfixes,rel1 b=1 c=10 s=new

177

M command: Migrate changes

With the “M” (migrate) command, you can now migrate (merge) changes
from one entire project level into another, all at once.

The M command analyzes the revision histories for each source file to de-
termine which changes have already been migrated, and it uses DIFF3
(where necessary) to merge the new changes. In most cases, the only man-
ual task that you are left with is reconciling any “change collisions” which
DIFF3 may have flagged.

You will usually use the M (migrate) command with wild-cardsand
TLIB's project level version tracking to migrate changes from one project
level into another.

Syntax:

 TLIB M files <versions-to-be-merged>
 TLIB MS files <target-versions> <versions-to-be-merged>
 TLIB MF files <versions-to-be-merged>
 TLIB MFS files <target-versions> <versions-to-be-merged>
 TLIB MSS file <target-version> <base-version> <version-to-be-merged>
 TLIB MFSS file <target-version> <base-version> <version-to-be-merged>

Note: The “F” (“fast”) suffix just makes theM command quietly skip al-
ready-migrated files, for a more concise MIGRATE2.BAT file.

EXAMPLE #1 (third-party library):

Last year, you bought a “third-party library” in C-languagesource code to
do windowed user interfaces, ISAM file access, etc..

Prudently, you stored the original source modules, as received from the
vendor, into TLIB libraries (as version 1 of each source file).

178

Then you modified the source code to make it work better with your appli-
cation. Of course, your new versions are also stored in the TLIB libraries,
as later trunk versions.

Now, after you've made many modifications to the original version, you've
received a new version from the vendor. Of course, the new version (you
are told) is enormously improved in a dozen ways, and fixes several subtle
(but potentially catastrophic) bugs that were in the original version... and
the vendor no longer supports the old version.

So, you are now faced with having to merge your own modifications with
the vendor's. Big job, right?

No! Simply store the new versions in the TLIB libraries (probably as
“branches,” e.g., version “1.* ”), and then TLIB can migrate the changes
for you, all at once, with the M (migrate) command. See p. 181 for details.

EXAMPLE #2 (semi-custom software):

You develop and sell a semi-custom software product, written in Clipper,
for professional practice management. You call your product Practice
Management Software (PMS for short).

Your standard version is tracked in levelSTD, with tracking file
c:\std\tlibwork.trk . However, you generally have to modify it to meet
the needs of your customers. Whenever you do so, you create a project
level for that customer.

As a service to those customers who pay an “extended support”fee, you
provide them with monthly updates to their customized version of the soft-
ware, incorporating fixes for all known bugs, and sometimesother
improvements. So, every month you must migrate your latest improve-
ments from the STD level into each of the customization levels.

Does this sound like a monthly nightmare? It's not!

For instance, suppose that last month you customized your then-latest ver-
sion of the software for Dr. John Smith, DDS. You built Dr. Smith's
version in level SMITH , with tracking file c:\smith\tlibwork.trk .

Now, it is the first of the month, and you have fixed several bugs in the
standard version of the software, so now you must bring Dr. Smith's ver-
sion up to the latest level, but without losing his customizations.

179

No problem! Simply go toc:\smith (or a suitable work directory) and
use the M (migrate) command to merge the changes from levelSTD into
level SMITH. Then recompile, run your standard suite of regression tests,
and mail the diskette to Dr. Smith. See p. 181 for details.

Note: if you work alone, with locking disabled, then you can do yourwork
in the SMITH level's reference directory. However, if there may be other
programmers working on Dr. Smith's version, you should enable locking
(configure LOCKING Yor LOCKING B) and do your work in a private work
directory, but with PROJLEV set to SMITH .

EXAMPLE #3 (merging fixes into the next release):

Last January, your company shipped “release 1” of your software product,
written in Pascal. At that time, you had only one project level, REL1 .

When REL1 shipped, you created a new project level,REL2, and your de-
velopment team immediately began work on “release 2.” Simultaneously,
your change team continued to make occasional bug fixes and other minor
improvements to the original release, at level REL1 .

Now, you need to migrate these fixes from REL1 into REL2 .

It's easy! Just use the M (migrate) command to do it all at once. See p. 182
for details.

Note: TLIB will (eventually) extract/check-out the neededfiles, so be very
sure that any modifications that you've recently made to your source files
havealreadybeen stored into the TLIB libraries. IfLOCKING Yis config-
ured, then use the “TLIB UO *.* ” (update owned files) command to
check-in/unlock the files BEFORE doing the M (migrate) command.

180

How to use the M command on the examples:

EXAMPLE #1 (third-party library):

Your latest/greatest modified versions are stored in the TLIB libraries as
“trunk” (integer) versions, and the new release(s) that youget from the
vendor are always stored as branches from version1 (e.g., 1.1 , 1.2 ,
1.3 , etc.).

First, make the current directory the work directory which you use for your
regular (trunk) versions, which you now want modified to reflect the ven-
dor's new modifications.

Next, make sure that any modifications that you've recentlymade to your
source file have already been stored into the TLIB libraries. This is impor-
tant! If locking is enabled, you can use the UO (update owned files)
command to ensure this; if locking is disabled, use the UF command, in-
stead.

Now you can migrate the vendor's latest changes into your modified
source code like this:

 TLIB M *.c,*.h 1.*
 or: TLIB MS *.c,*.h * 1.*

Note that this simple case works even without the use of project level
tracking, since you've used a version number convention to distinguish
your versions from those of the vendor. Your versions are trunk version
numbers (the latest is “* ”), and the vendor's releases are branches from
version 1 (the latest is “1.* ”). However, most other scenarios do not lend
themselves to this trick, and so are best handled through theuse of TLIB's
named project levels.

EXAMPLE #2 (semi-custom software):

You need to migrate the latest changes from levelSTD into level SMITH.
First, make your current work directory the one which you normally use
when working on Dr. Smith's customized version of your program. If you
work alone, then it is probably the reference directory for level SMITH,

181

c:\smith\ . Otherwise, it may be a private work directory. Also, be sure
that your currentPROJLEVis set to SMITH (this is automatic if your current
directory is the reference directory for level SMITH).

Now, you can migrate the latest changes fromSTD into the current level
(SMITH) with the following command:

 TLIB MT *.prg @c:\std\tlibwork.trk

Here you have used the project level tracking file for levelSTD as if it
were a version label, to tell TLIB what versions you wish to merge into the
current level.

Note the use of the T (“this level”) wild-card search-mode suffix to tell
TLIB that you want it to search the current project level for source files
(instead of finding all files for which there are TLIB libraries, which is
what the default L search-mode would do).

You could also have used a snapshot version label taken (withthe S com-
mand) earlier in the development history of theSTD level. For instance, if
you took a snapshot on July 15, 1992, and called it92-07-15.snp , then
you could migrate theSTDchanges through July 15, 1992 with the follow-
ing command:

 TLIB MT *.prg @92-07-15.snp

If STD is a sparse project level (in which only a subset of the sourcefiles
were actually listed, with the rest being listed in promote-to and/or inherit-
from “parent” levels), then you should generally use a snapshot instead of
using STD's tracking file directly, so that all the needed version numbers
will be specified.

EXAMPLE #3 (merging fixes into the next release):

You need to migrate the fixes fromREL1 into REL2. This example is han-
dled almost exactly like example #2, except that you are merging from
REL1 into REL2 instead of from STD into SMITH .

First, make your current work directory the one which you normally use
when working on REL2, and be sure that your currentPROJLEV is set to
REL2.

182

Now, if the tracking file for REL1 is f:\rel1\tlibwork.trk , you can mi-
grate the latest changes fromREL1 into the current level (REL2) with the
following command:

 TLIB MT *.pas @f:\rel1\tlibwork.trk

Or, if REL1V2.SNP is a snapshot of REL1 , you could use this command:

 TLIB MT *.pas @REL1V2.SNP

Note that you can use all the usual TLIB wild-card search-mode and file
list mechanisms to specify your source files. For instance,if you only
wanted to migrate the changes for a subset of the files in the current level,
you could use a file list:

 TLIB M @files.lis @REL1V1.SNP
 or: TLIB M file1.pas,file2.pas,file3.pas @REL1V1.SNP

Finishing the job

The M (migrate) command handles several different cases in different
ways:

1) Some files will probably not need to have any changes made,because
there are no changes for those modules in the versions that your are mi-
grating into the current level.

These files are left alone.

2) Some files can simply be copied from the versions to be merged, be-
cause the current versions are base versions from which the versions to be
merged were derived.

For such a file, the needed version is extracted from the TLIBlibrary, and
a special “[COPIED...] ” supplemental comment line is added to the top, us-
ing the SCOPY program. If check-in/out locking is enabled, then the file
will be left checked-out to you.

Later, when you use the U (update) command to store the new version, the
supplemental comment line will be removed and used in the TLIB com-
ments for the new version, thus recording for posterity where the version
came from (so that future migrates will work correctly).

183

3) Some files will need to be merged with DIFF3, because they've been
changed in both the current level and in the versions that youare migrating
into the current level.

For such a file, three different versions of the source file are extracted (in-
to temporary files), DIFF3 is used to do the merge operation,and a special
“ [MERGED...] ” supplemental comment line is added to the top of the file.

Later, when you use the U (update) command to store the new version, the
supplemental comment line will be removed and used in the TLIB com-
ments for the new version, thus recording for posterity which versions
were merged to create the new version (so that future migrates will work
correctly).

If check-in/out locking is enabled, then the file will be left checked-out to
you.

The M command does not actually extract the temporary files and run
DIFF3 with them. Instead, the M command creates a file namedMI-

GRATE2.BAT, which contains TLIB, DIFF3, and SCOPY commands to do
the actual migration.

This gives you the opportunity to examine what TLIB will be doing, and
intervene, if you wish.

For instance, you may need to run a “pretty-printer” (sourcecode refor-
matter) on the temporary files before doing the DIFF3 merge.Such a step
is not recommended unless one of the versions has been reformatted al-
ready, in which case DIFF3 would otherwise be unable to do a proper
merge because of the pervasiveness of the changes.

Generally, you should first runMIGRATE2.BAT to do the merges, and then
examine any modules for which it warns that there were “collisions” (con-
flicts) between the merged versions. The collisions are marked with
distinctive “flag lines.” (The flag lines normally containing “### ”, which
you can search for with your editor, but they can be changed with the D3-

COLLIDE configuration parameter).

If any of the merged files have been reformatted, it will be all too obvious
when you look at the huge “collision areas” marked by DIFF3. For such
cases, you can edit theMIGRATE2.BAT file to make it reformat the three in-
put files before running DIFF3, to make them more consistentwith one

184

another (use the same pretty-printer that caused the problem, if possible).
Then you can run the modified MIGRATE2.BAT again to retry the merge.

Other “collisions,” if there were any, must be resolved manually, by exam-
ining the flagged collision areas and correcting the problems with a text
editor. Be sure to leave intact the special “[MERGED_...] ” and
“ [COPIED_ ...] ” comments at the beginning of the files.

Hint: To capture a “log” of everything that happened when you ranMI-

GRATE2.BAT, use Chris Dunford's wonderful “freeware” CONCOPY
utility. With Mr. Dunford's kind permission, we've included a copy of
CONCOPY with the shareware and public domain utilities collection on
the TLIB CD.

After you've used the M command to migrate your changes, and you've run
MIGRATE2.BAT to do any DIFF3 merges that were needed, you can delete
MIGRATE2.BAT.

Then you should test your new versions. In our experience, ifthere were
no collisions, the merged version almost always works correctly. However,
this is not guaranteed. In fact, it seems rather surprising,since there are
many ways for two different changes to be incompatible without having
obvious textual collisions that are detectable by DIFF3.

For example, the two merged versions could each have added a new vari-
able, for completely unrelated reasons, but with the same name.

Nevertheless, such cases don't seem to crop up very often.

After you have finished testing, you can use the TLIB U (update) com-
mand to store the new versions of your source files in their TLIB libraries,
and the TLIB S (snapshot) command to label the new versions.

MSS and MFSS -- Overriding the “Base” Version

Occasionally you may want to override TLIB's determinationof the most
recent common ancestor of the two versions to be merged. For this, TLIB
provides the MSS and MFSS commands.

The MSS (and MFSS) commands take four parameters:

 TLIB MSS filename.ext toVer baseVer fromVer

185

For example, suppose that version 7 ofmyfile.prg is the latest
"standard" version, and version 7.(5)3 is a customized variant of it. Now,
suppose that you fix a bug in version 7.(5)3, and store it as version 7.(5)4,
but the bug was also present in the standard version.

Of course, the problem would have been simpler if you'd put the bug fix
onto the standard version first, instead of the customized version. Then
you could have simply migrated all improvements to date intofrom the
standard version into the customized version. Unfortunately, sometimes
you may not have the luxury of making that choice; if the customer has a
"sev 1" problem, you may have no choice but to first implementthe fix in
his customized version.

In that case you cannot use theMor MScommand to merge the bug fix in-
to version 7, because TLIB has no way of knowing that only the last
revision to this customized variant is applicable to the standard version. If
you were to doTLIB MS myfile.prg * 7.(5)4 then TLIB would add all
the changes between versions 7 and 7.(5)4 to the latest trunkversion, with
the result that the customizations would also become part ofthe standard
version (which is not what you want).

Instead, you should use theMSScommand, to tell TLIB that you want only
the changes between versions 7.(5)3 and 7.(5)4 added to the standard ver-
sion:

 TLIB MSS myfile.prg * 7.(5)3 7.(5)4

The MFSScommand is just like theMSScommand, except that TLIB will
silently skip files for which no action was needed. That doesn't do any
good for the example above, but is can be useful when the changes must
be made to many files.

Suppose, for example, thatlastweek.snp is a snapshot taken (with theS
command) of your customized project level before you made anelaborate
set of changes to many of the source files in the customized level, to fix a
complex bug. Also, assume that the standard level's projectlevel tracking
file is f:\std\tlibwork.trk and the customized level's project level
tracking file is f:\cus\tlibwork.trk .

You need to migrate that bug fix into the standard project level. To do so,
you would do the following command (while working at the standard lev-
el):

186

TLIB MFSS *.* @f:\std\tlibwork.trk @lastweek.snp @f :\cus\tli
bwork.trk

(should be all on one line)

Or, if the standard version is always the latest trunk versions, this does the
same thing:

 TLIB MFSS *.* * @lastweek.snp @f:\cus\tlibwork.trk

That tells TLIB to migrate into the current (standard) levelall changes
made to the customization level since thelastweek.snp snapshot was
taken.

As with all of the Migrate commands, the result is a batch script, MI-

GRATE2.BAT, which you must run to finish the migration. After you have
done so, you will be left with a set of checked-out files whichhave had the
needed changes made to them. If there were any "conflicts" which TLIB's
DIFF3 utility was unable to resolve (i.e., if your fix changed lines that
were specific to the customized version), then you'll have to resolve the
conflicts manually. They will be flagged in the source fileswith distinctive
text lines, “###Change collision detected ” (or whatever you have con-
figured for the D3COLLIDE configuration parameter), so that you can easily
find them with TLIBSCAN or your favorite GREP utility.

A comparison between theM, MS, and MSScommands may be instructive.
They all do the same thing, except that with theMSScommand you must
specify all three version numbers for the merge, but theMS and M com-
mands determine one or two of the versions for you automatically.

With the MSScommand, you specify a total of three versions, and what is
to be merged into the first of them is specified by a pair of versions (ba-
seVer and fromVer):

 TLIB MSS filename.ext toVer baseVer fromVer

But with the MS command, you do not specifiy the base version; it is deter-
mined automatically by TLIB as the most recent common ancestor of the
other two versions:

 TLIB MS filename.ext toVer fromVer

187

The Mcommand is similar to theMScommand except that the version into
which the changes are to be added is not specified, either. Itis taken as be-
ing whatever version is current at the current project level:

 TLIB M filename.ext fromVer

A Limitation

The M command does not handle added, deleted, excluded or renamed
files. You'll have to handle such files manually.

A Note About Performance

The current TLIB 5.xx release may seem unpleasantly sluggish when you
migrate changes from a snapshot or tracking file like this:

 TLIB M *.* @snapfile.ext

What is happening is that TLIB is finding every file which matches “*.* ”,
using the default wild-card search mode (L, all library files). Then, it looks
for each file name in turn in snapfile.ext, using a dumb, brute-force search,
to determine the version numbers.

Those file names that are not listed insnapfile.ext , TLIB skips. How-
ever, if you have a lot of files, andsnapfile.ext only lists a few names,
TLIB can spend a great deal of time searchingsnapfile.ext for missing
names.

A future version of TLIB will speed this process up. However,in the
meantime, you can speed things up by limiting the number of files that
TLIB examines. For instance, you could build a file list like this:

 COPYTRAK -n snapfile.ext justname.lis
 TLIB M @justname.lis @snapfile.ext

This simply makes a file list with the names insnapfile.ext , and per-
forms the M command with just those files (instead of “*.* ”).

188

The special TLIB “-n” and “-t” command-line options

TLIB supports two command-line options which are intended mainly for
use by the M (migrate) command in the generatedMIGRATE2.BAT file. In
command-line versions of TLIB, they are supported on the command line
only, not in interactive mode. However, they serve to makeMIGRATE2.-

BAT more concise than it would otherwise be.

a) The -t (temporary file) option. -t is just a shorthand equivalent for:
 C "locking_n" C "track_n" C "readonlyb_n"

and:
 C "keyflag" C "logflag"

That is, it overrides those 5 configuration parameters.

b) The -n filename (override Name) option is used in conjunction with the
E command to extract a source file into an alternatively-named output file.
(Note: When -n filenameon the command line is used, TLIB does not up-
date anything the work directory tracking file.)

The -t and -n filenameoptions are used (in theMIGRATE2.BAT file) by
TLIB's M (migrate) command when extracting temporary files; see also p.
108.

189

Journal file

TLIB can create a chronological “journal file” containing information
about the operations which TLIB performs. Two configuration parameters
are available for using this feature:

 JFILE <filename>
 and
 JOPTIONS <option-characters>

To create a journal file, you must specify the file name usingJFILE . For
instance, if you want the journal to be namedJOURNAL.DATin the root di-
rectory of the C: drive, you could specify:

 JFILE C:\JOURNAL.DAT

The JOPTIONS configuration parameter is optional. It allows you to select
the kinds of information which you wish to have stored in the journal file.
There are currently seven legal option characters:

U - commands which update the library

I - commands which check-in a file (with locking enabled)

O - commands which check-out a file (with locking enabled)

B - commands which extract a file, even in browse mode

C - the 1st comment line

A - all comment lines

P - commands which alter a project level

The default configuration value for JOPTIONS is:

 JOPTIONS UOCAP

190

This causes TLIB to record in the journal all commands which update the
library (since U is specified) or modify a project level (sinceP is speci-
fied), and all check-out (locking) operations (sinceO is specified).
Additionally, the comment lines associated with every update operation
will be recorded (since C and A are specified).

To record only the first comment line (instead of all comments), you can
remove the “A” option letter, configuring like this:

 JOPTIONS UOCP

Unless A is specified, every journal entry is one line, consisting of13
fields separated by 12 commas. The last field is the (optional) comment
line, which is surrounded by quote marks and is the only fieldthat can
contain blanks. When additional comment lines are recordedin the journal
(because theA option is set), the first 12 fields are null (that is, the linebe-
gins with 12 consecutive commas).

This “comma-delimited” format is consistent with the inputrequirements
of common data base programs, which can be used for monitoring and re-
port generation from the journal file by project managers.

We've also included a sample AWK program,JOURNAL.AWK, to parse the
journal file.

Note:Your report generator should not read the journal file directly, since
while the journal file is open TLIB will be prevented from accessing it. In-
stead of reading the journal file directly, use the includedSCOPY (shared
access file copy) program,SCOPY.EXE, to make a copy of the journal file,
and then run your report generator against the copy. For usage instructions,
run SCOPY with no parameters.

The 13 fields in each journal line are:

1 date of operation (in TLIB format, DD-MMM-YY, e.g. 19-Oct-97)
2 time of operation (in TLIB format, HH:MM:SS)
3 command (e.g., UF for fast-update)

4

locking mode:
 N for locking disabled
 W or Y for whole libraries locked
 B for branch/level locking
 weak for weak locking

191

5 current user ID
6 library file path
7 text file path
8 lock file path (if command did check-in or check-out)
9 version number

10 source file's “key” (name) in the tracking files
11 current project level
12 other project level used, if any (see below)

13
quoted comment line (1st comment line includes source file
date/time)

Note: fields 10-12 are new in TLIB 5.

The journal file is a normal text file, just as text-format TLIB libraries are.
If you configure “ADDCTRLZ Y”, the journal will end in a Ctrl-Z (ASCII 26)
character. If you configure “READONLY Y”, the journal will be kept as a
read-only file, to prevent accidental deletion (you can usethe DOS “at-

trib ” command to reset the read-only attribute).

Changes in TLIB 5

New fields:

The journal file now has 13 fields instead of 10. It records the project level
“key” (which is just the source file name unless you've configured
TREEDIRS Y) in the 10th field, and it records the relevant project level
name(s) in the 11th and 12th fields. The old 10th field (the comments for
N and U commands in TLIB 4.12) is now the 13th field.

The 11th field always indicates what the current project level was when
the command was done.

The 12th field, if present, indicates what “other” project level was used. If
the 12th field is absent, it means “the current project level”.

The only command which always has a 12th field is the AP (promote)
command, for which the 12th field is the name of the promote level.

For the U (update) command, the presence of the 12th field indicates that
the command stored a module into an “inherits-from” level (one of the lev-

192

el names listed in thei= field of the current project level'sLEVEL configu-
ration parameter).

For the E (extract) command, the presence of the 12th field indicates that
the module was not listed in the current project level, and TLIB consulted
the named level to determine the version number for the extracted source
file.

JOPTIONS configuration parameter:

Journaling of the A and AP commands is enabled by including the new
“P” option letter in your JOPTIONS configuration parameter.

The default is now “JOPTIONS UOCAP”.

193

U (update) with a file list

In TLIB 5.0, we changed the semantics of U (update) with a filelist, so
that, for example, “tlib u @tlibwork.trk ” will now do something rea-
sonable.

Specifically, we changed it so that “fixed” version numbersare ignored in
file lists used for update commands, except that if the fixedversion num-
ber is inconsistent with the version number obtained from the tracking file
then a warning is generated (only when version tracking is enabled, of
course).

(Recall that “fixed” version numbers are version numbers which specify
an exact version, and “floating” version numbers are version numbers
which end in an asterisk.)

Note that you can still specify either a fixed or floating version number on
the command line or interactively if you use the S (specify-version-num-
ber) suffix with the U command (i.e., the US command).

Also, floating version numbers in file lists are still respected by the U com-
mand.

The E and N commands are unchanged: they both still respect both fixed
and floating version numbers in file lists (except that the Ncommand will
not create a new library file with a non-trunk starting version number).

194

Whereis - file finder

WHEREIS is a handy file-finder, which (like TLIB) supports multiple &
leading asterisks in wild-card specifications (even underDOS), as well as
options to find hidden/system files. Under OS/2, it will also tell you which
files have “extended attributes” attached, and (optionally) how big the ex-
tended attributes are.

WHEREIS 1.9 supports multiple wild-card specifications separated by
commas and/or spaces. When separated by commas, the drive letter ap-
plies to all the wild-card specifications within the comma-delimited list.

Examples (note the subtle difference between them):

 whereis cd:*.c,*.h (find all *.c and *.h files on C: and D:)

 whereis cd:*.c *.h (find all *.c files on C: and D:, and all
 *.h files on the current drive)

WHEREIS exits with errorlevel 1 if no matching files were found; other-
wise it exits with errorlevel 0.

WHEREIS supports many command-line options; run it with no parame-
ters for detailed instructions.

195

Quiet mode

TLIB 5.0 added support for the-Q (“quiet”) command line option, to sup-
press display of the TLIB “banner line” (with the copyright notice, etc.) as
well as a few other “noise” messages which TLIB normally displays.

The -Q (or -q , or -q1) option, if used, should be the first thing on the
TLIB command line.

You can also specify “-q2 ”, which is just like the “-q ” or “ -q1 ” option ex-
cept that it also suppresses display of any user-configuredBANNERlines
(see the BANNER and NUMBANNER configuration parameters, p. 333).

Actually, TLIB is not really very quiet even with the-Q option. The -Q

option only makes TLIB a bit less verbose.

See also theQUIET configuration parameter, p. 279 , which is similar but
does not suppress the TLIB copyright banner.

Redirecting standard output

An unusual feature of TLIB (command-line versions) is that it will echo
error/warning messages and prompts to “standard error” (stderr) as well as
“standard output” (stdout) when stdout has been redirected.

This was done, in part, because some ex-Unix users like to redirect stdout
to nul , which caused them to miss important error messages. It also
makes it possible to redirect output into a file, and still see see the
prompts, etc..

To see how this works, you could do:

 tlib2 e nonexistantfile >nul

Only the error message is echoed to stderr, so all you'll see is something
like this:

 ERROR: No such library file: "f:\srclibs\nonexist. _$"

196

We also added the “-e ” command-line option to TLIB, to override TLIB's
automatic determination of whether stdout has been redirected.

You may specify “-e1 ” to tell TLIB that stdout has not been redirected, so
that TLIB will not echo error/warning messages and prompts to stdout.

This is mainly for use when “piping” output to a program whichthen dis-
plays the output on the console, such as MORE or (under OS/2 orNT)
TEE. When piping output to MORE, and when using TEE to capturethe
output under OS/2 or NT, you can specify “-e1 ” to avoid seeing duplicate
copies of the error/warning messages and prompts. Examples:

 tlib2 -e1 | tee >tlib.log
 or tlib2 -e1 u *.c,*.h My comment | tee >tlib.log
 or tlib2 -e1 t *.c,*.h | more

You can also specify “-e0 ” to force TLIB to echo error/warning messages
and prompts to stderr even when stdout has not been redirected, though
this is less commonly used.

197

Poketrak & Copytrak

POKETRAK is a little utility for “poking” (changing) specific fields and
records in a TLIB version tracking file.

Run it with no parameters for help.

COPYTRAK is a little utility for sorting, copying and otherwise modifying
entire TLIB version tracking files.

Run it with no parameters for help.

Note that you should not replace aTLIBWORK.TRK file with a sorted or
otherwise reordered one if anyone might be running a copy of TLIB at the
time and accessing that file, since TLIB “remembers” the locations of the
records in the tracking files, and does not expect them to move.

198

Saving Disk Space

When you are not working on a particular customized version,you can
save disk space by deleting the source code. First, of course, you'll want to
make sure that your TLIB libraries are fully up to date, and that the track-
ing file, TLIBWORK.TRK, contains the correct version information for each
module.

A simple way to do both things in one step is to utilize TLIB'sDELETESRC

configuration parameter, like this:

 TLIB C "DELETESRC Y" U *.C

Or, you could update all the libraries with the U command and then just
“DEL *.C ” or even “DEL *.* ”. That sounds radical, but theTLIB-

WORK.TRKfile is stored as a read-only file to prevent it from being deleted.
Be careful, though, lest you accidentally delete somethingelse of value
(e.g., TLIB.CFG).

Note: the best time to do this is right after you have backed-up yourhard
disk. Otherwise, you are “putting all your eggs in one basket,” and if a
hard disk failure damages one of your TLIB libraries, you maylose your
only copy of that module.

Note: you can use the DOS “ATTRIB” command, or TLIB'sWHEREIS.EXE

program (p. 195), to list the files and to tell which one(s) have the read-on-
ly and/or archive attributes set. For instance, “whereis .\tlibwork.trk ”
will display the attributes of the TLIB version tracking file.

199

Temporary Files

Note: this section discusses the temporary files that TLIB creates and uses.
If you want to know how to extract temporary copies of source files from
TLIB see pp. and 108.

TLIB 5.50 sometimes needs to create one or more (usually small) tempo-
rary files, usually called$TLIB_TM.0 or $TLIB_TM.2 (but any name from
$TLIB_TM.0 through $TLIB_TM.9 is possible). TLIB will create these files
in one of four possible places, in the following order of preference:

o Where your TMP environment variable, if any, indicates. For example,
you could put “SET TMP=D:\” in your autoexec.bat file (or in con-

fig.sys under OS/2) to make TLIB put its temporary files on theD:

drive.

o Where your TEMP environment variable, if any, indicates.

o In the current directory.

o If all else fails, as a last resort TLIB tries to create its temporary files in
“C:\ ”.

Note that TMP(or TEMP) must be a real environment variable; TLIB will
not use TMP or TEMP settings from your TLIB.CFG or AUTOSET.BAT file.

Performance will be enhanced slightly ifTMP(or TEMP) is set to a ramdisk
(VDISK).

200

Network Bug Workarounds

TLIB has code to detect (and avoid the worst consequences of)certain po-
tentially-catastrophic network bugs.

Some network software caches writes and immediately returns a “success”
result after any attempt to write a file, before the file has actually been suc-
cessfully written. If the write then fails for some reason (e.g., because of a
hardware problem, a disk-full condition, or a per-user diskspace alloca-
tion limit), the program writing the file may not see any indication of the
failure.

That can be adisaster!If the file being written was a TLIB library, it is
critically important that it be written correctly. For instance, ifDELETESRC

Y is configured, TLIB deletes the source file after finishingan update, so if
the library wasn't correctly written your source code could be lost!

So, we included code in TLIB to check the size of the updated library file
after it is closed, to make very sure that the update was successful. If the li-
brary file is too small, TLIB now aborts with an error message, without
deleting the source file (even if DELETESRC Y is configured).

This almost always prevents any data loss. The one exceptionthat we
know of is a network which uses Windows-NT 3.5 and the NTFS file sys-
tem on the server. That version of Windows-NT 3.5 contains a cache-
coherency bug that can occasionally substitute zeros for data on the server,
even though the program that wrote the data can read it back correctly. It is
not possible for TLIB (or any other program) to detect and work around
this bug. Fortunately, Microsoft fixed this bug with Service Pack 2 for NT
3.5. So, never use a Windows-NT 3.5 server with NTFS unless you'veap-
plied service pack 2!

The most common network-related problem for TLIB users has to do with
file ownership issues under Novell NetWare. Furtunately, this problem is
not a threat to data integrity. The problem results from the Novell facility
for limiting disk usage by any one user. If you're using this facility, then
you should be aware that when someone adds another version toa TLIB
library, the storage used accrues to the "owner" of the TLIB library (usual-

201

ly the person who first created the library with the N command), regardless
of who is doing the TLIB U command. Thus, you can "run out" of disk
space because someone else has used up their allotment.

To determine who owns a TLIB library, use theNDIR command. To deter-
mine whether the owner has used up his disk allotment, log in under his
user ID and use the CHKVOL command.

If the owner user ID is no longer defined (say, because the employee left
the company) then that ID has no disk allotment, and the errors can occur
regardless of how much space they were once allotted. If thisis what
caused the problem, then you need to useFILER to change the NetWare
owner ID for each of the TLIB library (or journal or tracking) files.

The READ_ME.TOOfile that comes with TLIB has up-to-date information
on using TLIB with many different kinds of networks.

202

Listbld – file list builder

LISTBLD is a program to build and manipulate file lists. If you program in
C, Pascal (Borland or Microsoft), MASM, COBOL, QuickBASIC,Fortran
(Lahey or Microsoft), Intel 8096 assembler, Batch90 or DBC,then LIST-
BLD can create file lists automatically by scanning your source code for
“include” statements (and COBOL “COPY” verbs). It can also use wild-
cards and other file lists to add and remove files from file lists, and it can
augment file list entries with version numbers or branch specifications for
using TLIB with tree-structured library files.

dBase and Clipper programmers can generate TLIB-compatible file lists
usingdBFind, from The Software Development Factory, P.O. Box 1106-
B, Hunt Valley, MD 21030. Tel: (410) 666-8129.

If LISTBLD does not recognize include statements in the programming
language you use, please contact us. We will try to add support for your
programming language.

Since it does not do a full parse of the source file, LISTBLD may occa-
sionally make mistakes when scanning for include statements. For this
reason, it echoes the include statements and file names to the console as it
runs; if you see that it has deduced a file name incorrectly, you can manu-
ally edit the file list to correct the mistake, or use the LISTBLD REMOVE

option to remove the erroneous file list entry, or simply ignore and tolerate
the “file not found” error messages from TLIB. The usual cause for this is
“commented out” include statements (or COBOL “COPY” verbs).

If your compiler allows “nested” include statements (that is, include state-
ments within include files), then LISTBLD can be instructedto scan the
nested include files, too, like this:

 LISTBLD inputfile outputfile NEST

Otherwise, you would run it like this:

 LISTBLD inputfile outputfile

203

Inputfile is normally the “main” (outer) program source file, andout-

putfile is often “*.lis ”.

If there are several modules in your program, you can run LISTBLD once
for each of them, using theADDoption to make LISTBLD add each set of
new names to the same file list (outputfile), like this:

 LISTBLD inputfile outputfile ADD
 or
 LISTBLD inputfile outputfile NEST ADD

Note that LISTBLD detects and deletes duplicate names, sooutputfile

will not end up with duplicate list entries even if two or moremodules use
the same include file.

To add file name(s) to a file listwithout scanning for include statements,
you can use the ONLY option, like this:

 LISTBLD inputfile outputfile ONLY
 or
 LISTBLD inputfile outputfile ONLY ADD

If inputfile is of the form @filelist , LISTBLD with the ONLY and
ADDoptions can be used to merge two file lists together, eliminating dupli-
cates.

Similarly, you can remove names from a list with theREMOVEoption, like
this:

 LISTBLD inputfile outputfile REMOVE

By using wild-cards and file lists forinputfile , you can easily build file
lists representing complex relationships between files. For instance, the
following example builds a file list namedZ.LIS containing all the assem-
bler source files in the current directory plus all the source files for A.EXE

and X.EXE , except for the standard include file STDIO.H and those include
files used by B.EXE :

 LISTBLD A.C Z.LIS NEST
 LISTBLD X.C Z.LIS NEST ADD
 LISTBLD *.ASM Z.LIS ONLY ADD
 LISTBLD B.C TMP.LIS NEST
 LISTBLD @TMP.LIS Z.LIS REMOVE
 LISTBLD STDIO.H Z.LIS REMOVE
 DEL TMP.LIS

204

The resulting file list can be used to specify input files formost programs
in the TLIB package. For instance, to convert blanks to tabs in the files
listed in Z.LIS , you could do:

 MD TEMP
 TABS IN @Z.LIS TEMP*.*
 COPY TEMP*.*
 ECHO Y | DEL TEMP*.*
 RMDIR TEMP

By default, LISTBLD records only file names. However, if youspecify the
RELATIVEPATHSoption, it can also store “relative” paths along with the file
names. The relative paths are relative-to the current subdirectory.

When the REMOVEoption is specified withoutRELATIVEPATHS, then any
relative paths are ignored, and LISTBLD removes every entryin the out-
put file list which matches the specified input file(s).

When the REMOVEoption is specified withRELATIVEPATHS, the complete
path+name must match for each entry to be removed.

For example, suppose theEXCLUDE.LIS and MYFILES.LIS file lists are as
follows:

exclude.lis myfiles.lis

iostuff.c aa\iostuff.c
f\analyze.h iostuff.c

bb\iostuff.c
analyze.h
aa\analyze.h
compute.c
f\analyze.h

Then specifying REMOVE without RELATIVEPATHS...

 LISTBLD @exclude.lis myfiles.lis REMOVE

results in:

myfiles.lis

compute.c

205

and several warnings about duplicate entries being deleted(because the
multiple “iostuff.c ” and “analyze.h ” entries are not allowed when
RELATIVEPATHS isn't specified).

However, specifying REMOVE with RELATIVEPATHS...

 LISTBLD @exclude.lis myfiles.lis REMOVE RELATIVEP ATHS

results in:

myfiles.lis

aa\iostuff.c
bb\iostuff.c
analyze.h
aa\analyze.h
compute.c

LISTBLD can also create file lists containing version number information.
To do this, use theONLYoption and put the version number specification
on the LISTBLD command line, like this:

 LISTBLD A.C Z.LIS ADD ONLY 5.*

This would add or change the file list entry forA.C to include the version
specification “5.* ”. Then when you use theZ.LIS file list to specify a set
of files to TLIB's E, U, or S command, you would be selecting the latest
branch version (5.1, 5.2, 5.3, etc.) instead of the latest trunk version.

LISTBLD also supports theDOTSTARoption for converting file lists with
exact version numbers (or snapshot.bat files) into “floating” version la-
bel file lists (in which, for each file name in the list, the associated version
number ends in “*”). However, this feature is not often used anymore,
since TLIB 5.50's named project levels provide a similar facility much
more conveniently.

For more information on using version numbers in file lists, see p. 209.

Example :

The “REMOVE” option, to specify files to be removed from a file list:

old list XYZ.LIS :

206

MAINFILE.C
STDIO.H
IOPKG.C
LOWLEVEL.ASM
MAKEFILE

command:

 LISTBLD *.C XYZ.LIS REMOVE

new list XYZ.LIS :

STDIO.H
LOWLEVEL.ASM
MAKEFILE

Note that wildcards and file lists can be used with any of the LISTBLD
options. This provides a very flexible mechanism for manipulating file
lists.

Example :

To combine two file lists into a single, larger file list (with duplicates re-
moved):

 LISTBLD @NEWNAMES.LIS MAINLIST.LIS ADD ONLY

The lists NEWNAMES.LISand MAINLIST.LIS will be combined; the com-
posite list is MAINLIST.LIS .

Example :

The REMOVEoption can be used to “subtract” two file lists. If you wanted
to remove fromMAINLIST.LIS all the names inJUNKLIST.LIS , you could
do this:

 LISTBLD @JUNKLIST.LIS MAINLIST.LIS REMOVE

Example :

The following command would build a list of all the “.C ” files in the cur-
rent directory:

207

 LISTBLD *.C BIGLIST.LIS ONLY

Example :

The following command would build a single, composite list of all the
“ .C ” files in the current directory, plus all the include files used by the.C

files (it scans for include files because ONLY isn't specified):

 LISTBLD *.C BIGLIST.LIS

Example :

The following would build a file list, calledMISSINCL.LIS , listing all the
include files which arenot in the current directory, but which are used by
Pascal programs in the current directory:

 rem 1st, build list of .PAS files & files they " include"
 LISTBLD *.PAS MISSINCL.LIS
 rem Then build list of all files in the current directory
 LISTBLD *.* TEMP.LIS ONLY
 rem Then "subtract" the second list from the fir st
 LISTBLD @TEMP.LIS MISSINCL.LIS REMOVE

If you forget how to use LISTBLD, run it with no parameters, and it will
display a short “help” message.

208

File Lists and Snapshots

The snapshot files (version labels) that are created by TLIB's S command
are just normal file lists, except that they have version numbers specified
for each file name. That is, each line of the snapshot file begins with a
source file name, which is followed by the version number specification.
For instance, a snapshot recording the current versions fora.c and b.c

might look like this:

 A.C v=5
 B.C v=7

This example records the fact that version 5 is the current version for a.c

and version 7 is the current version forb.c . Note that TLIB also accepts
an older format which omits the “v=”. For example:

 A.C 5
 B.C 7

Because file lists (both regular file lists and snapshot files) are so simple, it
is easy to create or modify them manually, with a text editor.You could,
for instance, for some special purpose, have a snapshot version label file
which, for a.c , specified the latest version within a particular branch,
rather than a specific version number:

 A.C 5.*

Version specifications like that, which end in an asterisk,are calledfloat-
ing version numbers. Version numbers which do not contain asterisks are
called fixed (or specific) version numbers. Although TLIB's S (snapshot)
command creates snapshots which contain only fixed versionnumbers,
there is nothing to prevent you from creating and using floating version
numbers in a manually created or modified snapshot file.

For instance, the following file list specifies the latest trunk version of
module A.C , plus the latest descendent of branch version 5.1 of module
B.C (i.e., version 5.*), and version 12.2 of module D.C :

209

 A.C *
 B.C 5.*
 D.C 12.2

If there are version numbers with each file name in the file list, then it is a
version label file listor snaphot, because it “labels” the versions of each of
a set of source files. If the version numbers end in asterisks, it is a floating
version label file list, because the effective version numbers “float” to the
highest version numbers on the specified branches. If the version numbers
do not end in asterisks, it is afixedversion label file list, because the ver-
sions are “fixed” at the specified values.

Note that if you use a file list to specify files to TLIB, then any version
specifications within the file list will be respected by TLIB unless you
specifically force TLIB to use a particular version.

Thus, if you used the above file list (called3files.lis) to specify files to
TLIB's E (extract) command, you'd get the latest trunk version of A.C , but
you'd get the latest branch from version 5 forB.C , and version 12.2 of
D.C:

 tlib e @3files.lis

However, if you wanted to extract the latest trunk version ofall three files,
you could do so by using the “S” suffix to specify the desired version to
TLIB, overriding the version numbers in 3files.lis , like this:

 tlib es @3files.lis *

Note to users of TLIB 3.x and 4.x:Earlier versions of TLIB did not support
the S (snapshot) command. Instead, TLIB came with a program called
TLIBSNAP, which produced snapshot files that resembled.bat files con-
taining TLIB commands. Although TLIBSNAP is obsolete, TLIBcan still
recognize and use TLIBSNAP's old.bat format snapshot files. You use
them exactly as you would use the snapshot files produced by TLIB's S
command. For example:

 tlib e @oldsnap.bat

As an example of how LISTBLD can be used to create file lists for the S
(snapshot) command, here is a little.bat file which you could use to take

210

a snapshot of an entire software package (consisting of fourprograms)
written in Pascal, whenever you release a new version:

 REM snapshot SnazzyWrite package into snazzy.snp,
 REM then add snazzy.snp to its TLIB library.
 listbld snazwrit.pas snazzy.lis
 listbld snazspel.pas snazzy.lis add
 listbld snazthes.pas snazzy.lis add
 listbld snazinst.pas snazzy.lis add
 tlib s snazzy.snp @snazzy.lis
 tlib c locking_n u snazzy.snp
 del snazzy.lis
 del snazzy.snp

211

Keywords

TLIB can insert any of several kinds of information into yoursource file
when you extract it from a TLIB library file (text format only; this feature
is not supported forFileType binary). The information TLIB inserts is
determined by your choice of the “keywords” which you use in “keyword
format strings” in your source files. Currently supported keywords are:

%v Version number.

%f File date & time for this version (or date alone, if “LOGTIME N” is con-
figured).

%d File date for this version.

%t File time for this version (do not use if “LOGTIME N” is configured).

%wWho last checked it in (for multi-user environments, if “LOGUSER Y” is
configured). This is not necessarily the current user ID.

%l Lock status. This is the user ID of the programmer who checked this
file out for modification, or else the special string***_NOBODY_*** if the
file was extracted in “browse mode” (with EB). (Note: “l ” is a lower-case
L, not the number one.)

%n File name.

%% Literal percent sign “% ”

Note:TLIB can also insert a complete revision history comment block into
your source code. See Revision History Logging, p. 222.

Keyword information is inserted in the source code in such a way that it
can be automatically removed when the modified module is added to the
library file (with the U or N command).

To use TLIB's keywords, you must do several things.

212

The first step is to add theKeyFlag configuration parameter to your TLIB
configuration file (usually namedTLIB.CFG). Also, examine the configu-
ration file to make sure that you are not usingFILETYPE BINARY for the
files that you want to have keywords in.

(The second and third steps are to addtwo additional lines to each of your
source files, as described below.)

The keyword flag lineis a line in your source file containing thekeyword
flag, a special string of characters starting at a specified column number.

The KEYFLAGconfiguration parameter is what you use to tell TLIB what
keyword flag it should look for in your source files. TheKEYFLAGparame-
ter specifies a column number and a quoted string, separatedby a comma.
(Note: there mustnot be a blank next to the comma.) For instance, if
KEYFLAG was configured in tlib.cfg as:

 keyflag 1,"; ***keyword-flag***"

then a flush-left MASM-style comment line in your source file could be
the keyword flag line, like this:

 ; ***keyword-flag*** "version %v"

More flexibly, you could configure:

 keyflag 3,"***keyword-flag***"

This specifies that the keyword flag indicator in your source file starts in
column 3 and consists of the 18 characters, “***keyword-flag*** ”. This
KEYFLAGwould match any of the following example keyword flags embed-
ded in your source code file:

 { ***keyword-flag*** '%v %w %f' } (Pascal)
 /****keyword-flag*** "version=%v" */ (C)
 ; ***keyword-flag*** '%f %10w' (MASM)

Note: the first column is column one, not zero. Configuring “keyflag

1, ...” indicates that the keyword flag indicator is “flush-left” (not indented
at all) in your source file. Configuring “keyflag 3, ...” means that in your
source code the keyword flag hastwo (not three) blanks (or other charac-
ters) preceding the configured string.

213

The second stepfor using keywords is to add the keyword flag to your
source file(s). It should generally be part of a comment line, and it should
be immediately followed by a quoted “keyword format template.” The
keyword format template tells TLIB what to insert into the next line be-
tween the quote marks. The quote (delimiter) character mustbe the first
non-blank character after the keyword flag. For example, inthe sample
Pascal keyword flag line, above, the keyword flag is “***keyword-

flag*** ”, the delimiter is an apostrophe ('), and the keyword format tem-
plate is '%v %w %f' .

Note that the keywords must be lower-case (%v, %w, %f, etc.); you cannot
use upper-case keywords (%V, %W, %F, etc.).

The third step is to add to your source file(s), on the line immediately fol-
lowing the keyword flag line, the statement in which you wantthe
keyword information inserted. The line must include exactly two delim-
iters (quote marks). The keyword information will be substituted between
the delimiters according to the format template which you specified on the
previous line (the keyword flag line).

For the following examples, assume that thisKEYFLAGdefinition has been
configured:

 keyflag 3,"***keyword-flag***"

Example #1 (MASM):

If version 14 in the library file contains the following:

 DB 'version '
 ; ***keyword-flag*** '%v'
 DB ”,10,13

...then it will be extracted as:

 DB 'version '
 ; ***keyword-flag*** '%v'
 DB '14',10,13

214

Example #2 (C language):

If version 5.2.1 in the library file is dated 9-Jul-87,11:23:00 and contains:

 /****keyword-flag*** " %v %f" */
 char version[] = "";

...then when it is extracted it will contain:

 /****keyword-flag*** " %v %f" */
 char version[] = " 5.2.1 9-Jul-87,11:23:00";

Example #3 (Pascal):

If version 5.2.1 in the library file is dated 9-Jul-87 (with no time recorded
because LogTime N is configured) and it contains:

 { ***keyword-flag*** 'version %v, date=%f' }
 const version = ”;

...then when it is extracted it will contain:

 { ***keyword-flag*** 'version %v, date=%f' }
 const version = 'version 5.2.1, date=9-Jul-87';

Example #4 (Pascal):

If version 5.2.1 in the library file contains:

 (****keyword-flag*** #%v# *)
 (*This is a comment. This is version ##, within
 the comment.*)

...then when it is extracted it will contain:

 (****keyword-flag*** #%v# *)
 (*This is a comment. This is version #5.2.1#, wit hin
 the comment.*)

By inserting an integer “field width” after the “%” of a keyword, you can
force TLIB to blank-pad the corresponding value to the desired size. This
can be useful when you need to insert the information in a fixed-width
field, as in the following Turbo Pascal example:

215

Example #5 (Turbo Pascal):

If version 5.2.1 in the library file contains:

 type pstr18 = packed array [1..18] of char;
 { ***keyword-flag*** 'version %10v' }
 const version: pstr18 = ' ';

...then when it is extracted it will contain:

 type pstr18 = packed array [1..18] of char;
 { ***keyword-flag*** 'version %10v' }
 const version: pstr18 = 'version 5.2.1 ';

Another warning:the column number specified for aKEYFLAGdoesnot
properly count columns in lines containing tab characters.Also, TLIB
does not properly handle leading and trailing blanks withina KEYFLAG

string, nor does it transparently match tabs and blanks.

Therefore, we recommend that you:

1) specify a column in the range 1-8 and

2) don't use tabs or multiple blanks in the KEYFLAG string

The use of the first three keywords is fairly obvious, but the%l keyword
needs a bit of explanation. This keyword is only useful when locking is en-
abled. It is designed to warn you if you are about to make changes to a file
which you do not have checked-out for modification. To use it, you'll also
need to set either the “DELETESRC Y” or the “FIXKEYWD Yconfiguration
parameter, so that checked-in files are not left around which appear to be
still checked out.

The %l keyword works well because most programmers' editors startout
by displaying the first 24 lines or so of the text file when youbegin an edit
session. So, a prominent warning inserted at the top of the file will be seen
whenever anyone edits the file.

To use this keyword, insert aKEYFLAGcomment at the beginning of each
text file, similar to the following C language example:

 #if 0
 /* --=>keyflag<=-- " checked-out to %l " */
 /* " " */

216

 #endif

When “Dave” checks out the file for modification with the U orX com-
mand, the beginning of the file will look like this:

 #if 0
 /* --=>keyflag<=-- " checked-out to %l " */
 /* " checked-out to DAVE " */
 #endif

But if the file was extracted with the EB command (browse mode), the be-
ginning of the file will look like this:

 #if 0
 /* --=>keyflag<=-- " checked-out to %l " */
 /* " checked-out to ***_NOBODY_*** " */
 #endif

Note that the%l keyword cannot do the “right” thing if you use the O and
I commands to manage your check-in/check-out locking. Whatis inserted
depends solely upon the type of extract command which you use. The EB
command is for “browse mode”. The E command checks out the file for
modification.

We're grateful to Mr. Larry Young for the idea behind this feature.

For an often-superior alternative to the%l keyword, see theREADONLYB

configuration parameter, p. 280.

Two notes:

1) If you use TLIB's “Revision History Logging” feature (p. 222), then
you'll notice that theKEYFLAGparameter is similar to theLOGFLAGparam-
eter. If you configure both aKEYFLAGand a LogFlag, TLIBrequiresthat
the starting column numbers and the first two characters of the flag strings
for the KEYFLAGand LOGFLAGbe identical (this requirement is imposed
for performance reasons).

2) Keywords and Revision History Logging are only supportedfor text
format library files, not for binary files. If keywords do not seem to be
working, check that you have not configuredFileType binary . Also,
note that theFileType configuration parameter only affects the creation
of new library files; if a library file already exists, then changing the

217

FileType parameter will have no effect on it. You can easily tell whether
a particular TLIB library file is text format or binary format by inspecting
the first three bytes in the file. If the file begins with “.Vc ” then it is in bi-
nary format; if it begins with “.V ”, “ .V_ ”, or “ .Vt ” then it is in text
format.

If you need to convert one or more TLIB libraries fromFileType Binary

to FileType Text , or vice-versa, you can use the TLIB-to-TLIB conver-
sion utility, TLIBTLIB.EXE (or TLIBTLIB.AWK). (With some versions of
TLIB, these conversion utilites may be found in theCONVERT1.ZIP or
CONVERT2.ZIP archive.) See the*.TXT or *.DOC files in that archive for
instructions.

Keyword-based version number checking

TLIB 5.0 added “keyword-based version number checking,” which pro-
duces a warning if you update a library with a new version of a module
and the new version contains an old%v keyword which is not the prede-
cessor of the new version. If you put aKEYFLAGwith “%v” in each of your
source modules, then this new feature will provide an additional measure
of safety to help programmers notice when they are about to “undo” some-
one else's changes.

Caveat:TLIB must be able to find the version number in the formatted
keyword information. More specifically, you must not have something ad-
jacent to the%v which could be confused with a version number, and if
the %v is not the first keyword in the keyword format string then it must be
preceded by something distinctive.

Usually this is not a problem, but if you try, you can find a wayto confuse
TLIB (and perhaps yourself, too). For instance, suppose that you config-
ured:

 keyflag 3,"-=>keyflag<=--"

...and suppose your KEYFLAG format looked like this:

 /*-=>keyflag<=-- "version=%v0" */
 char embedded_id[42] = "version=960";

...then TLIB will think you have version 960 instead of
version 96.

218

Less obviously, you can confuse TLIB by having another keyword before
the %v , and not have something distinctive between them. For instance:

 /*-=>keyflag<=-- " %n %v " */
 char embedded_id[42] = " MYFILE.C 96 ";

...will confuse TLIB because the single blank before the%v is insufficient-
ly distinctive (since there are other single blanks elsewhere in the keyword
format string). However, the following will work okay:

 /*-=>keyflag<=-- " %n %v " */
 char embedded_id[42] = " MYFILE.C 96 ";

...because the double blank before the%v is unique in the keyword format
string.

Keyword-based version number checking is especially useful for those
who have locking disabled, perhaps because the programmers' worksta-
tions are not connected via a network (“sneakernet”), the lack of which
makes check-in/out locking less convenient). However, it provides an ex-
tra measure of safety regardless of your development environment.

Other changes in TLIB 5.0

TLIB 5.0 and later let you specify “%%” in a keyword format string to gen-
erate “%” in the formatted keyword information.

Also, TLIB now displays a warning if the%wkeyword is used butLOGUS-

ER N is configured.

What if it doesn't work?

If keywords don't seem to be working for you, then check the following:

o Make sure that the configuredKEYFLAGstring is identical to the key-
word strings in your source files. Beware of case mismatches and tabs.

o Count the column numbers carefully. If you've configured “1” as the
starting column, then the keyword string must start in the leftmost column

219

of your source file.

o Make sure there is only oneKEYFLAGparameter configured. If there is
more than one, then all but the last is ignored (except that you can use
IF /ENDIF blocks to specify different keyword flags for different files). If
you use INCLUDE directives in your main TLIB configuration file, be sure
to check the included configuration files, too.

o Make sure that TLIB is reading the right configuration file.How can you
tell? Add a line of gibberish to the configuration file. If TLIB doesn't com-
plain, then it isn't reading that file (see p. 250). Also, youcan obtain a
dump of TLIB's actual configuration settings by using the “-c tempfile”
command-line option, as in “tlib -ctemp.tmp q ”.

o If the file is more than a few thousand lines long, make sure that the key-
words are near the beginning. For multipass libraries, TLIBcan only
process keywords that appear within the firstPASSSIZE (MAXLINES) lines
(default 4000). If you need to use keywords near the end of a very large
file, you can create the TLIB library withPASSSIZE set as high as 16000,
and useTLIBX.EXE (the DOS-extended version of TLIB). That will allow
you to use keywords anywhere within the first 15999 lines of the file.

o Make sure that your TLIB library was not created withFILETYPE BINA-

RY configured. Examine the TLIB library file with a text editor. The first
two characters are “.V ”. If the library is in text format, then the third char-
acter is “_”, “ t ”, or a blank. If the third character is “c” or “ d” then the
library is in binary format, and you'll have to create a new libary file (with
FILETYPE TEXT configured) to make keywords work, or convert the li-
brary to text format format withTLIBTLIB.EXE or TLIBTLIB.AWK (p.
296).

220

Tlibscan

TLIBSCAN is a fast file-scanning program, similar to fgrep.It can search
any kind of file, including binary files, and display ASCII data found in
the files. TLIBSCAN is especially useful for identifying .EXE files which
have embedded keyword information (like WHAT or IDENT from other
systems), but it can also be used as a general-purpose file searching tool.

If you use the TLIB keyword facility to embed version-specific informa-
tion in your source files, TLIBSCAN can find it in the .EXE file. By
default, TLIBSCAN will search for the string, “&(#) ”, and it will display
text found after the “&(#) ” and up to the first control character (such as a
0-byte or carriage return). Seven command line options are available to
change its behavior. For a list of options, run TLIBSCAN withno parame-
ters.

Here are examples of how to use keywords to embed scannable informa-
tion in your programs. Both assume that you've configured TLIB similar to
this:

 keyflag 3,"-=>keyflag<=--"

Example #1 (C):

 /*-=>keyflag<=-- "&(#)MAKE #%v %f" */
 static char embedded_id[] = "&(#)MAKE #63 2-May-99 ,9:23";

Example #2 (Turbo Pascal):

 {--=>keyflag<=-- '&(#)%n #%v %f'}
 embedded_id: string[41] = '&(#)TST.PAS #8 2-May-99 ,9:30'#0;

We have embedded scannable information in several of the TLIB pro-
grams. So, to try out TLIBSCAN on the TLIB programs, enter:

 TLIBSCAN *.EXE

221

Revision History Logging

Revision history logging is a feature which allows automatic insertion in
your source file of a revision history comment block (text files only; this
feature is not supported forFileType binary). The revision history is
similar to the output of TLIB's L (list versions) command.If you do not
need this feature, you need not read this chapter.

Several TLIB configuration parameters are used to tell TLIBhow to auto-
matically insert a “revision history” of version comment lines into your
source code when you extract the source file from the library file. The con-
figuration parameters allow you to specify the format and placement of the
“revision history log” in your source file (typically in a “comment block”).

Three parameters (logFlag, logPrefix & logSuffix) are used to support the
automatic insertion of a “log” of version definition comment lines into the
source file. The logFlag parameter is used to determine where in the
source file the log will be inserted. ThelogPrefix and logSuffix are
optional parameters which are used to format the log information when it
is inserted in the source file.

The log must be both preceded and followed by a “LogFlag,” which is
very similar to a KEYFLAG (for keywords, p. 212).

If you configure both aKEYFLAGand a LOGFLAG, then TLIB requires that
the starting column numbers and the first two characters of the flag strings
for the KEYFLAGand LOGFLAGbe identical (this requirement is imposed
for performance reasons).

The LOGFLAGis a line containing a special string of characters startingat a
specified column number, so the configuration parameter for a LOGFLAG

consists of a column number plus a quoted string, separated by a comma.
(Note: there shouldnot be a blank next to the comma.) For instance, if the
LOGFLAG was configured as:

 logflag 1,"C ***revision-history***"

then a pair of Fortran-style comment lines would delimit thelog. Or, more
flexibly, you could specify:

222

 logflag 3,"***revision-history***"

which would match, for instance, these Fortran, Pascal, C & MASM com-
ments:

 C ***revision-history*** (Fortran)
 { ***revision-history*** } (Pascal)
 /****revision-history****/ (PL/I or C)
 ; ***revision-history*** (MASM)
 (***revision-history*** (Pascal: begin-log)
 revision-history) (Pascal: end-log)

This LOGFLAGis compatible with the exampleKEYFLAGdescribed earlier,
since the KEYFLAGand LOGFLAGboth start in column 3 and begin with
“**”.

Note that when you create the original source file, you must includetwo
LOGFLAGlines, one after the other, in your source file. Later, when you ex-
tract the source file, the log will be inserted between them.Be certain that
you havetwo logflags, since everything after the first one and before the
second will be deleted when you use the U or N command to put the
source file into the library file!

For C programmers, we recommend that the log be placed in an#if/#en-

dif block, like this:

 #if 0
 revision-history
 . . .
 revision-history
 #endif

Note that the TLIB U (update) and N (new library) commands will not
modify the source file to update your revision history log ifyou've config-
ured FIXKEYWDS N, so to get an up-to-date version log inserted in your
source file after an update, you may have to re-extract the source file (or
just configure FIXKEYWDS Y).

Another warning: the column number specified for aLOGFLAGdoesnot
properly count columns in lines containing tab characters.Also, TLIB
does not properly handle leading and trailing blanks withina LOGFLAG

string, nor does it transparently match tabs and blanks.

223

Therefore, as with KeyFlags, we recommend that you:

1) specify a column in the range 1-8 and

2) don't use tabs or multiple blanks in the LOGFLAG string

LogPrefix and LogSuffix specify what, if anything, should precede the
version comment lines when they're inserted in the source code as a revi-
sion history log. Both theLogPrefix and LogSuffix parameters specify
a column number (where the prefix or suffix is to be inserted)and a quot-
ed string. The version comment lines will be truncated as needed to fit
between the prefix and suffix, so you may wish to restrict thelength of a
version comment line by using the LogWidth parameter (p. 267).

Restriction: the LogPrefix can't extend past column 80.

Here's alogflag , logprefix and logsuffix for use with Pascal pro-
grams:

 logflag 1,"{--=>revision history<=--}"
 logprefix 1,"{"
 logsuffix 79,"}"

Note that with this choice ofLOGFLAGand LOGPREFIX, it is impossible for
a version comment line to accidentally match the terminating logflag, since
the LOGFLAGalways has “- ” in column 2, but the version comment lines
will have either a blank or a digit in column 2 (try it and you'll see why).

One final warning aboutLOGFLAGs: if you use them, you may have to be
careful not to put any “close comment” delimiters into your version defini-
tion comment lines, lest your compiler try to compile part ofthe version
log! This is obviously not a problem in languages which let you denote a
comment by preceding it with a special character (e.g., “; ” for MASM).
For C programs, the problem can be avoided by putting theLOGFLAGpair
within an “#if 0 ”/“ #endif ” block. But Pascal programmers, watch out!

Note: if you program multiple languages, you may need to configuresev-
eral styles of revision history comment block. You can use TLIB's IF and
ENDIF configuration parameters for this; see p. 321.

224

Cmpr delta generator

CMPR is a text file compare utility based on TLIB. Its output is adelta: a
description of the differences between a “new” file and an “old” file. The
delta can be used to reconstruct the “new” file from the “old” file.

The primary purpose of this utility is to allow transfer of source code up-
dates in a compact format over low speed telecommunication lines.

Note #1: for a more “human-friendly” (informative) compare utility, try
COMPARE.EXE(from PUBLIC.ZIP). Or, for the nicest compare utility we've
seen for ASCII text, buyDELTA™ (list price $100) from OPENetwork,
215 Berkeley Place, Brooklyn, NY 11217. Tel: (718) 398-3838.

Note #2:For comparing specified versions of a file in a TLIB library,or
for comparing an already-extracted file to another versionwhich is in a
TLIB library, you can use the includedCOMPAR.BATscript. It simply in-
vokes TLIB to extract the desired version(s) into temporaryfile(s), uses
COMPARE.EXEto compare them, and then usesMOREto view the differ-
ences. You can easily modify it to use a different compare program (such
as Delta), and/or to use a different tool to view the results, if you wish.

Modes

The output is in any of several formats, selected according to a “mode” pa-
rameter. The default mode (“NORMAL”) is a TLIB-style differences
description. If you have the old version of a file, plus the “delta file” pro-
duced by CMPR, then you can reconstruct the new version by using a
simple .bat file which builds a temporary TLIB library file, appends the
delta to it, and then extracts the new version.

See the UNCMPR.BAT file for an example of how to do this.

You can also select a CMPR mode ofONEPASS, which is just like the nor-
mal mode except that it is guaranteed that the lines referenced in .C

(copy) edit commands will be monotonically increasing; this may simplify
your task if you wish to translate the delta file into anotherformat, for use
with a “batch editor.”

225

The third supported mode is INSDEL , which is similar to onepass mode ex-
cept that the edit commands consist of inserts and deletes instead of inserts
and copies. This format is described below. We've also included a simple
Pascal program, DSAPP (“Delta Script Applier”), which can apply insdel
format deltas to a file. DSAPP is supplied as both source codeand .EXE

file; see p. 230.

The fourth supported mode isSPERRY, which causes CMPR to output its
delta file in a format which is compatible with the Sperry Unisys
SDF/SIR$ program. Thus, if you keep source files on both a PC and a
Sperry Unisys mainframe computer, you can edit the PC version and up-
load just the changes (to make the file transfer faster). Youcan then easily
reconstruct the new version on the mainframe by using SDF/SIR$.

The fifth supported mode isPANVALET, which is similar to SPERRYmode
except that the output is compatible with Pansophic's PANVALET pro-
gram management system. The format uses the++C and ++D

subcommands of the++UPDATE command, as described in the PAN-
VALET User Reference Manual. The special PAN#1 column one “$”
input character combinations are translated properly (e.g., “$* ” is substi-
tuted for “/* ”). We've also included a PANVALET/P-COMPARE format
delta script applier, DSAPPPAN.EXE.

“PANVALET” is a registered trademark of Pansophic Systems,Inc.. The
PANVALET User Reference Manual, number OSUP11.0-8412, is avail-
able from Pansophic Systems, Inc., Lisle, IL.

The sixth supported mode isLIBRARIAN , which generates a delta script
file that is compatible with Applied Data Research's LIBRARIAN program
management system. This format uses the “-INS ” and “-DEL ” control
statements as described in the ADR LIBRARIAN User ReferenceManual.
JCL, POWER and LIBRARIAN control statements are automatically
translated with the appropriate LIBRARIAN “conversion characters” (e.g.,
“ /: ” is substituted for “/* ”). We've also included a LIBRARIAN format
delta script applier, DSAPPADR.EXE.

“LIBRARIAN” is a registered trademark of Applied Data Research, Inc..
The ADR LIBRARIAN User Reference Manual, number SV2G-10-30, is
available from Applied Data Research, Route 206 and OrchardRd., CN-8,
Princeton, NJ 08540.

The seventh supported mode isIBMUPDATE, which generates a delta script
file that is compatible with IBM's UPDATE mainframe utility. This format

226

utilizes “./ I ” and “./ D ” control statements. A sample VM/CMS EXEC
for applying deltas is included with TLIB, in the file named IBMUPDAT.EX .

Add the "SMOOTH" option to make CMPR generate more concise deltas for
large (multi-pass) files in theONEPASS, INSDEL, SPERRY, IBMUPDATE,
PANVALET, and LIBRARIAN output formats.

The SMOOTHoption tells CMPR to "resynchronize" between passes, so that
the output does not show a bogus edit for lines that have movedacross the
DIFFLINES -long line buffer boundary. This effectively makesDIFFLINES

vary from pass to pass, according to the contents of the files, for files that
are longer than the configuredDIFFLINES number of lines. The default
DIFFLINES size is 3000, so theSMOOTHoption does not affect operation
with files that are smaller than that.

If you are using CMPR to generate TLIB-compatible deltas ("NORMAL"
mode), then you should not specify theSMOOTHoption, since TLIB uses
only fixed-length pass sizes, and cannot handle the variable-length pass
sizes which result from the SMOOTH option.

Three other CMPR options are provided for use in combinationwith main-
frame delta formats:

WIDTH=nn Truncates lines at column nn.

IGNORE=nn Ignore first nn characters on each line.

SEQ10 Sequence by 10 instead of 1.

Use the WIDTHoption with any CMPR output format to remove sequence
number information from the input files. For instance, to remove sequence
numbers from columns 73-80, specify WIDTH=72 .

Similarly, you can use theIGNOREoption to cause CMPR to pretend that
the first nn characters on each input line are blank. This is useful for
COBOL programs with sequence numbers at the beginning of each line.

CMPR does not recognize sequence number information in input files.
The line numbers which it uses simply refer to the position inthe file. That
is, line N normally refers to the N-th line in the file.

However, in some mainframe environments lines are customarily referred
to by sequence numbers which increment by ten. That is, the first line is
number 10, the second is number 20, etc..

227

To accommodate mainframe programs which expect this kind ofsequence
number, CMPR can optionally multiply all line numbers by tenwhen gen-
erating mainframe delta script files. Specify theSEQ10 option if you
require sequence numbers which increment by 10.

Since CMPR cannot recognize sequence numbers in columns 73-80, you
may need to do a resequence operation on your mainframe file before ap-
plying the delta script.

If you have a requirement for a special CMPR output mode, please contact
Burton Systems Software. We will be happy to work with you to try to
meet your needs.

Output Format Detail

NORMAL and ONEPASS Mode:

In normal and onepass modes, CMPR outputs a TLIB-style differences de-
scription, consisting of a.V header line followed by.I (insert) and .C

(copy) commands.

The .I edit command format is...

 .I N
 newline1
 newline2
 ...
 newlineN

...where N is the number of new lines to be inserted.
The .C edit command format is...

 .C X Y

...where X is a line numbers in the ‘old’ input file.Y is optional. If it is ab-
sent, a single line is to be copied. IfY >= X then X and Y represent the
first and last old line numbers in a range of lines. IfY < X then Y is one
less than the number of lines to be copied.

228

You could write a program to combine the delta file with the ‘old’ file to
reconstruct the ‘new’ file like this:

1) Start out with an empty ‘new’ file buffer

2) Examine next edit command (.I =insert or .C =copy)

3) Append inserted or copied lines to ‘new’ file buffer

4) Repeat 2 & 3 until there are no more edit commands

In fact, this is exactly what TLIB does when it is reading a library file.

INSDEL Mode:

In insdel mode, the CMPR output format consists of inserts and deletes in-
stead of inserts and copies. The difference between insert/copy format and
insert/delete format is in how you go about combining the delta file with
the ‘old’ file to reconstruct the ‘new’ file:

1) Start out with a copy of the ‘old’ file

2) Examine next edit command (.I =insert or .D =delete)

3) If it is an insert, add the lines at specified position

4) If it is a delete, remove the specified lines

5) Repeat 2-4 until there are no more edit commands

In insdel mode, the .I (insert) edit command format is...

 .I W N
 newline1
 newline2
 ...
 newlineN

...where N is the number of lines to insert, andWis where to insert them.
More precisely,Wis the line number in the ‘old’ file after which the new
lines should be inserted (to insert before the first line, use “.I 0 N ”).

229

The .D (delete) edit command format is...

 .D W N

...where N is the number of lines to be deleted, andW is the (old) line
number of the first line to be deleted (W is always greater than 0).

We have also included a small program calledDSAPPwith TLIB. DSAPP
(“delta-script application”) can be used to apply a CMPR-generated
“delta” file (in insdel format) to an “old” file, creating a “new” file.
DSAPP is about 100 lines of Turbo Pascal; both source and.EXE are pro-
vided.

Because it is uncopyrighted, you may give copies of DSAPP to anyone
you wish. You can use it to speed distribution of source code or documen-
tation updates via slow telecommunications links. You would generate an
insdel format delta from the “old” and “new” files using CMPR. Send the
(small) “delta” file to someone who already has the “old” file, and they
can regenerate the (large) “new” file using DSAPP.

DSAPP is similar in function toUNCMPR.BAT. But if you use DSAPP, the
recipient need not own a copy of TLIB. Also,UNCMPR.BATutilizes the de-
fault CMPR output format, while DSAPP uses INSDEL format.

We've also included programs similar to DSAPP for the Pansophic PAN-
VALET and ADR LIBRARIAN formats. These programs are called
DSAPPPAN.EXEand DSAPPADR.EXE, respectively. UnlikeDSAPP.EXE, these
programsare copyrighted. Run them with no parameters for instructions
on how to use them.

Other modes:

When you use CMPR'sSPERRY, PANVALET, LIBRARIAN or IBMUPDATE

modes, the output format is similar in structure toINSDEL mode, except
for the format of the insert and delete commands. For details, see the ap-
propriate Sperry Unisys, Pansophic Systems, Applied Data Research or
IBM documents, respectively.

DOS Errorlevels

230

CMPR exits with the DOS errorlevel set to indicate whether the compari-
son failed or succeeded. The errorlevel will be zero if CMPR ran
successfully and the two files were not the same.

If the ‘old’ input file does not exist, CMPR will still run, but the “delta”
file which results will consist of a single large insert. TheDOS errorlevel
will be zero. If you need to test for this in a.BAT file, use DOS's “if ex-

ist ” construct (see your DOS manual).

If CMPR ran successfully but the two input files were identical, the error-
level will be 1. CMPR will still create an output (delta) file, but it will be
very short (or empty, for insdel and Sperry modes).

If an error occurred (file not found, for instance), then CMPR will return
with an errorlevel of 2. The only exception to this is a Ctrl-Break or Ctrl-C
from the keyboard, which may cause CMPR to halt with errorlevel 0.

Configuration

CMPR reads the same configuration file as TLIB, but all except four of the
configuration parameters are ignored. The four parameterswhich are not
ignored are:

addCtrlZ : Same purpose as for TLIB; determines whether or not a Ctrl-Z
character (End-Of-File, code 26) will be added to the output file. Default is
N (no). See p. 276.

difflines: Defines the size of CMPR's internal line buffer. This is thenum-
ber of lines which CMPR will compare at one time. Note that CMPR will
handle files which are longer than passsize/maxlines, but the delta may be
somewhat less concise. The default is 3000 lines, which is a good choice
for most people. If your computer does not have much RAM memory, you
may need to reduce difflines.

CmprEntab : Determines whether blanks are compressed to tabs when
read by CMPR. This would allow CMPR to match lines correctly regard-
less of whether they have tabs in them. Note that TLIB and CMPRcan
only correctly convert standard 8-space tabs. Default is N (no).

CmprDetab: Determines whether tabs are expanded to blanks in the delta
file. Default is N (no). Set this to Y if you want tabs expandedin the delta
file (see p. 339).

231

Help Screen

If you run CMPR with no parameters, you will see a help screen similar to
the following:

Usage: CMPR <oldfile> <newfile> <differencesfile> < options>

<oldfile> and <newfile> are the two input files
<differencesfile> is the output file
<options> are either omitted or:

NORMAL - output is standard tlib “delta” (default)
ONEPASS - same as NORMAL, but .C references are monotonicall y
increasing
INSDEL - similar to ONEPASS, but translated to
‘Insert/Delete’ format
SPERRY - output in Sperry Unisys SDF/SIR$ format
IBMUPDATE - output in IBM UPDATE format
PANVALET - output in Pansophic PANVALET format
LIBRARIAN - output in ADR LIBRARIAN format
WIDTH=nn - truncate lines at column nn
SEQ10 - for mainframe formats, sequence line numbers by 10
instead of 1
IGNORE=nn - pretend first nn characters on each line are
blanks

On exit, the DOS errorlevel is set to:
0 - no errors (or aborted with Ctrl-Break)
1 - no errors, but input files are identical
2 - error; <outfile> was not created

232

Tlmerge / Diff3

TLMERGE is a program to merge two sets of revisions, or to effectively
“delete” a set of changes from a TLIB library file while retaining later
changes. It is used by TLIB's “Migrate” command to migrate/merge
changes from one version of your program into another.

DIFF3 is a 16-bit version of TLMERGE.

TLMERGE (or DIFF3) compares three files, a “base” file and two “new”
files, and generates a fourth file (the “output”) which combines the
changes from each of the two “new” files.

Usage

TLMERGE is most commonly used indirectly, by using TLIB's M (mi-
grate) command to generate a migrate2.bat file which contains TLIB and
TLMERGE commands to migrate/merge changes from one variantof your
program or project into another. Examples would include migrating bug
fixes from a currently-release level into a develompent level, or to migrate
changes from a standard version into a customized version. If you use
TLIB's Migrate command, then you don't need to worry about getting the
TLMERGE syntax correct, because TLIB determines what needsto be
merged, and generates the proper TLMERGE commands automatically.

However, you can also run TLMERGE (or DIFF3) by itself, from a
DOS/Windows command prompt. If a source file has been editedin two
different ways, and you need a version which contains both sets of
changes, run TLMERGE like this:

 TLMERGE basefile file2 file3 outputfile

or

 TLMERGE basefile file2 file3 outputfile WIDTH= nn

where:

basefile is the original unchanged file

233

file2 is the modified version of basefile with one set of changes

file3 is the modified version of basefile with the other changes

outputfile is created by TLMERGE and contains both sets of changes

WIDTH=nn truncates lines at column nn.

Use the WIDTH option to remove sequence number information from the
input files. For instance, to remove sequence numbers from columns 73-
80, specify WIDTH=72 .

Alternately, you can think of the parameters like this:

 TLMERGE deltaold deltanew inputfile outputfile

where:

deltaold and deltanew are a pair of files which, by the difference be-
tween them, describe a “delta” or set of changes

inputfile is the file which you need to modify

outputfile is inputfile modified in the same way thatdeltaold was
modified to make deltanew

For example, suppose you had a module with two development paths. Ver-
sions 1 through 8 are the “main” (trunk) versions. Versions 5.1 through 5.3
are for a special, custom version of the module needed by a favored cus-
tomer.

If you discovered a bug which was introduced in version 4, then the bug
would need to be corrected in both the regular and the customized ver-
sions. Rather than manually making the same changes to both current
versions, you could make the change to one of them and then let
TLMERGE apply the change to the other version. If you made thechange
to version 8, creating a new, fixed version 9, then TLMERGE can make
the same set of changes to version 5.3. Think of version 8 and version 9 as
defining the delta, and version 5.3 as the input file. The new, custom mod-
ule (version 5.4) is the output file:

 TLMERGE version8 version9 version5.3 version5.4

234

where:

version8 and version9 are the unfixed and fixed trunk versions

version5.3 is the unfixed customized version

version5.4 is the fixed customized module, created by TLMERGE

Sometimes TLMERGE might be unable to reconcile the two sets of
changes, because, for example, both file2 and file3 containmodifications
to the same line(s) in basefile. The changes are said to be conflicting (or
have “collided”). TLMERGE will warn you about such conflicts, but you
must reconcile them manually.

To help you do this, TLMERGE will insert special “flag” strings in the
output file for which you can search with a text editor. By default, the
flags look like:

 /* ###Change collision detected! filename(s) */

If you don't like the default flag, you can change it with theD3COLLIDE

configuration parameter in your TLIB configuration file (see p. 340).

You can also cause all changed lines to be flagged with an indication of
which file they were changed in (see theD3FLAG2 and D3FLAG3 parame-
ters, p. 340).

Undo a Revision Without Losing Later Revisions

Occasionally, you may need to undo a set of changes made to oneof your
source code files without undoing a later series of changes.

For example, suppose that version 4 ofMYMAIL.C supports 40 byte name
records and 5 digit zip codes. In version 5,MYMAIL.C was changed to sup-
port 100 byte name records. Version 6 was changed to support 9digit zip
codes. Finally, an unrelated bug was found and fixed, creating version 7.
The last 4 lines of MYMAIL.C 's revision history might look like this:

 4 MYMAIL.C 4-Aug-86 5-digit Zip, 40-byte names
 5 MYMAIL.C 20-Oct-86 support 100-byte names

235

 6 MYMAIL.C 13-Nov-86 use 9-digit Zips
 7 MYMAIL.C 12-Dec-86 Bug fix for files > 64K

Now, suppose that you need a new version which is just like version 7, ex-
cept that it should support 40 byte name records instead of 100 byte name
records. In other words, you would like to undo the changes which created
version 5 from version 4, but retain the improvements made inversions 6
and 7.

TLMERGE can do this automatically. Simply consider version5 to be the
basefile, and combine the changes needed to convert version 5 back to ver-
sion 4 with the changes needed to convert version 5 into version 7, like
this:

 tlib ebs mymail.c4 4
 tlib ebs mymail.c5 5
 tlib e mymail.c7
 diff3 mymail.c5 mymail.c4 mymail.c7 mymail.c

In other words, the “delta” is the set of changes needed to convert version
5 into version 4, and the input file is version 7.

Note the use of a handy “trick” in this example: we extracted different ver-
sions of mymail.c without having to rename them by the simple expedient
of chosing alternate file names which still “map” to the sametlib library
file (probably mymail.c$ in this case, if you have configured “LIBEXT ?

$????? ”, as is usual for C programmers).

Configuration

TLMERGE and DIFF3 use the following TLIB configuration parameters:

addCtrlZ : Same as for TLIB & CMPR. (Ctrl-Z for output files? Default is
N/no.) See page 276.

difflines: Maximum number of input lines (per file) which will be handled
at one time (same as for CMPR). DIFF3 generally works well even if the
input files are longer thanDIFFLINES , as long asDIFFLINES is larger than
any of the changes. The default is 3000. See page 339.

CmprEntab : Same as for CMPR. (Enable blank-to-tab conversion? De-
fault is N/no.) See page 339.

236

CmprDetab: Same as for CMPR. (Enable tab-to-blank conversion? De-
fault is N/no.) See page 339.

d3collide: D3collide defines a special line to be inserted in the output file
wherever DIFF3 detects conflicting changes in file2 and file3. If this con-
figuration parameter is not defined, a default flag line is used. See page
340.

d3flag2: Because changes to a program may well conflict even if no single
line in the base file is altered in both file2 and file3, you may wish to flag
all changes, rather than just those which happen to “collide.” This parame-
ter is used to describe how to flag all those lines which were modified or
inserted in file2. If this parameter is not defined, nothingis inserted. See
page 340.

d3flag3: Same as D3FLAG2, but for file3 instead of file2.

DOS Errorlevels

TLMERGE and DIFF3 exit with the DOS errorlevel set to indicate
whether the comparison failed or succeeded. The errorlevelwill be zero if
TLMERGE ran successfully and the three input files were not the same.

If the three input files (basefile, file2 and file3) were identical, the DOS er-
rorlevel will be 1. In this case, TLMERGE will still run, but the output file
will be the same as the input files.

If an error occurred (e.g., file not found), then TLMERGE will return with
an errorlevel of 2. The only exception to this is a Ctrl-Break or Ctrl-C from
the keyboard, which causes TLMERGE or DIFF3 to stop with errorlevel 0.

Help Screen

If you run TLMERGE or DIFF3 with no parameters, it will display a short
“help” message describing how to use it. The message contains a picture
drawn with the IBM PC's extended graphics characters; this picture may
not display properly on some computers. However, TLMERGE orDIFF3
will still function correctly on these machines.

237

Additional features

TLMERGE and DIFF3 have two other minor features, which are used by
TLIB's M (migrate) command:

a) TLMERGE and DIFF3 allows an “alias” to be specified for its2nd and
3rd input files. The alias will be displayed in collision flags instead of the
actual file name. TLIB's Migrate command uses this feature to make the
collision flags show meaningful version numbers.

The aliases, if present, must be enclosed in{ curly braces} , and must fol-
low the file names immediately, without intervening spaces. For example:

 TLMERGE basefil file2{12} file3{9.3} outfil

b) TLMERGE and DIFF3 allow specification of a “line1= ...” parameter,
to insert an extra line at the top of the output file. (This is used by TLIB's
Migrate command to insert the CMTFLAG string.) For example:

 TLMERGE basefil file2 file3 outfil line1=[MERGED_ 12_+_9.3]

238

NS Command – split a library

TLIB was carefully written to run as fast as possible, so thatyou can make
frequent library updates without wasting a lot of time. Eventually, howev-
er, if the number of versions in a library file becomes very large (say, over
1000), you may find it convenient to “split” a library file, to improve
TLIB's performance or save disk space.

One way to do this would be to simply store the old library fileon an
archival diskette, and create a new library file (with the N command) from
the current version of your source file. However, this wouldlead to confu-
sion because there would then be two “version ones.”

To avoid this problem, TLIB provides the NS (split library) command. The
NS command is just like the N (new library) command, except that you
must explicitly specify the version number for the first version in the li-
brary file; the “S” suffix stands for “specify.” (The first version in a library
file created by the N command is always number 1.)

You would normally specify a version number which is one larger than the
highest version number in the old library file; you can use the L (list) com-
mand with the old library file to find out what that number is.

Here is an example showing how to use the NS command:

The library file for monster.pas is using up a lot of disk space, so we
decide to split it. Assuming that the TLIB library formonster.pas is
in \tlibs\monster.p$s, here is how we go about splitting it:

 TLIB L MONSTER.PAS

 (use L command to find that there are 100 versions of monster.pas)

 TLIB E MONSTER.PAS

 (get the latest version from the old library file)

 REN \TLIBS\MONSTER.P$S *.TL1

 (save the old library file as monster.tl1)

 TLIB NS MONSTER.PAS 101 old lib's v100

 (start a new library file, with the first version being number 101)

239

TLIB will now run faster and use less memory, since it doesn'tneed to
read as many old versions each time you do an update or extract.

240

Retrieving by Date/Time

You can retrieve particular versions by date & time, as well as by version
number or by snapshot or file list name. Simply use the ES or EBS com-
mand and specify the date and/or time instead of the version number.

If you specify a date/time as the version number for the ES command,
TLIB will retrieve the newest version which is not newer thanthe speci-
fied date/time. By default, only trunk versions are examined, but if you are
using branching then you can select a particular branch.

For retrieval by date/time to work correctly, the versions in your library
file should be in chronological order; that is, the dates of the versions in
your TLIB library file should be monotonically increasing (at least within
the series of trunk or branch versions which TLIB needs to scan), since
TLIB will stop reading versions from the library file when a too-new ver-
sion is encountered.

If you plan to use this feature then you should not configure “LOGTIME N”.

You should normally specify the date and time in the format which TLIB
uses when displaying the date & time for stored versions. That is, for the
date the required format is:

 DD-MMM-YYYY

where:

DD is a 1 or 2-digit day of the month, from 1 to 31
MMM is the first 3 letters of the English month name (e.g., Feb)
YYYY is the 2 or 4-digit year, 80-99 or 1980-2043

Time of day must be specified in 24-hour format:

HH:MM:SS

where:

HH is the hours, 0 to 23

241

MM is the minutes, 00 to 59
SS is the seconds, 00 to 59

If you specify only the time, then today's date is assumed.

If you specify only a date, then 23:59:59 is assumed (so that aversion will
match if it was created at any time that day). If you specify both date and
time, separate them with a comma or slash. TLIB customarily uses a com-
ma, but you can optionally use a slash instead of a comma to separate the
date from the time. This is useful if you use theES command with a speci-
fied date/time in lieu of a version number, and you want to pass the
date/time to TLIB indirectly, as a parameter to a batch file which invokes
TLIB.

The problem is that DOS's obnoxiouscommand.com converts commas
(and semicolons and equal signs) into spaces, so that (for example) a
date/time like "25-Dec-94,12:00:00 " turns into two parameters, "25-

Dec-94 " and "12:00:00 " when you pass it to a.bat file. So, in case you
need to do this, TLIB lets you specify the date/time as "25-Dec-

94/12:00:00 " so that command.com won't mangle it when you pass it as a
parameter to a .bat file.

If you are using branching, then you can select by date/time on a particular
branch in the library, by specifying both the branch and the date/time. The
branch specification must end in “* ”, since it makes no sense to specify
both a date/time and an exact version number. For clarity, you should sep-
arate the date/time from the version number with a semicolon.

Here are some examples of legal version specifications for the EBS and
ES commands:

23 selects version 23.

25-Dec-92,13:00:00 selects the latest trunk version as of 1pm, Christ-
mas day, 1992.

@snapname.ext selects the version in the snapshot.

3-Feb-88 selects the latest trunk version as of midnight, February 3rd,
1988.

*;3-Feb-88 equivalent to the previous example

242

6.*;3-Jun-91 selects the latest branch version 6.x as of midnight, June 3,
1991.

@filelist;12:00:00 selects the latest version as of noon today in the
branch specified in the named file list.

You should be aware, when using retrieval by date/time, thatthe date/time
which TLIB uses is the date/time-stamp that the source file had when it
was saved in the library, not the time at which the library wasupdated (but
see the TOUCHSOUR parameter, p. 288).

243

Comment Files

TLIB can read comments from a file when updating a library with a new
version. This is useful, for example, if you wish to update many TLIB li-
brary files with new versions, and you want to enter the same comment for
each file, but the comment will not fit on a single line (on theDOS com-
mand line). Suppose, for example, thatCOMMENTS.TXTcontains the
comments. You could make TLIB update the libraries and read the com-
ments from COMMENTS.TXT like this:

 tlib uf *.c @comments.txt

Note that TLIB automatically stores the file name, date, etc. on the first
comment line, which uses up quite a bit of the available room on the line.
If the first line in COMMENTS.TXTwill not fit in the space that remains,
TLIB will automatically move all the comments down one line (as if you'd
left a blank line at the top of COMMENTS.TXT).

You can use wildcards in the name of the comment file; TLIB will substi-
tute for the wildcards from the name of the source file. Thus,a set of
modified source files and associated comments can be prepared in ad-
vance, then the update operations can be done all at once. For example:

 tlib uf *.c @*.cmt

...which would read comments fromMYFILE.CMT for source file MY-

FILE.C , and from YOURFILE.CMT for YOURFILE.C .

This is useful in highly “controlled” environments, where programmers
can extract and check-out modules, but are not allowed to do “update” op-
erations. Instead, the programmers must send the files to a “system
librarian” to be checked-in. In a networked environment, the system librar-
ian is the only person who requires read/write access to the library files;
programmers do not need write access to the libraries if theyhave
read/write access to the lock files (hint: for Novell and most other LANs,
this is easily accomplished by keeping the library and lock files in separate
directories, as shown in the example on page 260).

244

This type of control might be required by the configuration management
plan for some U.S. government contracts.

As a shortcut which is equivalent to the “@*.ext ” format, you can specify
just “@” for the comment file, and TLIB will derive the comment file name
from the source file name. By default, the name of the commentfile is
simply the name of the source file with the extension changedto .CMT

(you can change this convention with the CmtExt configuration parameter,
as described on p. 263). For example, if you give the command:

 tlib uf *.? @

...then the comments forMYFILE.C are expected to be inMYFILE.CMT,
and the comments for YOURFILE.H should be in YOURFILE.CMT.

See also p. 105.

245

Configuration

Alphabetical listing of parameters

T - means TLIB uses this parameter
C - means CMPR uses it
D - means TLMERGE & DIFF3 use it

 parameter default page
T AATTR <set/preserve/reset> Set 287
T ABORT message 309
T C D ADDCTRLZ <Y/N> N 276
T ARCCMD <path-of-pkpak.exe> 328
T ARCEXT extension ARC 328
T ARCTEMP <temporary-directory> 328
T AUTOBRNCH <Y/N/Q> Query
T AUTOSET filename AUTOSET.BAT 292
T BANNER <1-42>," string" 333
C D CMPRDETAB <Y/N> N 339
C D CMPRENTAB <Y/N> N 339
T CMTEXT extension CMT 263
T CMTFLAG <1-80>,<quoted-string> 289
T CMTSUFFIX <1-253>,<quoted-string> 289
T COLORIZE <Y/N> N 313
T COLOROFF <string> 315
T COMMANDS <comma-delimited-list> 330
T CREATETF <Y/N> N 298
T CZTRUNC <Y/N> N 291
D D3COLLIDE <line-to-insert> /* ### ... 340
D D3FLAG2 <0-253>," string" 340
D D3FLAG3 <0-253>," string" 340
T DATAPATH <Y/N> N 278
T DEFEXT extension 263
T DELETESRC <Y/N> N 278
T DETABE <Y/N/Maybe> Maybe 255
C D DIFFLINES <100-16380> 3000 339
T DOTDOTOK <Y/N> N 303

246

 parameter default page
T ELSE 323
T ELSEWHERE <Y/N> N 308
T ENDIF 321
T ENTABU <Y/N> N 256
T EQUALDATE <Y/N> N 275
T ERRORPAUS <0-3> 2 312
T EXITPAUSE <Y/N> N 313
T EXTENSION ext1, ext2, ... 254
T FILETYPE <Auto/Binary/Text/Runlen/EOFtol>AUTO 294
T FIND1FILE <Y/N> N
T FIXKEYWD <Y/N> Y 277
T FNAMECASE <U/L/A> A 309
T FORCEREFR <Y/N> N 306
T FORCEU <Y/N> N 275
T HELP <1-49>," string" 329
T ID name 266
T IF <list-of-wildcard-specs> 321
T IFF expression 323
T C D INCLUDE path 264
T JFILE <name-of-journal-file> 190
T JOPTIONS <journal-options> UOCAP or UIOAP 190
T KEYFLAG <1-254>," string" 213
T LET name=expression 270
T LEVEL n= name d= path p= name etc. 300
T LIBDIRQ <1-54>," string"
T LIBEXT extension 262
T LOCKING <Y/N/B/W> N 265
T LOGFLAG <1-240>," string" 222
T LOGPREFIX <1-80>," string" 222
T LOGSUFFIX <20-253>," string" 222
T LOGTIME <Y/N> Y 266
T LOGUSER <Y/N> N 266
T LOGWIDTH <20-254> 79 267
T LOKEXT extension 262
T LONGNAMES <Y/N/M> M 77
T MAKEDIRS <Y/N> N 315
T MAXLINES <100-16380> 4000 or 16000
T MULTIPASS <Y/N> Y 335
T NEWLINE <CRLF/LF/CR> CRLF 311
T NT351BUG <Y/N> N 316
T NTFS35BUG <Y/N> N 317
T NUMBANNER <1-42> 0 329
T NUMLIBDIR <1-5> 1 329

247

 parameter default page
T NUMHELP <1-49> 0 329
T NUMPROMPT <1-42> 1 329
T OLDDATE <Y/N> Y 267
T ONETHREAD <Y/N> N 292

T
 PASSSIZE <100-16380>
 (this is a synonym of MAXLINES) 4000 or 16000

T PATH <path-of-libraries> = 257
T PROJLEV name 299
T PROMPT <1-42>," <string>" 329
T QUERIES <Y/N> Y 269
T QUIET <Y/N> N 279
T READONLY <Y/N> N 279
T READONLYB <Y/N/W> N 280
T READONLYT <Y/N/W> Y 320
T REFNEWLN <CRLF/LF/CR> NEWLINE

T REFSUBDIR <directory-name> 305
T RELAXVERS <Y/N> N 307

 REM or ! Anything 252
T REPLACE <Y/N/Q/A> Q 268
T REPLROBR <Y/N/Q/W> N 282
T ROLOCKS <Y/N> N 280
T SAY message 309
T SERIALNO vvv-sssss-nn-cccccccccccc
T SET name=<unquoted-string> 270
T SETFTIMEW <Y/N> N 274
T SHEIGHT <0 or 8-70> 25 284
T SHOWLNAME <Y/N> Y
T SLASHCONT <Y/N/M> Y 285
T SLICKEPSI <Y/N/Maybe> Maybe 292
T SWIDTH <0 or 40-32765> 80 284
T TOPRELATI <Y/N/Maybe> Maybe 301
T TOUCHSOUR <Y/N/Modified/Revhist> N
T TOUCHU <Y/N> Y 275
T TRACK <Y/N/Maybe> N 297
T TRACKEXT extension TRK 308
T TREEDIRS <Y/N> N 300
T UNARCCMD <path-of-pkunzip.exe> 326
T UPDATENEW <Y/N> N 276
T USEDUPHAN <Y/N/Maybe> Maybe 285
T USEUMBS <Y/N> Y 319
T VALIDATE <Y/N> Y 285
T WARN message 309
T WORKDEPTH nn 0 310

248

 parameter default page
T WORKDIR <path> .\ (usually) 304

249

Configuration overview

TLIB supports a large number of configuration parameters toallow you to
tailor its behavior to your needs. However, most of the configuration pa-
rameters have reasonable default values so that you do not need to worry
about the features which you do not require.

To avoid making users contend with commands and features which they
may not need, we have even made the TLIB user interface configurable in
command-line versions of TLIB. That way, unneeded commandsdo not
even appear on the menu.

TLIB Combo Edition comes with a Windows-based Configuration Wizard,
and TLIB for DOS comes with a program called TLIBCONF, to helpyou
set up your initial TLIB configuration file.You should run the TLIB Con-
figuration Wizard or TLIBCONF even if you upgraded to TLIB 5.50 from
an earlier version of TLIB. See p. 15.

Where is the Configuration File?

TLIB first looks for a file named “TLIB.CFG ” in the current directory. If it
is not found, TLIB checks the DOS environment area for a “set

tlibcfg=path\file.ext ” command. If there was one, then TLIB will try
to open path\file.ext as the configuration file. If that fails, then TLIB
will look in the directory from which it was run for a file named
“TLIB.CFG ”.

If you want to prevent TLIB from looking forTLIB.CFG in either the cur-
rent directory or the directory containingTLIB.EXE , then use “set

tlibcfg=!path\file.ext ” (the “! ” means “force”). However, if you do
this then TLIB will not run at all unless it finds the specified configuration
file.

There is also a semi-secret “patch point” which can be used toforce TLIB
to look in one and only one place for its configuration file; see p. 105.

250

In addition, before reading the regularTLIB.CFG file, TLIB looks for and
(if it exits) reads a supplemental configuration file called TLIB.SER , in the
same direcectory that the TLIB program resides in. Usually,TLIB.SER

contains onlyserialno parameters (but you can put other configuration
parameters into it, too).

TLIB for Windows also uses aTLIB.INI file, to store user interface pa-
rameters (command-line TLIBs may read it as well).

By default, TLIB.INI resides in the same directory as the TLIB executa-
bles. However, if you have a multi-user TLIB license and installed TLIB
into a shared network directory, then this is inappropriate. There should be
a different TLIB.INI for each user. So, if TLIB is installed into a shared
network directory, you should use theTLIBINI environment variable to
tell TLIB where to find TLIB.INI . The easiest way to do this is to add a
SET statement to your autoexec.bat (or OS/2 config.sys) file, e.g.:

 SET TLIBINI=C:\

DOS Environment Space

If you get an “Out of environment space” DOS error in responseto your
SET command, then under DOS 3.2 (and later) you may wish to increase
your environment space using the/E parameter of the SHELL command
in your CONFIG.SYS file (your DOS manual has details).

To approximately triple your environment space under DOS 3.2 and later:

 shell=c:\command.com c:\ /p /e:512

Checking the configuration: -c command-line option

TLIB has a facility to “dump” most of TLIB's configuration data into a
file, so that you can see the result of the environment variable substitu-
tions, include directives, etc..

The “-cfilename ” option writes the configuration information to file-
name.

Example:

251

 tlib -cmyfile.txt q

That will run TLIB, write the configuration data tomyfile.txt , and then
exit to the operating system. (“Q” is “quit”).

Note: The configuration parameters that TLIB dumps are the ones that you
can reference as pseudo-environment variables in the configuration file via
the %tlibcfg: parametername% syntax.

Note that empty/do-nothingif/endif blocks in your configuration file
will not appear in the dumped configuration data. For example, if you con-
figured:

 if *.c,*.h
 track y
 endif
 track n

...then the if/endif block does nothing, so TLIB ignores it.

What does the configuration file contain?

The TLIB configuration file is a normal DOS text file, which you can edit
with any text editor. The initial configuration file should be created by run-
ning TLIBCONF and answering the questions which it asks you. However,
TLIBCONF only configures the most common, basic configuration param-
eters, so you may need to make additions or changes by editingthe
configuration file manually.

Configuration files can contain comment lines, which must begin with “! ”
or “REM ”. The other thing they contain is configuration parameters, one
per line, in the formats described below.

C command: Overriding Configuration Parameters

With the C command, you can specify or override any configuration pa-
rameter, either on the DOS command line or interactively. For example:

252

 TLIB c "readonlyb N" eb myfile.c

(means disable read-only-browse mode, then do browse-mode extract
of myfile.c)

 TLIB c readonlyb_n eb myfile.c

 (another syntax to do the same thing)

 TLIB c readonlyb=n eb myfile.c

 (yet another syntax to do the same thing)

Using an underscore (_) instead of a blank after the configuration parame-
ter name is more convenient, since it avoids the necessity ofputting simple
configuration parameters in quotes. It only saves a couple of keystrokes
when typing. However, it avoids problems when passing TLIB configura-
tion parameters to.bat files, since DOS's command processor strips off
quote marks in .bat file parameters.

The “=” (as a third alternative to a blank or “_”) is allowed because we've
observed a tendency for users to get confused and use “=” instead of a
blank. However, it has the same problem that quote marks have: when
passed in a.bat file parameter, “=” gets stripped off by the DOS com-
mand processor.

The C command can be specified several times, if you wish, to change
several configuration parameters:

 TLIB c keyflag_0 c logflag_0 e myfile.c

(means disable keyword and revision history log insertion,then extract
myfile.c)

Even the “INCLUDE” directive is allowed, so you can use it to specify a
large number of configuration parameters, like this:

 TLIB c include_special.cfg e myfile.c

The only things allowed in the configuration file which you cannot specify
with the C command are the “if ” and “endif ” directives (this restriction
can be circumvented by putting theif / endif block in a file and loading
it with the C command and the “include ” directive).

253

Detailed configuration parameter descriptions

EXTENSION ext1, ext2, ...

The Extension configuration parameter is used to tell TLIB what file ex-
tensions you will be using. If you configure TLIB with the TLIB
Configuration Wizard, and tell it the source file types thatyou will be us-
ing, it will correctly configure the Extension parameter for you.

Example:

 EXTENSION c,h,asm,pas,,bat,cmd

Note #1: there must be no dots, spaces or wild-cards in the list.

Note #2: the double comma after “pas ” indicates that some of your files
may have no extension at all (e.g., “makefile ”).

If you do not configure EXTENSION (or if you configure it incorrectly),
then TLIB's L, C and O wild-card search modes will not work under some
circumstances; see note #5, below, for details (if you care).

Note #3: if you configureDEFEXT(“default extension”), then that default
extension will also serve as your first EXTENSION setting.

Note #4: The next 5 paragraphs are a description of why TLIB needs the
EXTENSION configuration parameter (you can skip this if you don't care):

TLIB needs the EXTENSION configuration parameter when performing
wild-card searches of library or lock files (with the L, C andO search
modes), so that it can deduce the names of the source files from the names
of the library or lock files when you give a wild-card specification which
does not already give the extension.

For example, suppose that “LIBEXT ?$????? ” is configured (a common
setting). Then if you store a source file calledMYFILE.PAS into a TLIB li-
brary, the library will be named MYFILE.P$S .

Now, if you do the command, “TLIB E *.PAS ”, TLIB actually searches
for library files named*.P$S (because the default search mode for the E
command is “L”). However, TLIB can tell from the wild-card specification
that you entered that the extracted files should have the “.PAS ” extension,

254

and it does not need the EXTENSION configuration parameter to figure
out how to name the extracted files. When it finds the libraryfile “ MY-

FILE.P$S ”, TLIB will deduce the first part of the source file name from
the name of the library file, and will deduce the “.PAS ” extension from
your original wild-card specification.

However, if you give the command “TLIB E MYFILE.* ”, then when TLIB
finds the TLIB library namedMYFILE.P$S , it will not know how to name
the extracted file. More precisely, the second character ofthe file exten-
sion cannot be deduced from either the name of the library file or the
original wild-card specification. The extension could be.PAS , .PBS , .

PCS, or whatever.

So, to resolve this ambiguity, TLIB consults theDEFEXTand EXTENSION

configuration parameters: the first extension found whichmatches will be
used. In this case, it would be the first extension found in which the 1st
character is “P” and the third character is “S”.

DETABE <Y/N/Maybe>

The detabE (DE-TAB on Extract) parameter determines whether tabs in
the library file will be expanded to blanks in the source fileduring an E
(extract) command. Setting this toY will slow down these commands
slightly (about 8%).

The default is DetabE M (“maybe,” which means do not expand tabs un-
less EntabU Y was configured when the TLIB library file was created).
Example:

 detabE N

By the way, TLIB is “case-insensitive,” which means that upper-case and
lower-case are interchangeable in most contexts. So you canspecify
“detabe n ” or even “dEtAbE N ” with the same effect.

Also, TLIB allows you to substitute an underscore, equal sign or tab char-
acter for the blank which normally follows the name of the configuration
parameter. So you can specify “detabE_N ” or “ detabE=N ” with the same
effect. Using an underscore instead of a blank may be preferable when
passing parameters to batch files, since “_” will be passed unmolested, but

255

quotes and equal signs are removed from batch file parameters by the
command processor.

Note that only 8-space tabs are supported by TLIB. If you use other tab
stops, you shouldnot set DetabE , EntabU , CmprEntab or CmprDetab to
“Y” in your configuration file.

Also, note that tab conversions are not supported for files which contain
lines that are longer than 254 characters, nor forFILETYPE Binary li-
braries.

The usual setting is the default,DETABE MAYBE(or just “DETABE M”),
which means that tabs will be expanded when the source file isextracted if
and only if blanks were converted to tabs when the file was stored (which
is determined by how theENTABUconfiguration parameter was set at the
time the library file was created). (This avoids an anomalous situation in
which changing theENTABU and DETABE configuration settings could
cause TLIB to find “changes” even in a freshly-extracted file.)

ENTABU <Y/N>

The entabU parameter is somewhat analogous to the detabE parameter,
except that it determines whether blanks will be compressedto tabs when
adding versions to the library file (with U and N commands). However,
there is a subtle difference between commands which create alibrary file
(e.g., N) and those which merely add another version to it. For those com-
mands which add versions to an existing library file, the value of entabU
used is the one that was set when the library file was created,rather than
the current value. (The third byte of the library file will be`t ' if entabU
was N (false) when the library file was created.)

Note that tab conversions are not supported for files which contain lines
that are longer than 254 characters, nor for FILETYPE Binary libraries.

Default is N (no, do not compress blanks to tabs in the libraryfile). Setting
this to Y will reduce the memory requirements of TLIB, and make some li-
brary files significantly smaller. Here we leave it at the default value:

 entabU N

256

PATH <directory/folder path>

Thepath parameter specifies the default path for libraries. It can be over-
ridden by TLIB's CP (path) command. Default is “=”, which means the
same directory as the source file. If you want library files to always be in
the current directory (even when the source file is specified with a differ-
ent subdirectory or drive), you can specify “.\ ” for the path.

You can, if you wish, keep your library files in the same disk directory as
your source files. More often, however, library files are stored in a differ-
ent hard disk directory, or perhaps on a network file server (or even a
diskette).

TLIB provides thePATHparameter for this situation: it allows you to spec-
ify the path (drive and/or subdirectory) in which your library files reside.
The most common form specifies the directory in which TLIB keeps the
TLIB library files:

 PATH d:\ path\

The CP command can be used to override thePATHconfiguration parame-
ter, to specify a different subdirectory, using the usual DOS path
specifications (see also p. 42). For example:

 TLIB CP B:\LIBRARY\ U D:MYFILE.TXT

TLIB will update the appropriate library file in directoryB:\LIBRARY\

with the latest version of D:MYFILE.TXT .

Note that if you neither configure thePATHparameter nor use the CP com-
mand to specify a library file path, then TLIB will expect thelibrary file to
be in the same directory as the source file. This is equivalent to configur-
ing:

 PATH =

The CP command can also be used to specify the complete library file
name, rather than allowing the library file name to be determined by the
name of the source file. The file name must contain (or be followed by) a
“.” (period), since this is how TLIB distinguishes the file name from the
name of a directory.

257

This form of the CP command is seldom used, since it requires that you
use a separate CP command for each library file. You will generally find it
easier to let TLIB determine the library file name from the source file
name, instead of using this form of the CP command. Nevertheless, here
are a couple of examples:

 TLIB CP MYLIB.XYZ

The library file is MYLIB.XYZ , in the same directory as the source file.

 TLIB CP C:\LIBS\MYLIB.

The library file is MYLIB (with no extension), in directory C:\LIBS .

The PATHparameter and CP command have a third form, to handle a par-
ticular problem faced by some users. The problem is this: what do you do
if you have two different source files with the same name but different ex-
tensions, and you want to have a library file for each of them?TLIB would
normally try to use the same library file for both of them. C programmers
sometimes face this: for example, they may need to have separate library
files for file.c and file.h .

The simplest solution is to use theLibExt (and LokExt) configuration pa-
rameters (see p. 262).

An equivalent solution is to use the “*. ext” form of the PATHparameter or
CP command to change the library file naming convention. Question
marks (“?”) can be used as wild cards in the new library file extension,to
represent characters from the source file's extension.

Examples:

 TLIB CP *.LIB

changes the library file extension to .LIB .

 TLIB CP C:\LIBS*.LIB

combines forms 1 and 3 of the CP command, to specify both a directory
for library files (C:\LIBS), and a new library file extension.

 TLIB CP *.?$? E FILE.C E FILE.H U FILE.BAT

258

extracts the latest version ofFILE.C from a library file namedFILE.C$,
extracts the latest version ofFILE.H from a library file namedFILE.H$,
and updates a library file namedFILE.B$T with the latest version of
FILE.BAT .

 TLIB CP *.?$ N FILE.C

creates a library file called FILE.C$ for the source file FILE.C .

Note: the LIBEXT and LOKEXTconfiguration parameters provide a simpler
mechanism for selecting the naming conventions for libraryand lock files.
See p. 262.

If you are using check-in/out library locking, then there isa fourth varia-
tion of the PATH parameter and CP command available. (check-in/out
locking is used for multiple-programmer projects; it is explained starting
on p. 97.)

Along with both the second and third forms of the CP command, you can
specify an alternate extension or path for the lock file. This is only mean-
ingful if you have check-in/out locking enabled. The lock file extension
and/or path is separated from that of the library file with a slash character
(/).

There are several circumstances under which you would need to specify
the extension or path of the lock file:

1) If you have different files with the same names but different extensions
(e.g., file.c and file.h), then you would need to changeboth the li-
brary file extension and the lock file extension to depend upon the source
file extension.

2) If you keep your TLIB library files on an WORM (write-once optical)
disk drive, such as the IBM 3363, then keeping lock files on a convention-
al (magnetic) disk drive would reduce the consumption of WORM storage.
TLIB is ideally suited for use with WORM drives, since library files are
only appended, not replaced, when a new version is added. With other ver-
sion control systems, the entire library file is replaced, wasting an
extravagant amount of WORM disk storage.

3) If you keep your TLIB library files in a network file serverdirectory for
which most users are not allowed delete access, then it is advantageous to

259

put the lock files in a different directory so that TLIB can delete useless
lock files when a version is checked-in. (TLIB's check-in/out locking
mechanism will still function correctly even if it cannot delete obsolete
lock files, but the obsolete lock files will needlessly clutter your disk.)

4) In highly “controlled” environments, programmers can extract and
check-out modules, but might not be allowed to do “update” operations.
Instead, the programmers must send the files to a “system librarian” to be
examined and checked-in. To support this environment, the library files
can be kept in a network file server directory to which only the system li-
brarian has write access, but the lock files would be kept in adirectory to
which the programmers have both read and write access. This type of con-
trol might be required by the configuration management planfor some
U.S. government contracts (see also pp. 244 and 105).

Configuration file example:

 PATH D:\LIBS\/D:\LOCKS\

configures TLIB to put its library files inD:\LIBS\ , and its lock files in
D:\LOCKS\ .

“CP” command examples:

 TLIB CP C:\LIBS*.?$?/?^? U A:FILE.PAS

checks in and updates the source fileA:FILE.PAS to library file
C:\LIBS\FILE.P$S , with lock file C:\LIBS\FILE.P^S . The PATH,
LIBEXT and LOKEXT paramters are overridden.

 TLIB CP D:\LIBS*.?$?/C:\LOCKS*.?^? U A:FILE.C

checks in & updates source file A:FILE.C to library file
D:\LIBS\FILE.C$, with lock file C:\LOCKS\FILE.P^S .

A path specified as “=” is special. It indicates that the library (and/or lock)
files are to be found in the same directory as the source files, even if you
have specified a source file which is not in the current directory. Note that

260

this differs subtly from the default, which is “.\ ”, which means the current
directory; the two library path specifications indicate different directories
when the user specifies a source file with an explicit path (that is, a file not
in the current directory).

Using the PATHconfiguration parameter or CP command, you can specify
several library directories separated by semicolons, and TLIB will check
each directory in turn for your TLIB library file(s).

This is useful when you use more than one directory to store your TLIB li-
braries. One common use is to let you keep a different directory of TLIB
libraries for each program or project, plus one or more “common” directo-
ries of shared modules. For example:

 PATH f:\deptlibs\;f:\corplibs\

TLIB will first look for a library file in directory f:\deptlibs , and then
(if it wasn't found), in f:\corplibs\ .

Another example:

 PATH f:\deptlibs\;=;.\;..\

TLIB will first look in the f:\deptlibs\ directory. If the library file is
not found there, TLIB will check the directory containing the source file
(=). If the library is not there, either, TLIB will try the current directory
(.\), which may or may not be different from the directory containing the
source file. Finally, if a library file still has not been found, TLIB will
check the “parent” directory (..\).

If you are using check-in/out locking (p. 265), and if you keep lock files in
different directories from the library files, you must specify the lock file
directories, too. The lock directories are in 1:1 correspondence with the li-
brary directories; if one or more of the lock directories is omitted, then the
corresponding library directory is used, instead. For example:

 PATH f:\deptlibs\;f:\corp\/f:\deptloks\

is equivalent to:

 PATH f:\deptlibs\;f:\corp\/f:\deptloks\;f:corp\

261

With either of thesePATHs, if the library was found inf:\deptlibs , then
the lock file will be placed in f:\deptloks , but if the library was found in
f:\corp , then the lock file will also be in f:\corp .

LIBEXT <extension>

The libext parameter is used to specify a naming convention for TLIB li-
brary files. It can be overridden by the “*.ext ” form of TLIB's CP (path)
command. The default is “TLB”, which means that library files will have
the same name as the corresponding source files, except thatthe extension
will be .TLB . If you will need to maintain TLIB libraries for two source
files with the same name but different extensions (e.g.,file.c and
file.h), then the default naming convention will not work, since both
source file names would “map to” the same library file name. You should
use theLibExt parameter to make the library file's extension depend upon
the source file's extension: if you specify a “?” in the <extension>, then
the corresponding letter from the source file extension will be used in the
library file extension. For example, if you configure

 LibExt ?$?????

then for source file quarkle.c , the library file would be named
quarkle.c$; for source file gronk.pas , the library file would be named
gronk.p$s , etc.. This is the most common setting for LIBEXT .

Note: No not specify LIBEXT or LOKEXT within an IF /ENDIF block in
your configuration file.

Note to users of Opus Make:For some additional advice on using TLIB's
LibExt configuration parameter, please refer to the description of the
TLIBSUFFIX macro in your Opus Make manual (look for “tlibsuffix” in the
index).

LOKEXT <extension>

The lokext parameter is used to specify a naming convention for TLIB
lock files. It is exactly the same thing as LibExt, except that it affects the

262

naming of lock files instead of library files. The default lock file extension
is “LOK”. If you configure

 LokExt ?^?????

then for source file quarkle.c , the lock file would be named
quarkle.c^ ; for source file gronk.pas , the lock file would be named
gronk.p^s , etc..

CMTEXT <extension>

The cmtext parameter is used to specify a naming convention for com-
ment files. It allows the use of a shortcut form when telling TLIB to read
version comments from a text file. The format of the CmtExt parameter is
the same thing as for LibExt and LokExt, but it affects the naming of com-
ment files instead of library files and lock files. The default is

 cmtext cmt

Example: suppose you configure

 CmtExt ?CM

...and issue the command

 tlib u gronk.pas @

then TLIB would expect the comments to be in a file named gronk.pcm .

DEFEXT <extension>

The defext parameter is used to specify default file name extension for
your source files. For instance, a COBOL programmer might use source
files which all end in the extension “.COB”. He could avoid having to al-
ways type “.COB” when telling TLIB the name of a text file by adding the
following line to his TLIB configuration file:

 DefExt COB

263

Similarly, a Pascal programmer could configure:

 DefExt PAS

You can still specify an explicit file name extension whenever you wish,
and if you need to specify a text file which has no extension atall, just end
the name with a period (“.”).

For example, if you configure the default extension as “DefExt PAS ”:

MYFILE.C means MYFILE.C
MYFILE means MYFILE.PAS
MYFILE.PAS means MYFILE.PAS
MYFILE. means MYFILE

Our thanks to Mr. Phil Gerber for suggesting this feature.

INCLUDE <filename>

The include parameter allows configuration files to “call” one another.
This is handy if you need to have several different configuration files but
don't want to duplicate most of the configuration file contents. For in-
stance, you might want to change just the default library path, like this:

 REM - just like “regular” TLIB configuration excep t
 REM - use Tom's private directory for TLIB librari es.
 INCLUDE G:\REGULAR.CFG
 PATH c:\tlib\

One common use for the include parameter is in a networked environment,
where each workstation (or each “project” directory on a particular work-
station) might needalmost the same configuration parameters as every
other. You could set thetlibcfg environment variable to point to a “stan-
dard” configuration file, “set tlibcfg=f:\standard.cfg ”. Then each
workstation (or project directory) for which configuration changes are re-
quired could contain a shorttlib.cfg file which begins, “include

f:\standard.cfg ”, and then changes whatever configuration parameters
need to be altered.

264

You can nestINCLUDEd configuration files to a depth of 3 (or 4, if you
count the main configuration file).

LOCKING <Y/N/B/W>

The locking parameter changes the behavior of the E (extract) and U (up-
date) commands. When locking is enabled, the E command causes the
library to be “checked-out” to the current user; if the library is already
checked-out to someone else, the E command will fail. When locking is
enabled, the U command will cause the library to be “checked back in” af-
ter it is updated with the new version; the library must have been already
checked-out to the current user, otherwise the U command will fail.

Note: even if the update aborted because there were no changes to the
source file, the library will still be checked back in. See pp. 97 -104.

If you enable locking, you'll also want to use thePROMPT, HELPand COM-

MANDS parameters to customize the user interface (p. 329).

Default for the locking parameter is N, check-in/out locking disabled. You
can enable it like this:

 locking Y

TLIB 5.0 added support for two new locking modes: “Weak” and
“Branch/level ”. They are for use whenLOCKING Y(full locking) is too
constraining because you need to be able to have multiple programmers
working on a single module at the same time. See “Weak Locking and
Branch/Level Locking” (p. 98) for details.

Warning: “LOCKING B” (branch/level locking) should only be used with
project levels for whichs=N (or p=something) has been configured in the
LEVEL configuration parameter, since only the current project level will be
locked.

ID <name>

265

The ID parameter specifies the user name, which is needed to implement
check-in/out locking. The configured ID overrides the DOS “set tli-

bid= name” command, and can be overridden by TLIB's CW (who)
command. Note that there mustnot be spaces surrounding the “=” in
“set tlibid= name”. See pp. 89 & 100.

Example:

 id Dave

LOGUSER <Y/N>

The loguser parameter specifies whether or not the user id should be in-
cluded in the version definition comment lines. The defaultis now
LOGUSER Y, which is changed from TLIB 4.12.

There's probably no good reason to change it.

 loguser Y

LOGTIME <Y/N>

The logtime parameter can be set to N if you want only the date of the
source file to be included in each version definition comment line. Nor-
mally, both date and time are included. Set logtime to N if youdo not want
the time included. The default is Y.

Normally, you should not configureLogTime N unless you also configure
OldDate N , lest TLIB be unable to correctly set the timestamp of extracted
source files. If bothOldDate Y and LogTime N are configured, TLIB will
create the files with the proper (old) date, but a time of 0:00.

Also, you should not configureLogTime N if you want to be able to re-
trieve old versions by date/time (p. 241).

 logtime Y

266

OLDDATE <Y/N>

When TLIB extracts a source file from its library file (usingthe E com-
mand), the source file is normally created with the originaldate and time
that it had when it was added to the library.

If you prefer that TLIB re-create source files with the current date and
time, use theOldDate parameter. If you configureOldDate N , then TLIB
will create extracted source files with the date and time setto “now.” You
may wish to do this, for instance, so that MAKE will correctlyrebuild ob-
ject files which depend upon the extracted source files.

The default is Y (yes), create extracted files with the original (old) date:

 olddate Y

See also pp. 276 , 358 and 366.

LOGWIDTH <20-254>

The logwidth parameter specifies the maximum length of a version com-
ment line. Default is 79, for display on an 80-column monitor. You might
want to use a smaller value to avoid truncation if you are using logflag to
insert the version log into your source file, since the version comment lines
will be truncated as needed to fit between the logprefix and logsuffix.

Note that the first comment line also contains the file name,date, time
and/or user-ID, so there may not be much room left for comments on the
first comment line if logwidth is small. The example logprefix and logsuf-
fix leave columns 2 through 78 available for the version comment line, so
we'll set logwidth to 77 (the example is on p. 224).

 logwidth 77

See also SWIDTH, p. 284.

267

LOGFLAG <1-254>," <string>"

LOGPREFIX <1-80>," <string>"

LOGSUFFIX <20-254>," <string>"

The logFlag, logPrefix and logSuffix configuration parameters are de-
scribed under “Revision History Logging,” p. 222.

KEYFLAG <1-254>," <string>"

The keyFlag parameter is described under “Keywords,” p. 212.

REPLACE <Y/N/Q/A>

The replace parameter specifies whether or not an extract (E, EB, etc.)
command will replace the source file if it already exists. Default is Q
(query user before replacing). If you run TLIB from within DOS batch
files and don't want TLIB asking questions at unpredictabletimes, you can
specify N (no, abort the command if the source file already exists). Chang-
ing this parameter to Y is dangerous, since you could accidentally delete
your latest source code file if you used the wrong TLIB command. We rec-
ommend that you leave this set to Q (the default), or set it to N(abort if
file already exists), like this:

 replace N

TLIB 5.50 supports four differentREPLACEmodes when extracting files.
The fourth, REPLACE ABSOLUTELY(or REPLACE A) was new to TLIB 5.0.
REPLACE Ais like REPLACE Yexcept that there is no warning when it is
used while processing multiple commands using wild-cards.This is adan-
gerous configuration option; do not use it unless you really need to.

The REPLACE Yoption is also dangerous, but if you extract multiple files
using wild-cards or a file-list, it will give you one chance to bail out:

 Warning! "REPLACE Y" configuration parameter acti ve! Continue?

REPLACE A suppresses even this warning.

268

The default is still REPLACE Q, which queries you before replacing files.

Note that the REPLACEconfiguration parameter interacts with two other
configuration parameters: REPLROBR and QUERIES.

QUERIES <Y/N>

The Queries parameter lets you prevent TLIB from prompting you with
Yes/No questions. ConfiguringQUERIES Nprevents TLIB from pausing to
ask such questions. More specifically, it effectively forces a “No” answer
to all such questions.

This feature is intended for use in situations where it is notappropriate to
ask the user a question (e.g., in some batch applications or when TLIB is
being driven by another program).

Since TLIB's yes/no questions are generally used for “This might be dan-
gerous, are you sure?” kinds of situations, forcing a “No” answer rather
than a “Yes” answer) is the conservative choice.

When QUERIES N is configured, the yes/no questions will still be dis-
played, but the user will get no chance to answer them.

Note the relationship betweenQUERIES Nand the REPLACEconfiguration
parameter. If you configureQUERIES N, then REPLACE Q(the default) and
REPLACE Nare almost equivalent: the only difference is that withREPLACE

Q configured, the question:

 filename already exists. Replace it?

...will still be displayed (though you won't get a chance to answer it), but
with REPLACE Nconfigured, the question will be suppressed altogether.
(See the description of REPLACE, p. 268.)

SET name=unquoted-string

269

You can useSET configuration parameters to define pseudo-environment
variables, which you can reference in the TLIB configuratonfile via the %

name%(or %!name%or %!! name%) syntax, just like real environment vari-
ables. The syntax is the same as the DOS and OS/2 “set ” command:

 SET name=string

The SET configuration parameter overrides any normal environmentvari-
able setting for the same name, and the name is case-insensitive.

There is no default for this configuration parameter.

See also “environment variables...” (p. 80), and theLET parameter
(below).

LET name=<expression>

The LET configuration parameter is a variant of theSET parameter. The
difference is thatLET evaluates the right hand side of the assignment as an
expression before assigning it. The syntax is:

 LET name= <expression>

where<expression>is an expression consisting of literal integers, short
literal strings, operators, and parentheses. Literal strings can be surrounded
by either ' single' (apostrophe) or" double" quote marks, and can be up
to 80 characters long (including the quote marks).

The following unary operators are supported:

operator result type operation
- integer negate an integer

NOT 0 or 1 true if operand is zero
LC string convert a string to lower-case
UC string convert a string to upper-case

UNQ string “unquote” - remove the quotes from a string
LEN integer length of a string (including quotes, if any)
SIZ integer size of a file, or -1 if missing
NAM string “truename” - expand file name into full path

270

The following binary operators are supported:

operator result type operation
+ integer addition of two integers
- integer subtraction
* integer multiplication
/ integer division

MOD integer remainder
AND 0 or 1 “1” if both operands are non-zero
OR 0 or 1 “1” if either operand is non-zero
< 0 or 1 numeric "less than" test

<= 0 or 1 numeric "less than or equal" test
> 0 or 1 numeric "greater than" test

>= 0 or 1 numeric "greater than or equal" test
== 0 or 1 numeric equality test
<> 0 or 1 numeric inequality test

EQI 0 or 1 string equality test (case-insensitive)
EQ 0 or 1 string equality test (case-sensitive)

NEI 0 or 1 string inequality test (case-insensitive)
NE 0 or 1 string inequality test (case-sensitive)
. string string concatination

SST string substring
SPL string “split” - get specified part(s) of a path\name

Evaluation of binary operators is strictly left-to-right,and all binary opera-
tors have the same precedence. All unary operators have the same
precedence, too, but unary operators have higher precedence than binary
operators.

Note that multiplication and division donot have higher precedence than
addition, subtraction, and the compare operators. Thus, for example:

 Expression Means Evaluates to
 1+2*3 (1+2)*3 9 (not 7)

 1 < 2*3 (1<2)*3 3 (not 1)
 - 1 + 2 (-1)+2 1 (not -3)

Strings and integers are generally interchangable. You can, for instance,
concatinate an integer to a string, and if a string contains all numeric char-

271

acters (and perhaps a leading minus sign) then you can use thestring in
arithmetic expressions as an integer. TLIB will convert automatically be-
tween strings and integers, as necessary.

To force conversion of a number to a string, concatinate the number to a 0-
length string, like this:

 let quoted120= ” . (12*10)

The result of the concatination has the quote-type of the left-hand operand
(apostrophes, in this example). To force conversion of a string to a num-
ber, add zero to it or multiply it by 1, as in this example:

 let numeric120= 0 + ('12' . '0')

To include a quote mark in a string, quote it with the other kind of quote
mark. For example, the following example prints the same line twice. Note
that the expression assigned toMOTTOcontains both an apostrophe and
two double quote marks. (TheUNQoperator and theSAYconfiguration pa-
rameter are explained below.)

 let motto=UNQ ("Picard/Riker in '96." . ' "Make it so!"')
 say %motto%
 say Picard/Riker in '96. "Make it so!"

Most of the operators have obvious functions. However, a fewof the oper-
ators need some explanation.

The UNQoperator "unquotes" a string. The result is still a string, but with-
out the quote marks. Since every literal string includes thesurrounding
quote marks as part of the string, if you want a string withoutthe quote
marks then you must use the UNQ operator.

The LEN operator returns the length of a string, including the quotemarks,
if any. If you want the length without the quote marks, then use LEN UNQ

(expression). For example:

 let x=12345
 let y=(len unq '%x%') - 1
 say x=%x%, Log10(x)=%y%.something

The SST ("substring") operator returns a specified portion of a string.

272

The left operand ofSST is the input string. The right operand is a string
containing a pair of integers, separated by a colon, like "0:1", or else a sin-
gle integer. The first (or only) number is the subscript of the first character
to be returned; the characters are numbered from the left starting with 0,
and also from the right starting with -1. The second number (if any) is the
desired maximum length of the result.

Quote marks are not automatically included in the result. Beware of the
fact that, using theSST operator, you can easily create strings that have a
quote mark at only one end of the string.

Examples:

 "abcdef" SST '1:2' = ab
 "abcdef" SST '-7:2' = ab
 "abcdef" SST '0:3' = "ab
 (UNQ "abcdef") SST '0:2' = ab
 ” . ("abcdef" SST '1:2') = 'ab'
 (UNQ "abcdef") SST '1:2' = bc
 (UNQ "abcdef") SST 1 = bcdef
 (UNQ "abcdef") SST '2:2' = cd
 (UNQ "abcdef") SST 2 = cdef
 (UNQ "abcdef") SST '2:999' = cdef
 (UNQ "abcdef") SST -2 = ef
 (UNQ "abcdef") SST '-2:1' = e

The NAM("truename") operator expands a file name into fully-qualified
path and name. For example, if your current directory is c:\work\hdr\ then:

 NAM "myfile.x" = "c:\work\hdr\my file.x"
 nam "..\myfile.x" = "c:\work\myfile .x"

Beware that some network software has bugs that prevent theNAMopera-
tor from working correctly for files on network drives.

The SPL (split path\filename) operator splits a DOS or OS/2 directory path
into parts, at the "\"s, and returns the specified parts. Thedrive letter or
"\\server\volume\" part is part number 0. The rest of the parts are num-
bered two ways: with negative numbers, from right to left; and with
positive numbers, from left to right. Leading and trailing slashes are re-
moved, except on part 0. If a range of parts is specified, thenthe
intervening slashes are included.

273

The left operand ofSPL is a string containing the path to be split. The
right operand is a string containing a pair of integers, separated by a colon,
like "0:1". As a shorthand, if both numbers are the same (onlyone part of
the path\filename is desired), you can just specify a singleinteger for the
right operand. E.g., specifying '0' for the right operand isthe same as spec-
ifying '0:0'.

Examples:

 "d:\aaa\bbb\ccc" SPL '0:0' = "d:\"
 "d:\aaa\bbb\ccc" SPL '0' = "d:\"
 "d:\aaa\bbb\ccc" SPL 0 = "d:\"
 "d:\aaa\bbb\ccc" SPL "-1:-1" = "ccc"
 "d:\aaa\bbb\ccc" SPL -1 = "ccc"
 "d:\aaa\bbb\ccc" SPL 3 = "ccc"
 'd:\aaa\bbb\ccc' SPL 3 = 'ccc'
 UNQ ('d:\aaa\bbb\ccc' SPL 3) = ccc
 (UNQ 'd:\aaa\bbb\ccc') SPL 3 = ccc
 (UC UNQ 'd:\aaa\bbb\ccc') SPL 3 = CCC
 "d:\aaa\bbb\ccc" SPL -3 = "aaa"
 "\aaa\bbb\ccc" SPL "0" = "\"
 "aaa\bbb\ccc" SPL 0 = ""
 "d:\aaa\bbb\ccc\" SPL 1 = "aaa"
 "d:\aaa\bbb\ccc\" SPL -2 = "bbb"
 "d:\aaa\bbb\ccc\" SPL 2 = "bbb"
 "d:\aaa\bbb\ccc\" SPL '2:1' = ""
 "d:\aaa\bbb\ccc\" SPL '1:2' = "aaa\bb b"
 "d:\aaa\bbb\ccc\" SPL '-1:-2' = ""
 "d:\aaa\bbb\ccc\" SPL '-2:-1' = "bbb\cc c"
 "\\servr\sys\aaa\bbb\ccc\" SPL '-2:-1' = "bbb\cc c"
 "d:\aaa\bbb\ccc\" SPL '0:-1' = "d:\aaa \bbb\ccc"
 "d:\aaa\bbb\ccc\" SPL '0:-2' = "d:\aaa \bbb"
 "d:\aaa\bbb\ccc\" SPL '0:1' = "d:\aaa "
 "\\srvr\sys\aaa\bbb\ccc\" SPL 0 = "\\srvr \sys\"
 "\\srvr\sys\aaa\bbb\ccc\" SPL '0:-3' = "\\srvr \sys\aaa"
 "\\srvr\sys\aaa\bbb\ccc\" SPL -3 = "aaa"
 "\\srvr\sys\aaa\bbb\ccc\" SPL -1 = "ccc"
 "d:\aaa\bbb\ccc\" SPL '2:-1' = "bbb\cc c"
 "d:\aaa\bbb\ccc\ddd" SPL '2:-1' = "bbb\cc c\ddd"
 "d:\aaa\bbb\" SPL '2:-1' = "bbb"
 "d:\aaa" SPL '2:-1' = ""

SETFTIMEW <Y/N>

The SETFTIMEWconfiguration parameter is mainly for use when running
TLIB under MS-DOS in an OS/2 VDM. ConfiguringSETFTIMEW Ytells
TLIB that a file must be open with write access if its date/time is to be
changed.

274

 SETFTIMEW N - normal
 SETFTIMEW Y - w rite access is required to set a file's date/time

Note: TLIB will tell you if you should configure this parameter.

FORCEU <Y/N>

The forceU parameter specifies whether a U (update) command will be al-
lowed to complete even if there have been no changes to the source file.
Default is N (no, abort the command if there have been no changes).

 forceU N

TOUCHU <Y/N>

The touchU parameter specifies whether a U (update) command will
cause the library file's date/time to be changed to the current date/time
even when the operation aborts with the “No changes” message. If
TOUCHUis N, then the date/time will not be changed unless the library file
is actually extended with a new version. IfTOUCHUis Y, then the date/time
will be updated even if there were no changes in the current version (but
the library file's archive attribute will be set only if a newversion was ac-
tually added).

If you intend to use the F (fast Update) command, or if you use MAKE to
update your libraries, you will want to leaveTOUCHUset to Y (the default).
Otherwise, you can set it toN (no, don't set date/time unless the library file
was actually changed) without ill effects. Here we specify the default:

 touchU Y

EQUALDATE <Y/N>

TheEqualDate parameter affects the date/time-stamp of a library file after
has been updated. Normally, the date/time is set to “now” (the time when
the library was updated). However, if you configureEQUALDATE Y, then

275

the date of the library will be the latest of: (1) the old library file date, and
(2) the source file date.

This normally causes the library file date to be exactly the same as the
source file's date (since you don't usually update a libraryfile with an old
source file).

This configuration parameter is provided mainly for network users who
use MAKE to extract the latest version of the source code whenever some-
one else has added a new version to the library, but who still wish to use
the F (fast update) command to update their library files. Bysetting
EQUALDATE Yand OLDDATE Y, you ensure that the source and library file
dates are equal, so that both kinds of operations will work properly.

UPDATENEW <Y/N>

TheUpdateNewparameter can be set if you would like to have one com-
bined command do the functions of both U (update) and N (new).If you
configure UpdateNew Y , then the U command will not fail due to a nonex-
istent library file; instead, it will create the library file, as if you had done
the N command instead of U. Default isN (the U command reports an er-
ror if the library file doesn't exist).

 UpdateNew N

ADDCTRLZ <Y/N>

The addctrlZ parameter specifies whether or not TLIB will add a Ctrl-Z
(end-of-file) character to the end of text files. This parameter affects TLIB,
CMPR and DIFF3.

This parameter defaults toN (no, do not add the ctrl-Z), which is fine for
most users. However, a few older programs may require the ctrl-Z; if you
use such a program, configure:

 addctrlZ Y

276

FIXKEYWD <Y/N>

Whenever you extract a file containing keywords or a revision history,
TLIB inserts the correct, up-to-date keyword or revision history log. How-
ever, when you store a new version with the U (update) or N (newlibrary)
command, it is optional whether TLIB will modify your sourcefile to up-
date the keyword or revision history information. TheFixKeyWd
parameter lets you tell TLIB whether you want this done.

By default, when you store a source file into a TLIB library with the U or
N command, TLIB will also “fix up” any keyword information orrevision
history log in your source file, to make it reflect the new version number.

In TLIB 5, this now works even with multipass library files (which was
not the case in TLIB 4.12). However, it is necessarily slower than with sin-
gle-pass library files, since for single-pass libraries TLIB can write out the
“fixed” source file from RAM, but for multipass libraries TLIB must do a
full re-extract.

For files of modest size, this is fast and helpful, ensuring that your embed-
ded keyword information is correct.

Having correct keywords is a real advantage, not just an aesthetic one,
since TLIB 5's keyword-based version number checking meansthat incor-
rect %v keywords will cause warning messages to be displayed, and these
warnings may be misleading if the keywords are incorrect. (This “key-
word-based version number checking” is very useful: it helps you avoid
lost changes even when locking is disabled or someone subverts the lock-
ing protections; see p. .)

Even if FIXKEYWD Yis configured, the fix-up is not done unless it is nec-
essary. If there are no keywords and no revision history log in the source
file, or if KEYFLAGand LOGFLAGare not configured, or if the source file
will be deleted anyhow because you've configuredDELETESRC Y, then the
fix-up will not be done.

When the fix-up is done, however, it slows down the U or N command be-
cause TLIB must re-write your source file. The slowdown is slight for files
of modest size, but it may be substantial for large files being stored in mul-
tipass TLIB libraries.

To save time by preventing TLIB from fixing your keywords, you can con-
figure FIXKEYWD N. However, if you use the%v keyword, this is likely to

277

result in bogus warning messages when you do another U command to
store another version, due to the%vversion number in your source file be-
ing incorrect.

The default is FIXKEYWD Y (note the change from TLIB 4.12).

See keywords (p. 212), revision history log (p. 222),AATTR(p. 287), and
TOUCHSOUR (p. 288).

DELETESRC <Y/N>

TheDeleteSrcparameter can be set to Y if you want the source file to be
automatically erased after the U (update) command completes, unless an
error occurs while updating the library file. Note that if the U command
aborts because there were no changes, the source will still be deleted.

The DeleteSrc parameter affects only the behavior of the U (update) and
N (new library) commands without the “B” (browse mode) or “K”(keep
locked) options. The UK and UF commands are unaffected. The default
for DeleteSrc is N , do not erase the source file.

This configuration parameter is unchanged from TLIB 4.12, except that
the N (new-library) command now respects it, just like the U (update)
command.

Here we leave it set to the default:

 DeleteSrc N

DATAPATH <Y/N>

The DataPath parameter should be set to Y if you use a “data path” resi-
dent extension to DOS, such as the one supplied with Novell'sNetware or
the DOS APPEND command. A data path extension lets you specify a list of
default directories for data files, just as the regular DOS “path” command
lets you specify a list of default directories for programs.

278

Many data path extension utilities work only on input data files. This can
be a nuisance for TLIB, since TLIB will sometimes attempt to open a file
first for input, then later for output or appending. If the file exists in anoth-
er directory, but not in the current one, an open for input would succeed,
but not an open for appending. Also, TLIB sometimes tries to open a file
for input, in order to verify that the file does not already exist, before try-
ing to create it; a data path extension can interfere with this test.

If you use a “data path” DOS resident extension, then you can configure
TLIB to take this into account when opening files. Simply configure “DAT-

APATH Y”. This causes TLIB to always specify an explicit path when
opening files (e.g., “.\fname.ext ” instead of just “fname.ext ”), which
often has the salutary effect of preventing data path extensions from work-
ing their magic. Here, we leave it to the default.

 DataPath N

QUIET <Y/N>

Configuring “QUIET Y” will somewhat reduce TLIB's verbosity. It still
won't satisfy the ex-Unix people (most of whom would prefer to see noth-
ing but error messages), but it does cut the “noise level” somewhat.

Note that specifying “-q ” as the first parameter to TLIB has the same ef-
fect, except that “-q ” additionally suppresses the copyright banner. See
also p. .

The default is “not quiet”:

 QUIET N

READONLY <Y/N>

The ReadOnly parameter instructs TLIB to keep the library files' “read-
only” DOS file attribute set (except during an Update). Thiscan help to
prevent accidental erasure of the library files. The default is N, do not keep
library files as read-only. Here we leave it set to the default.

 ReadOnly N

279

Note that the DOSattrib command can be used to manually set or reset
the read-only file attribute. For example, if “LIBEXT ?$? ” is configured,
then the following command will make all the TLIB library files in the
current directory read-only, by setting the read-only attribute “on”:

 attrib +r *.?$*

Similarly, this command will reset the read-only attributes to “off”:

 attrib -r *.?$*

ROLOCKS <Y/N>

As described above, if you want TLIB libraries to be stored asread-only
files, you can use the ReadOnly option. However, TLIB's “lock” files
(used for check-in/out locking) are not normally read-only, even if READ-

ONLY Y is configured.

One of our customers needed to have the lock files read-only,too, so we
added the RoLocks configuration parameter.

If you want lock files to be kept read-only (to avoid accidental deletion),
configure:

 locking Y
 readonly Y
 rolocks Y

Note that RoLocks has no effect unlessLOCKING Yand READONLY Yare
also configured.

READONLYB <Y/N/W>

The ReadOnlyB parameter tells TLIB whether to set the “read-only” file
attribute for “browse mode” source files. If you configureREADONLYB Y

then browse-mode files will be set to read-only after an EB command;

280

likewise, after you check-in/update a file with the U command, it will be
changed to read-only, since you no longer have the file checked-out for
modification. This is the most popular way to tell the difference between
files which you have checked-out for modification and thosewhich were
extracted in browse mode.

This parameter is only useful if you are using check-in/check-out locking,
primarily in networked environments (using the Network Version of
TLIB).

A disadvantage of this approach is that you'll have to use theDOS “attrib
-r” command to clear the read-only attribute before you can delete a
browse-mode file.

In some cases, you might want to configureREADONLYB W("read-only
browse mode files only in Work directory"), to make browse-mode files
read-only in your work directories, but leave reference copies in project
level reference directories writable.READONLYB Wis for users who have a
network that does not permit them to make files on the server read-only (or
which does not allow other users to make them writable again). The most
common example is a Unix-based file server, but one user reports having
this problem with a Windows-NT 4.00 server used with NT 3.51 worksta-
tions.

See also: READONLYT, REPLROBR.

If you are using a local area network, and if your text editor warns you
when it loadsa read-only file (rather than when itsavesthe file), then you
should use this configuration parameter. Otherwise, you may prefer using
the %l keyword to warn you when you start to edit a file which is not
checked-out (see p. 216).

Note that TLIB's T (test lock status) command also provides an easy way
to determine which files you have checked-out for modification (see p.
102).

See also the ReplRoBr configuration parameter, below.

The default is N, do not make the browse-mode source files read-only.
Here we leave it set to the default.

 ReadOnlyB N

281

Note: The READONLYBconfiguration parameter is unchanged from TLIB
4.12, except thatREADONLYB Yis now disabled unlessLOCKINGis also en-
abled, and except that the N (new-library) command now respects
READONLYB, just like the U (update) command does.

REPLROBR <Y/N/Q/W>

The ReplRoBr parameter, “replace read-only browse,” is used with the
READONLYBparameter, to tell TLIB to let subsequent extracts replace read-
only source files, (or, with the Q or W settings, read/write files which are
not already checked-out to the current user ID).

The possible settings are:

 REPLROBR Yes (normal setting for network users)
 REPLROBR No (the default)
 REPLROBR Querywritable
 REPLROBR Writable (dangerous!)

This parameter is useful if you are using check-in/check-out locking, and
you have configuredREADONLYB Yto use the DOS read-only attribute to
distinguish between browse-mode files and those which you have
checked-out for modification. IfREPLROBR Yis configured, then you can
easily refresh the browse mode source files in your work directory, to en-
sure (for example) that you are compiling with the latest versions.

Note that a browse mode extract (EB) will not replace a file which is al-
ready checked-out for modification.

The default is N, do not allow replacement of read-only source files. Here
we leave it set to the default.

 ReplRoBr N

Note: under certain circumstances configuringREPLROBR Yallows ex-
tracts to replace read-only files even when locking is disabled, notably
when locking has been manually disabled via the C (configure) command.

The other two settings (Q or W) are special-purpose choices to allow re-
placement of read/write source files if they aren't checked-out/locked by
the current user ID .

282

Normally, for silent replacement of browse-mode files, youwould config-
ure READONLYB Yand REPLROBR Y, and then TLIB's “E” (and “EBF”)
commands will silently replace those files that have the read-only attribute
set, and that are not checked-out to the current user ID .

“REPLROBR Querywritable ” (or “ REPLROBR Q”) is similar to REPLROBR

Y, but if a source file that the user doesn't have checked-out/locked is
writable, the user is asked whether or not he wants to replacea read/write
source file.READONLYB Ymust be configured to use this option. Read-only
source files are silently replaced, just as when REPLROBR Y is configured.

“REPLROBR Writable ” (or just “REPLROBR W”) lets TLIB replace writable
browse-mode files without complaint, whenREADONLYB Nis also config-
ured.

If for some reason you don't want to configureREADONLYB Y, you can
configure REPLROBR W(writable), and TLIB's extract commands will
silently replace files that you don't have checked-out, even if those files are
not read-only.

(It is also possible to force silent replacement when extracting if you con-
figure REPLACE Yor REPLACE A, but that is even more dangerous than
REPLROBR W, and we strongly recommend against it.)

Beware: if you configure REPLROBR W, then TLIB's determination of
whether or not it can silently replace a file is made solely onthe basis of
whether or notyouhave the file checked-out. Plus, if you have configured
LOCKING B(per-project-level locking), then the determination onlyconsid-
ers locks at the current project level. TLIB's check-in/outlocking
mechanism does not keep track of which computer or directorythe files
have been extracted into, so if you configureREPLROBR Wand you use a
different user ID , or if you've configured LOCKING B and have a file
checked-out at a different project level, you may accidentally replace
checked-out files! Therefor, if you configureREPLROBR W, it is critically
importantthat you only use one userID when working in a given work di-
rectory, and that you also use a different work directory foreach project
level if you configure LOCKING B (per-project-level locking).

This table relates theREPLROBRand READONLYBsetting combinations that
make sense together:

REPLROBR is READONLYB must be Silent replacement?
N any No
Y Y or W if read-only & not locked by you

283

REPLROBR is READONLYB must be Silent replacement?
Q Y or W if read-only & not locked by you
W N if not locked by you

For most users of multi-user editions of TLIB,REPLROBR Yand READ-

ONLYB Y are the best choices.

SHEIGHT <12-66>
SWIDTH <80-132>

The SHeight andSWidth parameters are used to specify the size of your
screen. If the display screen on your computer is not 25 linesby 80
columns, then you may wish to set these two parameters.

The SWidth parameter tells command-line versions of TLIB how many
lines to display at a time when showing you delta or version information.
Note that theLogWidth parameter (p. 267) should usually be set to (at
most) SWidth minus one.

TheSHeight parameter tells TLIB how long a message can be without be-
ing split (wrapped) to occupy more than one line.

TLIB 5.0 extended these configuration parameters by addingthe ability to
determine the dimensions automatically/dynamically on most PCs. If you
configure SHEIGHT 0 (zero) and/orSWIDTH 0, then TLIB will interrogate
DOS (or OS/2) for the current screen size and use the appropriate value(s).

This is not the default, however; the default is still 80x25.

If another program (e.g., an editor macro) needs to parse TLIB's output,
you can configureSWIDTHto a very large number (up to 32765), to pre-
vent TLIB from splitting (wrapping) its messages onto multiple lines. This
makes it much easier for another program, which is reading TLIB's output,
to tell where one message ends and the next begins.

These are the default settings:

 SHeight 25
 SWidth 80

284

VALIDATE <Y/N>

The Validate parameter can be used to relax a file naming rule which
TLIB otherwise enforces. Normally, TLIB validates the extension of every
file name which you specify, to ensure that it is a source file(and not a
TLIB library file or lock file). If you specify a library file, it is an error.

So that it can tell the difference between source files and library files by
examining their names, TLIB will not normally let you store asource file
with the same 3-letter extension as the corresponding library file. For ex-
ample, if you haveLIBEXT ?$? configured, then you are prevented from
using a source file name with a “$” as the second character of its exten-
sion.

For most users, this is helpful. However, a few customers need to give
their library files and lock files the same names and extensions as their
source files (but in different directories, of course!). Todo this, you must
disable the validation of file extensions, by configuringVALIDATE N. The
default is:

 Validate Y

Example:

 VALIDATE N
 LIBEXT ???????
 LOKEXT ???????
 PATH F:\LIBS\/F:\LOCKS\

SLASHCONT <Y/N/M>

For users who habitually enter multi-line comments when storing new ver-
sions of source files via the U or N command, theSlashContparameter
can be used to remove the necessity of putting a backslash at the end of
each to-be-continued comment line. If you configure “SLASHCONT M” or
“SLASHCONT N”, then comments are terminated by a null comment line
(i.e., just press ENTER).

Note that this makes an exception to the general rule that pressing ENTER at
any prompt aborts the current operation: although just pressing ENTERat

285

the first “Comment line? ” prompt will still abort the operation, pressing
ENTERat subsequent comment line prompts will cause the operationto
complete and the library to be updated.

If you configure “SLASHCONT No” (or “ SLASHCONT N”) then you will al-
ways be prompted for additional comment lines (with the lastone to be
followed by a blank line) regardless of whether or not you specified a
comment on the DOS command line.

You can configure “SLASHCONT Maybe” (or just “SLASHCONT M”) if you
don't want to have to enter a backslash at the end of to-be-continued com-
ments, except for comments specified on the command line.

Like SLASHCONT Y(the default), this lets you run “TLIB U ” or “ TLIB N ”
with a comment on the DOS (or OS/2 or NT) command line, and not be
prompted for additional comments for each file (unless the command-line
comment ends in “\ ”).

However, like SLASHCONT N, this lets you interactively enter multi-line
comments which are terminated by a blank line rather than needing back-
slashes at the ends of every line except the last one.

There are three cases:

1) You specified a comment on the command line, with no backslash at the
end.You'll be prompted for additional comments only ifSLASHCONT Nis
configured.

2) You specified a comment on the command line, with a backslashat the
end. You'll be prompted for additional comments regardless of how
SLASHCONTis configured. (But if SLASHCONT Nis configured, the back-
slash becomes part of the first comment line.)

3) You did not specify a comment on the command line.You'll be prompt-
ed for additional comments regardless of how SLASHCONT is
configured.

Similarly, there are three cases when entering additional comments:

1) You entered a comment line with no backslash at the end. If SLASHCONT

N or SLASHCONT Mis configured, then you'll be prompted for additional
comment lines. But ifSLASHCONT Y(the default) is configured, this will
be taken as the last comment line, and the U or N command will finish.

286

2) You entered a comment line with a backslash at the end.You'll be
prompted for additional comments regardless of howSLASHCONTis con-
figured. (But if SLASHCONT Nor SLASHCONT M is configured, the
backslash will become part of the comment line.)

3) You entered a blank line.If SLASHCONT Y(the default) is configured,
this aborts the update. IfSLASHCONT Nor SLASHCONT Mis configured,
then this aborts the update only if this is the first/only comment line; other-
wise, it terminates comment-entry, and causes theU or N command to
finish.

Summary:

default
SLASHCONT <Y/N/M> Yes No Maybe

Requires "\" to continue interactive comments?Yes no no

Allows mass wild-card updates w/o prompts?Yes no yes

We suspect that most users will preferSLASHCONT Y(the default, “yes”)
or SLASHCONT M(“maybe”), rather thanSLASHCONT N(“no”). Here we
configure TLIB so that the backslashes need not be entered:

 SlashCont M

AATTR <Set/Preserve/Reset>

The AAttr parameter affects how TLIB sets the DOS “archive attribute”
(a.k.a. “A” attribute) for your source files when you use theU or N com-
mand to store the source files into their TLIB libraries.

The “archive attribute” might better have been called the “needs-to-be-
archived attribute.” It is a file attribute which DOS sets when a file is mod-
ified, so that BACKUP can tell that the file needs to be backedup.
BACKUP resets the archive attribute after backing up the file.

Under DOS 3.2 or later, you can examine or change the archive attribute
for one or more files by using the DOS “attrib ” command; see your DOS
manual.

The TLIB AATTR configuration parameter can be set three ways:

287

AATTR SETCauses your source file's archive attribute to usually be left
alone, except that it will be set if TLIB modifies keyword or revision histo-
ry information in the file because you'd configured FIXKEYWD Y .

AATTR PRESERVE Causes the source file's archive attribute to always be left
alone, regardless of the FIXKEYWD configuration parameter.

AATTR RESETCauses the source file's archive attribute to always be
cleared after a successful update of the library via a U or N command. The
rationale for this mode is that storing your source code intothe TLIB li-
brary is similar to backing up the source file with DOS's BACKUP
command, so there is no need to back up the source file if its TLIB library
file will also be backed up.

The default is:

 AATTR SET

TOUCHSOUR <N/Y/M/R>

The TouchSour ("touch source") parameter controls the file date with
which a source file is left after an update (U or N command). (To “touch”
the source file is to set its last-modified date/time stamp to “now.”)

There are four choices:

TOUCHSOUR No Never touch the source file; preserve its
date/time stamp even if TLIB modified it to
update keywords or a revision history log.
(This is the default.)

TOUCHSOUR Yes Touch the source file if the library was
successfully updated, regardless of whether or
not TLIB modified the source file.

TOUCHSOUR Modified Touch the source file only if TLIB modified it
to update keywords or a revision history log
(with FIXKEYWD Y configured), or to remove
an embedded comment line (withCMTFLAG

configured).

288

TOUCHSOUR Revhist Touch source only if a revision history log was
inserted (due toFIXKEYWD Y) or a comment
line was removed (withCMTFLAGconfigured);
i.e., if the line numbers changed. (This is
useful for keeping source files "in synch" with
debugger line numbers).

Note that this affects the date/time stored in the TLIB library file, as well
as the date/time of the actual source file. However, it does not affect the
date/time of any reference copy of the source file which TLIBcreates due
to the r=y option on theLEVEL configuration parameter; reference copies
are always created with the current date/ time (which may be afew sec-
onds newer than that of the source file in your work directory, even if
TOUCHSOUR Y is configured).

Related parameters:

 AATTR Set/Preserve/Reset (p. 287)
 FIXKEYWD Yes/No (p. 277)

CMTFLAG <number,1-80>, <quoted-string>
CMTSUFFIX <number,1-253>, <quoted-string>

These two configuration parameters support TLIB's abilityto take a com-
ment from the top of the source file and use it as a supplemental TLIB
comment line when you use the U (update) command to store a newver-
sion of your source file into the corresponding TLIB libraryfile. This
supplemental comment is added to the end of the regular TLIB comments.
You must still enter the regular comments (either interactively, via the
DOS command line, or from a comment file).

This feature is primarily intended to help support the M (“migrate
changes”) command, which uses it to record DIFF3-merge histories in the
TLIB comments. However, you can also use it for other purposes.

To use this feature, you must configureCmtFlag, which tells TLIB how to
recognize the special comment line. The syntax for theCMTFLAGconfigu-
ration parameter is similar to that of LOGFLAG:

 CMTFLAG <first-column>, <quoted-string>

289

Example (C++):

 cmtflag 1,"//CMT:"

This would tell TLIB to look for a C++ comment beginning with the string
“CMT:”. Thus, if you wanted to insert the supplemental comment,
“ [MERGED_3.5_&_6,_base=3.3] ”, you could put the following comment
on the first line of your source file, starting in the leftmost column:

 //CMT:[MERGED_3.5_+_6,_base=3.3]

If you wanted to indent the comment by two spaces, you could have con-
figured:

 cmtflag 3,"//CMT:"

Note that the first column is column 1; there is no column 0 theway that
TLIB counts columns. Also, you may not use DOS redirection characters
(<>|) in the quoted string, since it will appear on DIFF3 command lines in
MIGRATE2.BAT after M (migrate) commands.

Some programming languages do not support comments that areterminat-
ed automatically at the end of the line. For these languages,TLIB provides
the CmtSuffix configuration parameter, which works much like theLOG-

SUFFIX configuration parameter:

 CMTSUFFIX <minimum-starting-column>, <quoted-string>

Example (Pascal):

 cmtflag 1,"{CMT:"
 cmtsuffix 1,"}"

If you configure CMTSUFFIX, then TLIB will compare the end of your
comment line with the configured string (normally a “close-comment”
marker), and remove the close-comment marker from end of thesupple-
mental comment. Thus, if you wanted to insert the supplemental comment
“ [MERGED_3.5_&_6,_base=3.3] ”, you could put the following comment
on the first line of your source file, starting in the leftmost column:

 {CMT:[MERGED_3.5_+_6,_base=3.3]}

290

Note that TLIB removes leading and trailing blanks from the supplemental
comment before storing it, so you could also put the following comment
on the first line of your source file, with exactly the same effect:

 {CMT: [MERGED_3.5_+_6,_base=3.3] }

The <minimum-starting-column>specifies a minimum column number
for the suffix (close-comment); it should normally be configured to 1.

This version of TLIB only supports a single-line supplemental comment to
be taken from the top of the source file. Future versions of TLIB may al-
low multiple lines.

Note #1: If you use this feature, then it is not advisable to configure
FIXKEYWD N, since doing so will prevent TLIB from removing the then-ob-
solete supplemental comment line from your source file after updating the
TLIB library with the new version.

Note #2: Although the CMTFLAGand CMTSUFFIX parameter names are
(like all TLIB configuration parameter names) case-insensitive, the quoted
strings are not. The strings must match exactly, or TLIB willnot recognize
them. Thus, “//CMT: ” does not match “//cmt: ”.

CZTRUNC <Y/N>

This rarely-used configuration parameter can be set to let TLIB truncate
and store ASCII text files which contain ctrl-Z (end-of-file) characters.

CZTrunc affects what happens when TLIB is doing a U (update) com-
mand for a text file and it encounters a Ctrl-Z in the file which is not
within 128 bytes of the end of the file. IfCZTRUNC Nis configured then
TLIB will abort the update (this is the default). IfCZTRUNC Yis config-
ured, then TLIB will go ahead and update the library with the truncated
file (after displaying a dire warning).

The default is:

 CZTRUNC N

291

AUTOSET <file-name>

The rarely-usedAutoSet configuration parameter lets you change the path
or name of the autoset file, or to disable the autoset facility altogether.
(The autoset file, if it exists, is used by TLIB to define pseudo-environ-
ment variables; see p. 83 , for details.)

For instance, if you wantedAUTOSET.BAT(in the current directory) to be
your autoset file in both DOS and OS/2 (rather than usingAUTOSET.CMD

under OS/2), then you could configure “AUTOSET AUTOSET.BAT”.

To disable the autoset facility, configure AUTOSET with no file name.

Note that theAUTOSETconfiguration parameter must be specified before
any %name%references in your configuration file. After the first%name%
reference, the AUTOSET configuration parameter is illegal.

Default is “AUTOSET autoset.bat ” (under DOS), or “AUTOSET au-

toset.cmd ” (in OS/2 protected mode).

OLDNAME <Y/N>

The OldName configuration parameter is obsolete.

ONETHREAD <Y/N>

The ONETHREADparameter (formerly used for performance tuning under
OS/2) is now obsolete.

SLICKEPSI <Y/N/Maybe>

The SlickEpsi configuration parameter is for users of editors which sup-
port a “concurrent process buffer,” such as MicroEdge'sSlickEdit under

292

OS/2 and Windows-NT, and Lugaru'sEpsiloneditor under MS-DOS and
OS/2.

Users of SlickEdit 2.2 or later, or of Epsilon, should not configure this,
since TLIB can automatically adjust the default to the correct setting (by
examining the SLKRUNSand EPSRUNSenvironment variables). Users of
SlickEdit 2.1 for OS/2 should configure this toSLICKEPSI Y , or else set
up SlickEdit to define theEPSRUNSenvironment variable, by defining the
SLICK environment variable like this:

 set SLICK=-#"set EPSRUNS=1"

You may be wondering, “what is a concurrent process buffer?”

The “concurrent process buffer” provided by SlickEdit and Epsilon is a
unique and wonderful feature. It provides a regular operating system com-
mand-line prompt in an editor window, even while you edit other files.

The compiler can be grinding away, finding more compile errors, even as
the editor parses the error messages to find errors and let you fix them!
You needn't wait for the build to complete before you start fixing the er-
rors which the compiler finds.

Plus, since the input and output is being “logged” into an editor buffer,
you can easily scroll back to find old error messages or commands, or use
copy/cut/paste to edit and re-enter them. Very nifty.

However, there are some limitations. One is that the output from programs
that “draw” on the screen simply doesn't look right. Things like carriage
returns and backspace characters are discarded or displayed improperly.
For instance, both SlickEdit and Epsilon break lines at line-feed characters
in the concurrent process buffer, and ignore carriage-returns.

This is a problem for TLIB, since TLIB sometimes uses carriage-returns or
backspace characters to make the display more attractive.

So, if you configureSLICKEPSI Y , then TLIB adjusts such messages to be
more suitable for when TLIB is run in a concurrent process buffer.

Another problem is that (under some operating systems) the editor concur-
rent process buffers may not be able to run programs which accept
character-at-a-time input. The Windows-NT version of SlickEdit has this

293

problem. So, whenSLICKEPSI Y is configured, TLIB does only line-at-a-
time input from standard-input.

Note that running TLIB in an editor's concurrent process buffer puts you
“in” your editor while entering TLIB comments (which is something we're
planning to add to TLIB in a more conventional fashion eventually).

The default setting isSLICKEDIT Maybe , which means that the setting is
automatically set according to whether or not TLIB determines that it is
being run under SlickEdit or Epsilon.

FILETYPE <Auto/Text/Binary/EOFtol/Runlen>

The FileType configuration parameter selects between four possible li-
brary file formats.

The normal (text) format is especially well suited for storage of ASCII text
files (such as program source code files). The “EOFtol” format is just like
text format, except that the file can contain embedded ctrl-Z characters.

The two binary formats, “binary” and “runlen,” can storeany type of file;
use them for object module libraries, spreadsheet files, data base files,
non-ASCII word processor files, etc..The difference between them is that
“runlen” format uses runlength-compression to preprocessthe files before
generating the deltas. For sparse files it may substantially improve perfor-
mance and reduce the size of the TLIB library files.

If FileType is configured to the default, “Auto,” then it examines the file
before storing the first version, and selects an appropriate format automati-
cally. However, you might want to use conditional configuration
parameters (p. 321) to select which files are to be kept in “binary” or
“runlen” format libraries. For example:

 REM - most library files are text format
 filetype auto
 IF *.WK*
 REM - Lotus spreadsheets require binary-or runle n format
 filetype runlen
 ENDIF

294

When binary or runlen format is selected, three other configuration param-
eters are ignored:ENTABU, DETABEand ADDCTRLZare only meaningful for
text files (except that AddCtrlZ will still affect the format of your journal
file, if any).

You can storeany kind of file in binary and runlen format libraries. They
are highly useful for data base files, object module libraries, word proces-
sor files (for word processors which utilize non-text formats), etc.. Binary
format works well with any file which goes through repeated revisions in
which changes are fairly localized. However, TLIB's “revision history log”
and “keyword” features, which allow version-specific information to be
automatically updated in your source file, are not supported for binary for-
mat library files. Also, “delta review” does not work well (if you enter “?”
at the “Comment line? ” prompt to view a delta, you'll probably see gib-
berish).

If you program in dBase, Clipper, FoxBase, etc., you'll probably want to
keep your data base structures under version control with TLIB (using
filetype binary , or filetype runlen of course). To facilitate this, Mr.
Michael Magen has kindly given us permission to distribute aprogram
called COPYSTEX, which he wrote to extract the structure from.DBF files.
It is rather large (because it is written in Clipper), so we have not included
it with TLIB, but if you need a copy, please contact us, and we'll be happy
to send it to you. (An alternative, if you have FoxDoc, nee SNAP, by Wal-
ter J. Kennamer, is to store the “data dictionary file” whichit creates,
instead of storing the individual data base structure files; SNAP or FoxDoc
can re-create the empty.DBF structure files from the data dictionary file.
Mr. Kennamer's address is 1801 E. 12th St., Apt. 1118, Cleveland, OH
44114.)

You can use binary format libraries for.EXE and .OBJ files, too. Howev-
er, minor source code changes often cause wide-ranging object file
changes in such files, so the calculated “deltas” will oftenbe very large.
When you add a new revision to a library of.EXE files, you can expect to
the library to grow by 50-90% of the size of the.EXE file (unless the
change is extremely minor).

TLIB's binary file support works like this: When you create abinary for-
mat library (with the N command), TLIB will do a statistical analysis of
the file, trying to find a good set of “delimiter” bytes whichwill make it
possible to break the file into variable-length “records” of manageable
size. These delimiters are used by TLIB like carriage-return/line-feeds in a
text file (which divide the text file into lines). The chosenset of delimiters
is stored in the TLIB library. The analysis is rather time-consuming, and it

295

makes the N command run a bit slower for binary format libraries. Howev-
er, the analysis is only done when a library is created, not when it is
updated.
The “runlen” format is just like the “binary” filetype format, except that
TLIB first does a simple “run-length” compression step before analyzing
or storing the file. For “sparse” files, such as databases, this can greatly
improve performance and storage efficiency.

The FILETYPE configuration parameter only affects the creation of new li-
brary files.

There is no way to directly change the format of an existing library file
from binary to text or vice versa, but if you need to convert one or more
TLIB libraries from FileType Binary to FileType Text, or vice-versa, you
can use the TLIB-to-TLIB conversion utility,TLIBTLIB.PL , which can be
found in the CONVERT.ZIP archive on your TLIB diskette (which also in-
cludes conversion utilities from various other version control systems to
TLIB). TLIBTLIB.PL converts from one format to the other by running
TLIB to extract each version from the old library and then store it in the
new library. That is, it automates the tedious process of creating a new
TLIB library containing all the versions and comments that were in the old
one. It is slow, but it works. See the CONERT.TXT file for instructions.

Note that TLIB is not dependent upon the analysis phase deducing a
“good” set of delimiters; however, a good set of delimiters will improve
the efficiency with which “deltas” are calculated and stored.

Having determined the delimiters, TLIB can process a binaryfile as a se-
quence of variable-length records, much as it handles the variable-length
lines in a text file, except that the library format is a bit different. Instead
of “ .C ” and “.I ” lines, it contains “.C ”, “ .J ” and “.K ” records, which are
stored in a “length byte + data” format rather than as carriage-return/line-
feed delimited lines.

It is easy to tell whether a TLIB library is the (regular) textformat or the
(new) binary format. Binary TLIB libraries begin with “.Vc ”. Text format
libraries begin with “.Vt ” if blank-to-tab compression is not enabled. Text
format libraries for which blank-to-tab compression is enabled (i.e.,
“ENTABU Y” was configured when the library was created) begin with ei-
ther “.V_ ” or “ .V ”. (See also p. 371.)

296

Version tracking & named project levels

TRACK <Y/N/Maybe>

TheTrack parameter enables and disables version tracking; it is normally
specified within an IF /ENDIF block (p. 321). ConfigureTRACK Yto en-
able version tracking, orTRACK Nto disable it. ConfigureTRACK MAYBE

(or just “TRACK M”) to enable it only for those files that are already being
tracked.

Suggestion:it is advisable to configure TLIB to track only certain files
(like your source files). So, you should add something like the following to
the TLIB configuration file (you can either add it manually or by running
TLIBCONF):

 TRACK N
 IF *.C,*.H,*.ASM,*.BAT,MAKEFILE.*
 TRACK Y
 ENDIF

If you configure TRACK Maybe, then TLIB will behave as ifTRACK Ywas
configured for those files which are already listed in the current project
level (or a predecessor level), but it will behave as ifTRACK Nwas config-
ured for those files not currently being tracked.

Also, if TRACK Maybeis configured, those modules already listed in the
working directory tracking file but not in the project-level tracking file will
continue to be tracked only in the working directory tracking file (as if
a=N were configured in the LEVEL parameter for the current project level).

Note that the TRACKand REFSUBDIRparameters (unlike theLEVEL and
PROJLEVparameters) can be specified withinIF /ENDIF blocks, so that you
can have different TRACK or REFSUBDIR settings for different files.

The default is:

 TRACK N

See also p. 138.

297

CREATETF <Y/N>

TheCreateTF parameter is used to tell TLIB to automatically create miss-
ing project-level tracking files (“createtf” is short for “create tracking
file”). You can configure CREATETF Yif you would like TLIB to create
project level tracking files automatically. However, you must still create
the required reference directories manually.

The default isCREATETF N, which means that TLIB will only automatical-
ly create the working directory tracking file, not the project-level tracking
files).

We anticipate that most programmers will want to leave this set to the de-
fault (CREATETF N), to avoid accidental creation of extraneous tracking
files in the event that theLEVELs are incorrectly configured. However, if
you are the “system librarian” (the version control administrator / guru) at
your company, you may wish to configureCREATETF Yto simplify setting
up new project levels.

If CREATETF Yis not configured and TLIB fails to find a needed project-
level tracking file, it displays a helpful error message which suggests con-
figuring CREATETF Y .

The default is:

 CREATETF N

AUTOBRNCH <Y/N/Q>

TheAutoBrnch parameter controls TLIB's automatic branch creation fea-
ture (p. 107), in which TLIB will automatically create a new branch when
you update a library with a new version of a file, but (according to the
record in the work directory tracking file) you didn't startwith what is now
the latest version.

Eariler versions of TLIB would just just go ahead and create the new
branch version. Configure AUTOBRNCH Y to restore TLIB to this behavior.

If you want TLIB to ask you before creating a new branch version, then
leave it configured to the default, AUTOBRNCH Q.

298

If you want TLIB to issue an error message and skip the file, then config-
ure AUTOBRNCH N.

Note that this configuration parameter will not force everything to be
stored as trunk versions. If that is the behavior you want, then you proba-
bly should just disable version tracking altogether, or else configure
PROJLEV *.

The default is:

 AUTOBRNCH Q

PROJLEV name

The ProjLev configuration parameter is used to select the name of your
current project level, which must be defined in aLEVEL configuration pa-
rameter unless you use one of the special pre-defined names, “* ” or “=”.

If you configure PROJLEV =(and TRACK Y), then TLIB's E (extract) com-
mand will consult the current work directory tracking file to determine
which is the “current” version for extracting. That is, “TLIB E ” will re-
trieve the version number indicated in the localTLIBWORK.TRK, which is
the version you most recently stored or retrieved (but whichis not neces-
sarily the latest trunk version). This can be used to manage semi-custom
software, but it is probably inappropriate unless you work alone, with
locking disabled.

If you do not configure PROJLEV, or if you configure it with noname
specified, then the TLIB E (extract) command will always retrieve the lat-
est trunk version (rather than the version number in your work directory
tracking file). This makes “TLIB E file.ext ” equivalent to “TLIB ES

file.ext * ”. This has the advantage of simplicity, and it is often the best
choice for small projects, in which there is only one “current” level of
code.

Configuring PROJLEV * is similar, except that it also disables TLIB's auto-
matic branching feature. In other words, it makes “TLIB U file.ext ”
equivalent to “TLIB US file.ext * ”. See pp. 107 and 298).

299

For large projects with many programmers, it is usually better to use
named project levels.

The default PROJLEVis none, which means that TLIB will always extract
the latest trunk version (unless you specify a particular version number,
e.g. via the ES command).

See also pp. 139 , 143 and 107.

Note: when your work directory is the reference directory for one of your
configured projectLEVELs, then TLIB will detect that fact and automati-
cally change or set your currentPROJLEVto be the name of thatLEVEL.
See WORKDIR (p. 304).

LEVEL n= name d= path p= name i= names s= {Old/New/Q/Changed}
 a={Y/N/Q} r= {Y/N} b= n f= {Y/N} w= {Y/N}

The Level configuration parameter is used to tell TLIB about your named
project levels. It is described in detail under “Configuring Your Project
Levels,” p. 141.

Note: though theLEVEL parameter is shown here on two lines, it must be
all on one line (of at most 254 characters) in your TLIB configuration file.

TREEDIRS <Y/N>

TreeDirs enables and disables tracking of “relative subdirectories.” En-
able this by configuringTREEDIRS Yif you want TLIB to track a “tree” of
related subdirectories as one logical unit.

There will be only one version tracking file for the entire “tree” of directo-
ries, and each “key” in the tracking file will contain a relative path along
with the file name and extension for source files which reside in the “low-
er” subdirectories. See also WORKDIR and DOTDOTOK (below).

300

Restriction #1:

When TREEDIRS Y is configured, TLIB 5.50 also checks to be sure that
your configured LEVELs are do not have reference directories which are
subdirectories of one another.

If you have configuredTREEDIRS Y, you must not have configured the
main reference directory for any of your configuredLEVELs be a subdirec-
tory of the reference directory for any other configuredLEVEL. Such a
directory would simultaneously be a reference directory for two different
LEVELs at the same time, which TLIB does not allow. For example, thefol-
lowing combination is not allowed:

 treedirs y
 level n=abc d=f:\def\abc\
 level n=def d=f:\def\

If you don't configure TREEDIRS Y , then this restriction does not apply.

Restriction #2:

Do not configure TREEDIRS Y in combination with REFSUBDIR (except
for REFSUBDIR nul , see p. 166).

The default is:

 TREEDIRS N

See also pp. 61 , 66 , 111 , 127 , 139 , 165 , 304 & 305.

TOPRELATI <Y/N/Maybe>

The TOPRELATI (“top relative”) parameter affects the way that TLIB in-
terprets path\file (“relative” or “unrooted”) specifications under some
circumstances, when you are working in a subdirectory otherthan the
main work directory and TREEDIRS Y is configured.

The question that the TOPRELATI paramter answers is, how should
path\ be interpreted: is it relative to the main (top) work directory

301

(WORKDIR), or is it relative to the current subdirectory? The TOPRELATI
("top-relative") parameter enables you to tell TLIB how to interpret such
file names.

Prior to TLIB 5.00m (circa August, 1993), it was assumed thatall such
paths were relative to the current directory. However, thisprevented cor-
rect operation with file lists and snapshot files that included the relative
subdirectories, since TLIB would erroneously interpret such paths as being
relative to the current directory, rather than relative to the main work di-
rectory.

The three possible settings are:

 TOPRELATI Y names are relative to WORKDIR

TOPRELATI N names are relative to current directory (like T
LIB 5.00L)

TOPRELATI Maybe names are relative to current directory except
when the

 names are read from a TLIB snapshot (version
label) file.
 This is the default.

Note:The TOPRELATI parameter has no effect unlessTREEDIRS Yis also
configured and the current directory is not WORKDIR.

Sometimes you may need to build batch files in which theTOPRELATI pa-
rameter is adjusted for a single file. For greater convenience in such
situations, TLIB also supports the-r command-line option, to force
TOPRELATI Y for the remainder of the current command-line, only. The
-r option should be specified before the command you wish it to affect.
But if you use it in combination with the-q ("quiet") or -d ("debug") op-
tion, then specify the -r after the -q or -d .

You can specify-r or -r1 to force TOPRELATI Y, when source file paths
are relative to the main work directory (instead of relative to the current di-
rectory).

You can also specify-r0 to force TOPRELATI N, if the source file paths
are relative to the current directory rather than to the work directory.

302

Like the TOPRELATI configuration parameter, the-r option does not af-
fect the operation of TLIB unlessTREEDIRS Y is configured and the
current directory is unequal to the work directory.

Note: The -r option is intended only for use with individual file names,
not with wild-card specifications.

DOTDOTOK <Y/N>

If you configure TREEDIRS Y, TLIB 5.50 does some “sanity-checking”
when it determines the “relative subdirectories” used in track file indices:
the source file must be in your current work directory, or a subdirectory of
it. If not, an error is reported.

There are two variants of the error:

a) the source file is not even on the same drive as the configured WORKDIR;

b) the source file is on the same drive, but not inWORKDIRor its subdirec-
tories.

The first case (wrong drive) always generates an error.

However, the second case (right drive, wrong directory) will be tolerated
by TLIB if you configure:

 DOTDOTOK Y

The DOTDOTOKconfiguration parameter simply determines whether TLIB
will, if necessary, use double-dot pseudo-directories in the tracked relative
directory specifications, thereby allowing source files to be anywhere on
the drive.

Thus, for example, if yourWORKDIRwas C:\WORK\ and you configured
DOTDOTOK Y, then TLIB could track C:\TEST\BIG.DOC as ..

\TEST\BIG.DOC .

The default isDOTDOTOK N(double-dots are not okay). This is appropriate
for most users.

303

Note #1:The DOTDOTOKparameter has no effect unlessTREEDIRS Yis al-
so configured.

Note #2: “DOTDOTOK” is pronounced “dot dot okay.”

WORKDIR path

You can use theWorkDir parameter to tell TLIB which directory is your
“working directory.” Or, if you've also configuredTREEDIRS Y, then
WORKDIRcan be used to tell TLIB which directory is the “root” of a “tree”
of working directories.

Most users do not need to configureWORKDIR, since the default setting is
usually adequate.

When TREEDIRS Nis configured, the default forWORKDIRis simply the
current directory (“.\ ”).

However, if TREEDIRS Yis configured, then the default forWORKDIRis ei-
ther the current directory or one of the “parent” directories. The algorithm
for determining the defaultWORKDIRwhen TREEDIRS Yis configured is as
follows:

1) First, TLIB examines theLEVEL configuration parameters (if any),
looking for a project level which has as its reference directory either the
current directory or one one of the current directory's parent directories. If
one is found, then that directory becomes theWORKDIR(and the current
PROJLEV setting is overridden).

Note:When you are working in the reference directory for a projectlevel,
and locking is enabled, you maynot check-out/lock modules. You can ex-
tract for browse (EB command), but not for modification (E command).

2) Otherwise, TLIB examines the current directory and each of its “parent”
directories, in turn, looking for a directory which contains a TLIB-

WORK.TRKfile. (The “parent” directories are “..\ ”, “ ..\..\ ”, etc..) If the
current directory does not contain aTLIBWORK.TRK file, but one of the
parent directories does, then then the parent directory which contains
TLIBWORK.TRK becomes the default WORKDIR.

304

3) If no TLIBWORK.TRKfile is found, neither in the current directory nor in
any of the parent directories, TLIB prompts the user to specify which di-
rectory is the work directory, and creates the TLIBWORK.TRK file there.

The question asked is similar to the following:

 TREEDIRS Y was configured but the main/top work di rectory
 could not be deduced, because TLIBWORK.TRK was not found in
 or above the current directory, ‘C:\WORK\CURRENT\’ . Enter
 the depth of the main work directory, 0-2, where 0 is ‘C:\’,
 and 2 is ‘C:\WORK\CURRENT\’:

To prevent TLIB from asking this question the first time it isused in a new
work directory, you can create an empty (0-3 byte long) tracking file in the
work directory with any text editor, or with the DOS command:

 ECHO.>TLIBWORK.TRK

WORKDIRcan be set to a directory path that is at most 68 characters in
length. Note, however, that the total path+name length for files is still lim-
ited to 80 characters, so having a very long WORKDIR will restrict your
ability to use long file names under Win-95 (or, withTLIB2.EXE , under
OS/2 or NT).

Note: If you configureQUERIES N(to prevent TLIB from asking questions
of the user), and TLIB cannot determine the main work directory, then
TLIB aborts rather than allowing the user to specify the work directory.

REFSUBDIR directory-name

The RefSubdir configuration parameter can be used in combination with
an IF /ENDIF block if you are not usingTREEDIRS Ybut you nevertheless
need to keep the reference copies of your include files in a different direc-
tory from the reference copies of your main source files.

See “reference directories” (p. 164) for details, including why you may
need this.

There is no default for the REFSUBDIR parameter.

305

FORCEREFR <Y/N>

TheForceRefR (force reference copy refresh) configuration parameter af-
fects what TLIB does if you've configured yourLEVEL parameter to keep
the reference directory up-to-date (r=Y), and you do a U (update) com-
mand which does not store a new version because there were no changes.

By default (FORCEREFR N), TLIB will not create a reference copy of the
source file in the reference directory (because it didn't change the TLIB li-
brary). If you would prefer that TLIB go ahead and create the reference
copy, you can configure FORCEREFR Y.

The default is FORCEREFR N.

See “reference directories” (p. 164) for more information.

FIND1FILE <Y/N>

The Find1file configuration parameter selects one of two behaviors when
you specify a single, specific source file to TLIB (as opposed to a wild-
card specification). If you configure:

 FIND1FILE Y

then TLIB will handle even exact file names as if they were wild-card
specifications (unless the N wild-card search mode suffix is added to the
command).

But if you configure:

 FIND1FILE N

then TLIB will handle fully-specified file names (non-wild-card names)
without any wild-card searching.

This means (for instance) that ifFIND1FILE Y is configured, then when
you are using the project-oriented search modes (A and T) you cannot ex-
tract a file that is not listed in the project level(s), sinceTLIB will be
unable to find the file. Since in project-oriented mode, theA search mode

306

is the default for theE (extract) command (i.e., theE command is equiva-
lent to EA), to extract a file which is not listed in the project level(s) you
would need to override the wild-card search mode (i.e., useEL instead of
E).

For an example of why you might want to configureFIND1FILE Y , sup-
pose you are using tree-structured work directories (TREEDIRS Y) and you
have several different files calledmakefile in various subdirectories. If
you configure FIND1FILE Y and do the command:

 TLIB EI MAKEFILE

then TLIB will extract all the MAKEFILE files (into the appropriate subdi-
rectories). But ifFIND1FILE N is configured, that command will only
extract the copy of MAKEFILE that belongs in the current directory.

RELAXVERS <Y/N>

The RelaxVers (relax version number restriction) configuration parameter

If you configure RELAXVERS Y, then TLIB will allow you to create ver-
sions with branch or trunk number zero, and/or to skip versions. This is
not intended for general use, but rather to allow conversionof PVCS and
RCS files to TLIB, via the PVCSTLIB.EXE , RCS2TLIB.EXE , and
GNU2TLIB.EXE conversion tools (inCONVERT1.ZIP or CONVERT2.ZIP, on
the TLIB distribution diskette).

Note #1:Support for version number zero and skipped version numbers
was new to TLIB 5.01. If you use skipped or zero version numbers, then
your TLIB libraries will not be compatible with TLIB 5.00m and
earlier.

Note #2:To specify a zero branch version number, youmust always al-
so specify the parenthesized number-of-the-branch.

For example, suppose that you had a PVCS archive from which you built
an equivalent TLIB library, usingPVCSTLIB.EXE (or PVCSTLIB.AWK).
Suppose, also, that the PVCS archive contained PVCS branch version
number "3.2.1.0". Then the equivalent TLIB 5.50 version number would
be "3:2.(1)0", and you cannot abbreviate it to "3:2.0".

307

This is a special case which applies only to branch version zero of branch
number one, ".(1)0". For any other branch version within branch number
one, the "(1)" can be omitted for brevity, so that, for example, "3:2.(1)4" is
equivalent to "3:2.4".

This restriction exists is so that we can maintain compatible behavior with
earlier TLIBs, which considered, for instance, "4.0" to be another way of
referring to version "4".

The default is RELAXVERS N.

TRACKEXT extension

This rarely-used configuration parameter lets you to change the extension
of the TLIBWORK.TRKversion tracking file. Configure this only if you use
the default file extension “TRK” for some other purpose.

The default is:

 TRACKEXT TRK

ELSEWHERE <Y/N>

TLIB 5.0 added a new configuration option,Elsewhere, which subtly af-
fects the operation of the EBF (refresh browsed files) command.

Normally, the EBF command will extract any named source filewhich
does not already exist in the work directory, as well as thosewhich are de-
termined to be out-of-date according to the information in the work
directory's TLIBWORK.TRK file.

However, one of our users devised a scheme for taking his workhome, in
which the source files are not left in the working directory,and he needed
TLIB to ignore the absence of the source files, and make its determination
of which files to extract solely on the basis of the information in TLIB-
WORK.TRK.

308

To tell TLIB that his source files are elsewhere, he configures:

 ELSEWHERE Y

However, most users should leave this configuration parameter set to the
default, ELSEWHERE N.

FNAMECASE <U/L/A>

The FNAMECASEconfiguration parameter controls the “case” (upper-case
vs. lower-case) of file names. The 3 choices are:

 FNAMECASE Upper - Force all file names to upper -case
 FNAMECASE Lower - Force all file names to lower -case
 FNAMECASE Auto - Behavior depends upon operati ng system

This affects the case of file names recorded in the journal file, and the “%
n” keyword, as well as the actual names used when creating files.

The default is FNAMECASE A.

If you have a case-sensitive network server (e.g., a Unix machine), you
may want to configure FNAMECASE L.

See also LONGNAMES, p. 77.

SAY message
WARN message
ABORT message

The SAY, WARNand ABORTparameters support generation of custom error
and warning messages.
Use the SAY parameter to display a message to the console (in the Win-
dows version of TLIB, the message goes in the Status Log). For example:

 say Please don't keep modules checked-out/locked f or weeks!

309

WARNis similar to SAY, except that a TLIB "ERROR: in configuration

file " message will also be displayed.

ABORTis just like WARN, except that TLIB will halt after displaying the er-
ror message, rather than continuing.

Note that if you make your tlib.cfgSAYa message that begins with "Note:

", "Warning: ", or "ERROR: " then command-line versions of TLIB will
colorize it and/or prevent it from scrolling off the screen (according to how
the COLORIZEand ERRORPAUSparameters are configured), and Windows
versions of TLIB will pop up the message in a dialogue box for the user
(as well as putting it in the status log).

For example:

 say Note: Please don't lock files for weeks at a t ime!

These parameters are most often used inIFF /ENDIF blocks, to warn about
error conditions.

WORKDEPTH nn

The WORKDEPTHconfiguration parameter can be used to specify the mini-
mum subdirectory depth for a work directory. For example:

 WORKDEPTH 0 (the default: work directories can b e in or
 below the root directory)

WORKDEPTH 1 (work directories must be at least 1 level bel
ow
 the root directory)

WORKDEPTH 2 (work directories must be at least 2 levels be
low
 the root directory)

This is useful, for example, to prevent the accidental use of root directories
as TLIB work directories, which is important whenTREEDIRS Yis config-
ured (p. 300).

310

NEWLINE <CRLF/LF/CR>

TLIB transparently handles DOS, Unix, and Mac-format ASCIItext files.
As input to TLIB (for updates), any of the three formats are now handled
equivalently. For output (extracts), the default is DOS format (CR+LF),
but you can control this with the NEWLINE configuration parameter:

 NEWLINE CRLF The default, DOS format (carriage return + line feed)
 NEWLINE CR Mac format (carriage returns only)
 NEWLINE LF Unix format (line feeds only)

Note: this only affects the operation of TLIB inFILETYPE TEXT mode. If
your TLIB library is in FILETYPE BINARY format, then theNEWLINEcon-
figuration parameter is ignored, and no end-of-line translations are done.
Also, this only affects the handling of your text files; TLIB's library files
are still stored in DOS format (with CR/LF after each line).

There is one small side-effect to this new feature that may affect some
users of older versions of TLIB. TLIB now handles CR/LF, LF alone, or
CR alone in your text file as all being equivalent. Earlier versions of TLIB
handled CR/LF or CR alone as being equivalent, but LF alone was handled
as a plain text character.

So, if you had a file that contained a spurious line-feed character some-
where, you may notice this difference in behavior, because if you extract
the file (TLIB E) and then immediately update (TLIB U) TLIB will report
that the file has changed! What happened is that the line containing the
lone LF character was seen as a single line in the TLIB libraryand during
the extract, but was split into two lines during the update. If you let TLIB
store the new "changed" file, and then extract it again, you will find that
your text file now has a CR+LF (or whatever you configured forthe NEW-

LINE parameter) in place of the LF that it had there before.

Caveat: Ctrl-Z is still recognized as an end-of-file character, even in Unix-
format files. Ctrl-D is not recognized as special in any way. So, if you have
a file that contains a ctrl-Z character and you don't want TLIB to truncate
the file at that point, you must configureFILETYPE BINARY for that file
when you create the TLIB library for it.

311

ERRORPAUS <0-3>

The ERRORPAUSparameter controls whether or not TLIB will pause if an
error or warning message has been displayed. Pausing after errors or warn-
ings is intended to prevent important messages from being overlooked
because they scrolled off the screen before being read.

You may configure ERRORPAUS to one of these four settings:

 ERRORPAUS 0 (disable pauses after error & warning messages)
 ERRORPAUS 1 (pause if "ERROR" was displayed, but not for
 "Warning " or "Note "; this is the default)
 ERRORPAUS 2 (pause if "ERROR" or "Warning " was displayed,
 but not for "Note ")
 ERRORPAUS 3 (pause for "ERROR", "Warning " or "Note ")

If you want to start a long job and return later to see whether there were
any errors, then you may prefer to configureERRORPAUS 0and simply
redirect output into a file, for later inspection. TLIB willdetect the fact
that output has been redirected, and error and warning messages will be
written to both "stderr" (usually the console) and "stdout"(the file to
which you have redirected output). If, when you return, you see error mes-
sages on the screen, you can inspect the file with your redirected TLIB
output.

Note that theERRORPAUSparameter only affects operation in "non-interac-
tive mode" (i.e., when all TLIB commands and parameters werespecified
on the command line).

If you don't specify the TLIB commands and parameters on the command
line, then TLIB will operate in "interactive mode," and prompt you for
them. In this mode, TLIB always pauses after each screen of text, even if
there are no errors, and regardless of the ERRORPAUS setting.
The default is ERRORPAUS 2, which pauses for "ERROR" and "Warning "
messages, unless you configureQUERIES Nbut leave ERRORPAUSuncon-
figured. In that case, the default isERRORPAUS 0(pauses disabled). (This
exception is to avoid breaking some front-end programs and editor macros
which configure TLIB with QUERIES Nbecause they depend upon TLIB
never prompting for user input.)

See also: EXITPAUSE (p. 313) and COLORIZE (p. 313).

312

EXITPAUSE <Y/N>

The EXITPAUSE parameter can be used to make TLIB pause before exit-
ing, even if no errors have occurred. If you want TLIB to always pause
before exiting, you can configure:

 EXITPAUSE Y

The default is:

 EXITPAUSE N

See also: ERRORPAUS, p. 312.

COLORIZE <Y/N>

To help you avoid overlooking error and warning messages, command-line
versions of TLIB can "colorize" them using ANSI excape sequences. You
can control this feature with theCOLORIZE configuration parameter. By
default, if ANSI.SYS support is available, TLIB will now attempt to high-
light error and warning messages through the use of ANSI escape seqences
to selecting the colors. To disable this, configure:

 COLORIZE N

To force TLIB to colorize error and warning messages, without testing
whether ANSI.SYS support is available, you can configure:

 COLORIZE Y

The default is to check forANSI.SYS support, and colorize only ifAN-

SI.SYS is loaded; this can be explicitly configured as:

313

 COLORIZE Maybe

Note #1: TLIB also suppresses the ANSI escape sequences whenin
SLICKEPSI mode; that is, when running in the "concurrent process buffer"
of the SlickEdit and Epsilon editors. So, an alternate way toprevent col-
orization is to configureSLICKEPSI Y . This will avoid warnings with
older versions of TLIB that don't support the newCOLORIZEconfiguration
parameter. However, this also affects some other aspects ofconsole I/O,
since the SlickEdit and Epsilon concurrent process bufferscannot support
some operations (such as single-character-at-a-time keyboard input).

Note #2: if you want a colored DOS prompt, but TLIB's ANSI escape se-
quences interfere with it, there are three things you can do to solve the
problem:

a) You can simply disable TLIB's ANSI escape sequences, by configuring
COLORIZE N. Unfortunately, this will prevent colorization of TLIB's error
and warning messages.

b) To have colorized TLIB error and warning messages, and also retain
your colorful DOS prompt, you can set your DOS prompt environment
variable to select the prompt color of your choice, and use TLIB's BANNER

configuration parameter to reset the screen color to white when TLIB
starts up.

Thus, your PROMPTsetting in AUTOEXEC.BAT(and in CONFIG.SYS, under
OS/2) might be, for example:

 Rem - bright, light blue prompt
 PROMPT=$e[1;36m$d $t $p]

To your TLIB.CFG , add:

 Rem - reset screen color to normal (white) at TLIB start-up:
 numbanner 1
 banner 1," �[0m"
 Rem - (where " �" is the escape character, ASCII 27)

c) You can use theCOLOROFFconfiguration parameter to reset your screen
colors to whatever you wish following display of the colorized word ("ER-
ROR:" or "Warning:" or "Note:"). See COLOROFF, below.

See also: ERRORPAUS, p. 312.

314

COLOROFF <string>

The COLOROFFconfiguration parameter lets you tell TLIB what ANSI es-
cape sequence to use to resets your console color to "normal"after
displaying a colorized error or warning message.

This configuration parameter does nothing in TLIB for Windows, and does
nothing if COLORIZE Nis configured (which is the default under DOS if
ANSI.SYS is not loaded).

The default is “COLOROFF �[0m ”, where “ �” is the esc character, ASCII
27.

MAKEDIRS <Y/N>

The MAKEDIRSconfiguration parameter is used to tell TLIB to automati-
cally create missing directories, as necessary, in most circumstances.

To tell TLIB to create directories, configure:

 MAKEDIRS Maybe

 or

 MAKEDIRS M

A few networks and operating systems may have bugs which cause incor-
rect error codes to be returned under various circumstances, such as when
a file cannot be created because the directory is missing. IfMAKEDIRS M

does not work for you, and you suspect that this might be the reason, then
you can try configuring:

 MAKEDIRS Y

Configuring MAKEDIRS Ycauses TLIB to assume that a missing directory
could be the true cause for a file-create failure, even if an error code was

315

returned indicating some other cause. Do not configureMAKEDIRS Yun-
less you suspect that your network or operating system has this bug.

The default behavior for TLIB is not to create missing directories, but to
give an error message, instead. This is similar to what happens if you con-
figure:

 MAKEDIRS N

The only difference between configuringMAKEDIRS Nand leaving the
MAKEDIRSparameter unconfigured is that ifMAKEDIRSis not configured
then TLIB can also display a "hint" when a file create fails due to a miss-
ing directory. The hint suggests that configuringMAKEDIRS Mmight solve
the problem.

NT351BUG <Y/N>

The NT351BUGconfiguration parameter enables TLIB to work around OS
and network bugs which cause file sizes to be incorrectly reported for di-
rectory look-up ("findfirst") operations. This bug is characteristic of
Windows-NT 3.51, but has been occasionally seen in other environments,
as well.

When an application either closes a file or does a "file commit," the oper-
ating system is supposed to update the directory information to reflect an
changes in file size and date. However, Windows-NT 3.51 has abug
which causes directory information to be incorrectly reported for a varying
period of time (typically 1-15 seconds) after the file closeor file-commit
operation.

We paid Microsoft $150 for the privilage of reporting this bug, and their
response, believe it or not, was that they had disabled file-commits for 16-
bit applications, as an "optimization," and they did not intend to fix it in
any NT 3.51 service pack. Fortunately, it seems to be fixed inWindows
NT 4.0.

(Please, don't anybody tell them that they could optimize NTeven more,
and make it go even faster, if they disabled writes, too.)

316

So, we built a workaround into TLIB, to use an open/lseek/close sequence
to look up file lengths, rather than the normal (and much faster) findfirst
(directory look-up) approach.

If you need to configure this option, TLIB will tell you so. Otherwise,
don't, since it adds significant overhead to some operations. (This is in
contrast to the NTFS35BUG parameter, which adds very little overhead.)

To work around the bug in Windows-NT 3.51, and also a bug that was
present in NT 3.5, configure these two parameters:

 NT351BUG Y
 NTFS35BUG Y

The defaults are NT351BUG N and NTFS35BUG N.

NTFS35BUG <Y/N>

The NTFS35BUGconfiguration option is used to tell TLIB to work around a
bug in Windows-NT 3.5's NTFS file system. If you are running Windows
NT with an NTFS file system, either on your workstation PC or your net-
work file server, you should configure:

 NTFS35BUG Y

This tells TLIB to do an explicit file-commit after appending additional da-
ta to a file, such as a TLIB library. If this is not done, then directory look-
ups (find-first) sometimes report the wrong file sizes for recently-closed
files.

Note: do not configure both NTFS35BUG Y and USEDUPHAN Y.

See also: NT351BUG, p. 316.

317

SHOWLNAME <Y/N>

The SHOWLNAME(SHOW Library NAME) configuration parameter can be
used to suppress TLIB's routine display of TLIB library filepaths and
names. For more concise messages, you can configure:

 SHOWLNAME N

This inhibits display of library & lock file names in most common TLIB
messages. The default is still SHOWLNAME Y. (See also the QUIET Y config-
uration parameter.)

LONGNAMES <Y/N/M>

The LONGNAMESconfiguration parameter can be used to prevent TLIB for
Windows and TLIBX from handling long file names under Windows 95,
or to prevent TLIB2 from handling long file names under OS/2 and Win-
dows-NT. See p. 77.

SERIALNO <serialnumber>

The SERIALNO configuration parameter is how you tell TLIB what what its
serial number(s) are.

For example, suppose 504-01234-5-123456789012 was your TLIB serial
number. (This serial number means that you have TLIB 5.50, yours was
the 1234-th TLIB sold, and you bought a 5-user license; "123456789012"
encodes the type of license you have, and a checksum.) You would config-
ure:

 serialno 504-01234-5-123456789012

From then on, TLIB's copyright banner would say something like:

TLIB 5.50g, 5 user license. Copyright 1985-1996 Bur ton Syste
ms Software

318

If you have more than one serial number, just configure them repeatedly,
like this:

 serialno 500-01233-1-123456789012
 serialno 500-01234-5-234567890123

TLIB will sum the number of user licenses:

TLIB 5.50g, 6 user license. Copyright 1985-1996 Bur ton Syste
ms Software

The SERIALNOparameter is usually used in theTLIB.SER file rather than
the regular TLIB.CFG configuration file.TLIB.SER is an optional TLIB
configuration file which, if it exists, must reside in the same directory as
the TLIB executable (TLIB.EXE , TLIBX.EXE , TLIB2.EXE , or TLIBDL-

L.DLL). TLIB.SER is read before the regularTLIB.CFG file. TLIB.SER is
primarily intended to contain your TLIB serial number(s).

USEUMBS <Y/N>

The USEUMBSconfiguration parameter controls whether or not the real-
mode DOS version of TLIB will attempt to "link" and use "UMBs"(Upper
Memory Blocks), if available, under DOS 5.0 and later. UpperMemory
Blocks are conventional memory areas between 640K and 1024K, which
are commonly provided on 80386 or better computers by programs such as
EMM386, 386MAX and QEMM.

There are two possible settings:

 USEUMBS Y - TLIB will link Upper Memory Blocks if they
 are available. This is the default.
 USEUMBS N - TLIB will not link upper memory blocks.

Note: Our CTMAP memory manager can also provide upper memory
blocks on some 80286 and 80386 computers which use Chips & Tech-
nologies chipsets; seeCTMAP09C.ZIP. However, CTMAP's UMBs are
always "linked" and available, so they are unaffected by theTLIB “ USE-

UMBS” configuration parameter.

319

The USEUMBSparameter is ignored in protected mode: by TLIB2 under
OS/2 or Windows-NT, and by TLIBX (the DOS Extended TLIB) when
DPMI, VCPI or XMS extended memory is available.

By default, if TLIB runs low on memory under DOS 5.0 or later, it will
ask DOS to “link” any available upper memory blocks, therebymaking
them available as normal DOS memory to programs like TLIB. When
TLIB does this, it displays a message:

 *** UMBs linked ***

For most users, this is good: it means that TLIB has additional memory
that it can use when processing large files.

However, if you have a problem with badly interacting programs, that you
suspect might be a memory usage conflict, especially when running a DOS
“task switcher” or similar program, you may wish to configure:

 UseUMBs N

This will prevent TLIB from attempting to use Upper Memory Blocks.
(You can also accomplish the same thing by using DOS's SETVERcom-
mand to make TLIB think it is running under DOS 4.)

READONLYT <Y/N/W>

The READONLYTconfiguration parameter controls whether or not TLIB
will set tracking files (tlibwork.trk) to read-only. There are three possi-
ble settings:

 READONLYT Yes - TLIB sets all tracking files to read-only
 when not open. This is the default.
 READONLYT No - TLIB does not set tracking files to read-only.
 READONLYT Workdir - Only work directory tracking files will be
 marked read-only. Project level tracking files
 will be left read-write.

320

This parameter is intended for use with multi-user editionsof TLIB when
used with Sun PC-NFS, since apparently with PC-NFS only the “owner”
of a file can change the file from read-only to read-write.

This parameter can also be used to work around a bug in some versions of
Novell Netware. This Netware bug causes files to lose their “sharable” at-
tribute (which you set with Novell'sFILER utility) whenever a program
(such as TLIB or DOS'sATTRIB command) changes the read-only at-
tribute. See READ_ME.TOO for details.

Conditional configuration parameters

IF <list of wild-card specs>
ENDIF

TLIB configuration files can contain two kinds of conditional configura-
tion constructs: run-time conditionals and load-time conditionals. Run-
time conditionals are inIF/ENDIF blocks (note: there is noELSE clause).
Load-time conditionals are inIFF/ELSE/ENDIF blocks. Run-time condi-
tionals are used to specify configuration parameters whichonly apply to
certain files, which are selected by wild-cards (sorry, youcannot use file
lists in this context). Load-time conditionals are similarto "conditional
compilation" for configuration files; they are predicatedupon conditions
that can be tested as TLIB is reading its configuration files, at program
start-up (or, in TLIB for Windows, when the current directory is changed).

The syntax for run-time conditionals is:

 IF <list of wild-card specs>
 REM conditional parameters go here
 ENDIF

A few of TLIB's configuration parameters cannot appear in anIF/ENDIF

block; TLIB will give you a clear warning if you try a prohibited one.

Example:

 REM These are popular changes to the “default” pa rameters:
 EqualDate Y

321

 path c:\tlibs\
 libext ?$?????
 lokext ?^?????
 REM No tab/blank conversions except on Pascal sou rce code:
 IF *.PAS
 entabU Y
 ENDIF
 REM Revision history log insertion only for C mod ules:
 IF *.C,*.H
 logwidth 76
 logflag 3,"--=>revision history<=--"
 logprefix 1,"/*"
 logsuffix 78,"*/"
 ENDIF
 detabE M

Parameters are processed in the order you specify them: if a single parame-
ter is set more than once, only the last one has any effect.

IF blocks can be nested as deeply as you wish. NestedIF blocks can be
used to make “exceptions” for particular files or groups of files. For exam-
ple:

 if *.wk?
 filetype binary
 if timsfile.wkl
 filetype text
 endif
 endif

Note that only TLIB itself (TLIB.EXE , TLIBX.EXE , TLIB2.EXE , and TLIB
for Windows) recognizesIF/ENDIF constructs; the DIFF3 and CMPR
simply ignore everything betweenIF and ENDIF. You can use this feature
to configure parameters for TLIB which do not affect CMPR or DIFF3, as
in the following example:

 if *.*
 addctrlz Y
 endif

Note: TLIB 5.0 extended the syntax for theIF construct in configuration
files, to allow multiple wild-card specifications, separated by commas.
This feature may let you significantly reduce the size of your TLIB config-
uration file. For example:

Old way (still works, but now needlessly verbose):

322

 IF *.DBF
 filetype binary
 ENDIF
 IF *.WK*
 filetype binary
 ENDIF
 IF *.EXE
 filetype binary
 ENDIF

New way (much more concise):

 IF *.DBF,*.WK*,*.EXE
 filetype binary
 ENDIF

Note:you mustnot put any whitespace either before or after the commas!
Thus, the following will not work:

 IF *.DBF, *.WK*, *.EXE
 !does not work!
 filetype binary
 ENDIF

IFF <expression>
ELSE
ENDIF

TLIB supports very flexible load-time conditionals in its configuration
files. The following configuration directives are provided:

 IFF <expression>
 ENDIF

 IFF <expression>
 ELSE
 ENDIF

Note that the IFF /ENDIF and IFF /ELSE/ENDIF directives are quite differ-
ent from the IF /ENDIF construct. IF /ENDIF is used to specify configuration
parameters which pertain to files that match one or more wild-card specs.
An IF parameter's wild-card specification is re-tested for eachfile that
TLIB processes.

323

In contrast, theIFF /ENDIF and IFF /ELSE/ENDIF directives are processed
only as TLIB.CFG is being read. (For command-line versions of TLIB, that
means they are processed only when TLIB loads; however, TLIBfor Win-
dows re-reads TLIB.CFG every time you change the current directory.)

In addition, IFF tests are conditioned upon Boolean expressions, rather
than upon wild-card specifications. Boolean expressions are expressions
of the sort used in aLET assignment, but with the added constraint that the
result must be numeric. Zero is taken as "false" and non-zero means "true".
(For a full description of the expression syntax, see theLET parameter, p.
270.)

Example:

 iff '%NECESSARY%'==”
warn Oh, dear! Environment variable %%NECESSARY%% is undefi

ned!
 endif

Example:

 let ONE=5-4
 iff %ONE%==1
 say Hey, it works!
 else
 abort This is impossible!
 endif

Example:

 REM This example displays the current directory's path.
 REM First, get "truename" of current directory:
 Let currentdir=UNQ NAM ".\"
 REM It may not have a trailing slash, so add one:
 Let lastch= '%currentdir%' SST '-2:1'
 iff ('%lastch%' NE '\') AND ('%lastch%' NE ':')
 Let currentdir = UNQ ('%currentdir%' . '\')
 endif
 REM Display the result (and also workdir)
 Say currentdir=%currentdir%, workdir=%tlibcfg:work dir%

Useful example:

 REM Include "personal.cfg" from current or parent folder,
 REM 0-3 levels up. 1st, find the personal.cfg. (If file
 REM does not exist, SIZ operator returns -1 for i ts size.)

324

 set pname='personal.cfg'
 iff (SIZ %pname%) == -1
 let pname='..\' . %pname%
 iff (SIZ %pname%) == -1
 let pname='..\' . %pname%
 iff (SIZ %pname%) == -1
 let pname='..\' . %pname%
 iff (SIZ %pname%) == -1
 set pname=”
 endif
 endif
 endif
 endif
 iff ” eq %pname%
 say Warning: personal.cfg not found, default conf ig used.
 else
 let psize=siz %pname%
 let fullpname=uc unq nam %pname%
 let pname=unq %pname%
 include %pname%
 say Note: %psize%-byte %pname% (path %fullpname%) loaded.
 endif

Or, for something really obscure:

 Rem Set %X% to any integer value:
 let x=-46
 Rem Then test the MOD operator:
 let easyway= %x% mod 3
 let hardway= %x% - (3*(%x% / 3))
 iff %hardway% <> %easyway%
 abort This is impossible!
 else
 say (%x% MOD 3) = %EasyWay% (remainder left aft er %x%/3)
 endif

For a more realistic example, involving the management of many semi-
custom software project levels, see p. 161.

See also “environment variables...” (p. 80), and theLET parameter (p.
270).

Compressed (archived) library files

ARCCMD <path-of-pkpak.exe>

325

UNARCCMD <path-of-pkunpak.exe>
ARCTEMP <temporary-directory>
ARCEXT <extension>

Note: use of this feature is deprecated.

Note to users of TLIB 4.12:This works just as it did in TLIB 4.12, except
that nearly everyone now uses PKZIP & PKUNZIP instead of PKPAK and
PKUNPAK.

(In fact, we hesitate to recommend using archived library files at all. Using
them makes TLIB sluggish and terribly verbose, and it is not safe in a net-
worked/multiple-programmer environment. We tried to remove this
feature from TLIB 5.0, but too many of our beta-testers complained, so we
relented and put it back in.)

TLIB can also modestly compress its library files, but only for binary files
(“ filetype runlen ”), and it keeps the library file small by calculating
deltas in a highly efficient manner and optionally converting multiple
blanks to tabs. However, the DOS version of TLIB does have theability to
invoke PKZIP to automatically compress and decompress library and lock
files, storing them in compressed archive format. PKZIP usually compress-
es text format TLIB library files by 50-60%, and you can storemultiple
files in a single archive to reduce the amount of space wastedby DOS's
cluster-at-a-time disk allocation.

This can save disk space, but it has several disadvantages. It slows down
the operation of TLIB considerably. Also, you may find the interspersed
PKZIP messages distracting. Plus, we cannot guarantee compatibility be-
tween TLIB and future versions of PKZIP. So, unless you are very short of
disk space, you will probably not want to use “compressed/archived li-
braries” with TLIB.

Important note #1:Even if there is a copy of PKZIP and/or PKUNZIP in-
cluded with TLIB, the price of TLIB doesnot include a license to use
PKZIP (except to unpack the TLIB diskettes). Licenses for PKZIP should
be obtained directly from PKware, Inc., 9025 N. Deerwood Drive, Brown
Deer, WI 53223. Telephone: (414) 354-8699. Fax: 414-354-8559.

Important note #2:The use of compressed/archived library files isnot rec-
ommendedwith the network version of TLIB. The problem is that if two
users try to access the same library or lock file at exactly the same time,
TLIB's network synchronization mechanisms will not work properly, since
TLIB will be operating upon temporary copies of the library and lock files.

326

Important note #3:TLIB does not “understand” the format of.ZIP files.
Consequently, some forms of wild-card expansion will not work correctly
if you use compressed/archived libraries.

Important note #4:TLIB is the most reliable version control system on the
market, largely because when TLIB updates a library file, itdoes not in
any way alter or move the existing data. Instead, we just append, in place,
to the end of the existing library file. With other version control products,
any time you add a new revision to a library file,all your old revisions
must make a round trip from the disk surface, into RAM (perhaps via a
network), get processed by a program, and then be written back to a new
location on the disk. In each of those steps, there is a small but finite possi-
bility of data loss. Since TLIB avoids those steps, it also avoids the
associated risk of data loss.

However, if you use compressed/archived library files, this reliability ad-
vantage is forfeited.

If you mustuse TLIB with archived libraries in a network environment,
you can reduce the risk to your data by taking the following precautions:

1) Make sure that all users utilize the sameARCTEMPdirectory, (on a
shared file server),

and

2) Instruct all users to watch out for the following PKUNPAK or PKUN-
ZIP prompt:

Warning! file XXXX.XXX already exists! overwrite (y /n)?

If this prompt is seen, it probably means that another user isaccessing the
TLIB library or lock file, so TLIB should be aborted with Ctrl-Break.

If you are certain that nobody else is accessing the TLIB library or lock
file, then the file must have been left in the temporary directory as the re-
sult of an aborted TLIB operation. In that case, you can use “PKZIP F” to
ensure that the.ZIP file is up to date, then manually delete the useless
temporary file.

327

Four configuration parameters must be set to enable TLIB to use archived
library files. Two of them,ArcCmd andUnarcCmd, specify the full path
and file names of the PKZIP and PKUNZIP programs. The third parame-
ter, ArcTemp, specifies a directory for temporary storage of the extracted
library and lock files. The fourth parameter,ArcExt , is used to specify the
file extension of compressed archives (usually ZIP).

To use a library which is stored in a.ZIP file, simply pretend that the.
ZIP file is a subdirectory, and specify it in the CP (path) command (or,
more conveniently, with the PATH configuration parameter).

For example, you could add the following line to your TLIB configuration
file to specify that TLIB library files should be stored in the LIBS.ZIP

archive file, which is in the C:\TLIB subdirectory:

 path c:\tlib\libs.zip\

TLIB examines you library file CP (path) setting to determine whether
you've specified a directory or an archive file. If “ArcExt ZIP ” is config-
ured and the path setting ends in “.zip\ ” or “ .zip\name.ext ”, then TLIB
presumes that the library files are to be stored in a PKZIP archive.

Nested archive files (archives within archives) are not supported. E.g., a li-
brary path setting like this would not work correctly:

 path c:\tlib\xx.zip\yy.zip\

Here's an example of how to use theArcCmd, UnarcCmd, ArcTemp and
ArcExt configuration parameters. Note that they will not affect the opera-
tion of TLIB unless you specify an archive file with the CP command or
PATH configuration parameter.

 ArcCmd c:\util\pkzip.exe -es
 UnarcCmd c:\util\pkunzip.exe
 ArcTemp c:\temp\
 ArcExt ZIP

If your library files were in an archive file calledLIBS.ZIP , you would
use the CP (path) command to reference the archive just like you would
reference a directory, like this:

 tlib cp c:\libs.zip\ e myfile.c

328

One last note: Because the PKZIP command format may change infuture
releases, we cannot guarantee permanent compatibility between TLIB and
PKZIP.

Customizing the user interface

BANNER <1-42>," string"

NUMBANNER <1-42>
PROMPT <1-42>," string"

NUMPROMPT <1-42>
HELP <1-49>," string"

NUMHELP <1-49>
COMMANDS <list-of-commands>

Thebanner, prompt andhelp parameters allow you to configure the mes-
sages which command-line versions of TLIB present to the user. Each of
them requires a line number and a string. Unlike the other configuration
parameters,BANNER, PROMPTand HELP can be specified repeatedly to
specify multiple-line prompt and help messages.

The prompt message is shown to the user when he must select a command.
It is usually just one or two lines. The help message is what isdisplayed
when the “?” command is selected. It can be up to 49 lines long, but you
should limit it to at most 24 lines unless you are sure that users will always
utilize display modes that support more than 25 lines.

The initial prompt and help are normally configured by TLIBCONF, but
you can easily change them simply by editing your TLIB configuration
file.

The number of lines in the banner, prompt and help screen are determined
by the NUMBANNER, NUMPROMPT, and NUMHELP parameters, respectively.

Note to users of TLIB 4.12:The HELP and PROMPTconfiguration parame-
ters were slightly changed in TLIB 5.0. TLIB 5.0 Removed the extra blank
line which TLIB 4.12 displayed before the prompt and help screens. In-
stead, TLIBCONF now configures the prompt and help screens to have a
blank line at the beginning. This change allows you to get ridof the blank
line (by changing TLIB.CFG), if you wish. We recommend that you let

329

TLIBCONF (or the TLIB Configuration Wizard) configure yourHELPand
PROMPT. Then if you don't like the appearance, you can editTLIB.CFG to
change them to your liking.

Thecommandsparameter allows you to restrict or expand the set of legal
TLIB commands. That is, it lets you configure which TLIB commands the
user can use. The user will not be allowed to use any command which is
not in the specified list of. Note that TLIB commands are case-insensitive;
that is, “N” is equivalent to “n”, etc..

Note:The format of theCOMMANDSconfiguration parameter has changed in
TLIB 5.

All of the legal commands should be listed in theCOMMANDSconfiguration
parameter (in TLIB's configuration file, usuallyTLIB.CFG), separated by
commas, except that the search mode suffixes may be omitted.For in-
stance, the following enables all of the commands listed above in the
“old/new” table on p. :

 COMMANDS US,EB,C,E,UFK,UD,UK,L,UKS,N,ER,CP,Q,EBS,N S,T,U,\
 UM,CW,ES,?

Any commands omitted from theCOMMANDSconfiguration parameter will
be unavailable to users.

Note that the TLIB Configuration Wizard (or the older TLIBCONF utility)
will create a TLIB configuration file with an appropriateCOMMANDScon-
figuration parameter, prompt, etc., so you probably will not need to
manually change it.

New to TLIB 5.01 was the ability to configure the default wild-card search
mode for any TLIB command, via an extension to theCOMMANDSparame-
ter syntax.

To override the default wild-card search mode for a command,simply edit
the COMMANDSparameter in tlib.cfg, adding “/x ” to the command, where
“x” is one of the six legal wild-card search modes.

For example, if your configured COMMANDS was:

 COMMANDS U,UK,US,UD,UKM,UKS,E,ES,EB,...

330

Then you could change the default wild-card search mode for the various
U (update) commands to “O” ("owned" files) by adding “/O ” to each com-
mand, like this:

 COMMANDS U/O,UK/O,US/O,UD/O,UKM/O,UKS/O,E,ES,EB,.. .

The TLIB Configuration Wizard can utilize this facility to optionally con-
figure TLIB to be more “project oriented.” If you tell the Configuration
Wizard to configure TLIB for “project oriented mode” or “ISO9001 pro-
mote levels,” then it will make the default search mode for most
commands be “T” or “ A” (to search the project level), and you'll need to
first add your source files to the project level via the “A” command before
you can extract and/or update them (unless you override the search mode).
(See also the FIND1FILE parameter, p. 306.)

The COMMANDSconfiguration parameter can be continued onto additional
lines in the configuration file, by adding a trailing backslash (“\ ”) charac-
ter. (COMMANDSis theonly configuration parameter which can be continued
in this way.)

Input lines in TLIB's configuration file should never exceed 254 characters
in length. However, it is possible for aCOMMANDSparameter to be too long
to fit on a 254-character line, so we've added a way to extend it to the de-
sired length.

For example, these two COMMANDS parameters are equivalent:

 COMMANDS U/O,UK/O,US/O,UD/O,UKM/O,UKS/O,E,ES,EB,EB S,L,T,H,Q

 COMMANDS U/O,UK/O,US/O,UD/O,UKM/O,UKS/O\
 ,E,ES,EB,EBS,\
 L,T,H,Q

Note that leading whitespace (tabs and/or blanks) is ignored on the contin-
uation lines.

Important: as listed in theCOMMANDSconfiguration parameter, the TLIB
commands must have their suffix characters in alphabeticalorder. Thus,
this is okay:

 COMMANDS U/O,UK/O,US/O,UD/O,UKM/O,UKS/O,E,ES,EB,EB S,L,T,H,Q

331

but this is in error:

 COMMANDS U/O,UK/O,US/O,UD/O,UMK/O,UKS/O,E,ES,EB,ES B,L,T,H,Q

because UMK should be UKM, and ESB should be EBS .

Be careful: the current edition of TLIB doesn't do much validity checking
of the COMMANDS parameter, so it will not detect this error.

For your convenience, you may equate single-character shorthand syn-
onyms for any of the multi-character commands. One use for this is to let
you make TLIB 5 look and feel like earlier versions of TLIB (except that
the user will still have to press ENTER after each command).

TLIBCONF will offer to configure the COMMANDSparameter to mimic
most of the single-character commands in earlier versions of TLIB. This is
helpful for users who have become accustomed to the old-style com-
mands, or who have editor macros or batch files that use the old single-
letter commands, but there seems to be universal agreement among our
customers that the new style is much better.

Note that you may not redefine the multi-character commands.

Also, to avoid confusion, we recommended that you not redefine any of
the twelve default single-character commands to mean something strange.
The default single-character commands are: A,C,E,F,L,M,N,Q,S,T,U,?.

Note that all but four of these commands have the same meanings that they
had in TLIB 4.12. The exceptions are A, F, S and M.

“A” was “update with specified version number” in TLIB 4.12,but is “add
or alter project level” in TLIB 5. The “update with specifiedversion num-
ber” command is now “US”.

“F” was “fast-update/freshen” in 4.12, but is “filter file names” in TLIB 5.
The “fast-update/freshen” command is now “UF” or “UFK”.

“S” was “split-library” (create new library with specifiedstarting version
number) in 4.12, but is “snapshot-version-label” in TLIB 5.The “split-li-
brary” command is now “NS”.

332

“M” was “make branch” (update, specifying version number, but do not
unlock) in TLIB 4.12. The equivalent TLIB 5 command is “UKS”.The
“M” command is “migrate changes” in TLIB 5.xx.

The following configuration parameter gives single-character shorthand
equivalents for many of the possible commands, chosen so that this new
version of TLIB will respond correctly to most of the old TLIB4.12 com-
mands.

 COMMANDS US,B=EB,C,E,UFK,I=UD,K=UK,L,UKS,N,O=ER,P= CP,Q,\
 R=EBS,T,U,W=CW,X=ES,F,?

For a fancier display (with highlighting, multiple colors,or whatever), you
can embed ANSI escape sequences in your prompt and help linesand use
DOS's ANSI.SYS device driver (see your DOS manual for details onAN-

SI.SYS and the ANSI escape sequences). We've included a simple AWK
program namedANSIFY.AWK, which can add ANSI highlighting to the
prompt and help which were configured inTLIB.CFG by TLIBCONF. If
you don't already have an AWK, you can use Rob Duff's freewareAWK
(from the PUBLIC.ZIP archive on the TLIB distribution diskette).

To add ANSI highlighting, use the following command:

 awk -fansify.awk tlib.cfg >tlib2.cfg

Then test the new configuration file like this:

 tlib c "include tlib2.cfg" ?

If you are happy with the result, you can replaceTLIB.CFG with the newly
created TLIB2.CFG .

BANNER <1-42>," string"

NUMBANNER <1-42>

These parameters let you create a customized TLIB “startup banner,”
which you can configure to display whatever you wish. It works just like
the PROMPTand HELP configuration mechanisms, except that (unlike the

333

prompt & help screens) theBANNERis always displayed (unless sup-
pressed with the-q2 command line option, p.), and (unlike the prompt) it
is displayed only once (when TLIB starts up).

The intended purpose is to provide a convenient mechanism for a System
Librarian to provide helpful advice and instruction to the rest of the TLIB
users.

There are two configuration parameters,NUMBANNERand BANNER, to con-
figure your customized startup banner.NUMBANNERspecifies the number of
lines in your customized banner.BANNERspecifies the individual lines. Ex-
ample:

 numbanner 6
 banner 1,”
 banner 2,'Hi, %TLIBCFG:id%. Current projlev is %T LIBCFG:projlev%.'
 banner 3,"Don't forget to mention the problem numb ers in your TLIB"
 banner 4,'comments when you store a new version of a source file!'
 banner 5,'Call me at extension 234 if you have que stions. -Dave'
 banner 6,”

Note the use of double quotes on the third line, to allow quoting the apos-
trophe.

Huge File Support

MULTIPASS <Y/N>
MAXLINES <100-16380>
PASSSIZE <100-16380>

When running with the default configuration parameters, TLIB processes
source files of up to 16000 lines (or binary records) in length in a single
pass. Larger files are handled with multiple passes, which permits TLIB to
manage files of nearly unlimited size.

(Note: The real-mode DOS version of TLIB has a defaultPASSSIZE of
4000, instead of 16000.)

334

TLIB's memory footprint can be reduced, at the expense of both perfor-
mance and storage efficiency, by using a smallerPASSSIZE setting. But
this is not recommended for most users.

The only significant problem with using the defaultPASSSIZE (16000) is
that the increased memory requirements may prevent the real-mode DOS
version of TLIB from being able to process large files. This is probably not
a significant problem for you; you can solve it simply by running one of
the protected-mode versions of TLIB (e.g.,TLIBX.EXE or TLIB2.EXE or
TLIB32C.EXE or TLIB for Windows) instead of the real-mode DOS ver-
sion.

Mostly for historical reasons, it is also possible to disable TLIB's multi-
pass operation, by configuringMultipass N, in which case TLIB will be
unable to process files that are too long to be handled in one pass. This is
not generally recommended.

Note:For FILETYPE BINARY, andFILETYPE RUNLEN, TLIB uses an inter-
nal “record” representation which is analagous to the linesin a text file,
except that TLIB uses an adaptive algorithm to delimit the “records,” in-
stead of being hard-coded to look for carriage-return/line-feed.

If you Run TLIB under OS/2, you should useTLIB2.EXE for command-
line work. Under DOS or Windows 3.1x, use the DOS-extended version of
TLIB, TLIBX.EXE , for command-line work, rather than the real-mode
TLIBDOS.EXE. Under modern versions of Windows, use the 32-bit TLIBs:
TLIB32C.EXE and the 32-bit Windows GUI version.

For users of the DOS versions of TLIB,the preferred methodof handling
large files is to configurePASSSIZE 16000 and MULTIPASS Yand run the
DOS-extended TLIB, TLIBX.EXE .

If MULTIPASS Y is configured, TLIB is able to handle arbitrarily large
source source files, by processing them with multiple “passes” of PASS-

SIZE lines (or binary records) each. The additional passes will degrade
performance somewhat, but only for files of more thanPASSSIZE lines;
shorter files will be processed just as efficiently as before.

If you have plenty of extended memory available (and a DPMI, VCPI, or
XMS memory manager, such as that provided by Windows, EMS386, or
HIMEM), and you need to handle many extremely large files, then the
simplest and most efficient solution is to configurePASSSIZE 16000 and
MULTIPASS Y, and run TLIBX.EXE instead of the regular DOSTLIB.EXE .
However, when processing small files,TLIBX.EXE is somewhat slower

335

than the regular, real-modeTLIB.EXE (and much slower thanTLIB2.EXE

under OS/2 or TLIB32C.EXE under modern versions of Windows).

Note #1:to decreaseTLIB 's memory usage, you mustdecreasethe PASS-

SIZE (or MAXLINES) setting. This slows down TLIB somewhat, by
increasing the number of passes required, but it cuts memoryrequirements
by reducing the number of lines that are kept in memory at one time.

Note #2:These paramters affect the fundamental structure of the TLIB li-
braries, so if you change them to make TLIB work with a large source file,
you must delete the TLIB library and create a new one with the Ncom-
mand before the new settings take effect (or convert it with TLIBTLIB.EXE

or TLIBTLIB.AWK , see p. 296). Simply changingPASSSIZE (MAXLINES)
will not work!

TLIB divvies up the available RAM memory into two kinds of buffer area:
the line buffer, and the text buffer. The line buffer requires 8 bytes per
source file line, or 32,000 bytes for a 4000 line buffer. Thisstorage is used
even if your file is less than 4000 lines long. The text bufferuses the rest
of the available RAM; the “fullness” of the text and line buffers is indicat-
ed by the “memory % used...” messages which the real-mode version of
TLIB often displays.

The PASSSIZE (or MAXLINES) parameter provides you with a way to
change the size of the line buffer. However, increasing the line buffer size
will reduce the amount of memory left for the text buffer. Conversely, de-
creasing thePASSSIZE parameter will free up some additional memory for
the text buffer. If you are using the real-mode version of TLIB, you may
need to decrease thePASSSIZE parameter if your computer does not have
very much RAM memory. ThePASSSIZE parameter can be set as high as
16380, but this is only useful if your source files are made upof extremely
short lines, unless you are runnning one of the the protectedmode editions
of TLIB. 7000-8000 is the practical limit for typical program source code
on a 640K PC, and 3000-4000 is good choice for most users of thereal-
mode DOS version of TLIB.

Note #3:Large source files with unusually long lines will generallyrequire
that you reduce PASSSIZE to handle them with the real-mode DOS version
of TLIB. The strategy is to choose aPASSSIZE setting which will result in
a “reasonable” portion of the source file being handled at one time, e.g.
100-150kb. A “typical” source file has an average line length of around
20-35 bytes. With the defaultPASSSIZE setting of 4000 lines, this implies
that up to 140kb will be handled per pass (35x 4000 = 140,000). Howev-
er, if you have large source files with lines that average considerably

336

longer than that, you'll need to reducePASSSIZE (MAXLINES) to manage
them with the real-mode DOS version of TLIB. (An easier/better solution
is usually to use a protected-mode version of TLIB such as TLIBX.EXE .)

Example: suppose you have a 500kb source file, which is 7500 lines long.
The average line length is 75 bytes (500,000 / 7500 = 77). To make TLIB
handle the file in four “chunks” of about 125kb each, you would need to
set PASSSIZE to a little over 1/4 of 7500, i.e. about 2000,. WithPASS-

SIZE 4000 , TLIB would try to handle the file in only two passes (of 4000
and 3500 lines, respectively), which would require that TLIB be able to
process over 250kb at a time. (This is not a problem for protected-mode
versions of TLIB, but itmight not work with TLIBDOS.EXE unless you
have an unusually large amount of free “low” memory. Note that TLIB's
memory requirements increase somewhat as the library file grows.)

Note: For FILETYPE BINARY, the adaptive algorithm TLIB uses generally
results in an effective internal record size (or “granularity”) of about 20-30
bytes. Thus, forFILETYPE BINARY it is rarely necessary to change the
PASSSIZE (or MAXLINES) setting to handle small binary files. But to most
efficiently handle binary files of more than about 80K, you should use a
protected-mode version of TLIB, such asTLIBX.EXE , and configure
PASSSIZE 16000.

Users of the real-mode DOS version of TLIB can obtain a good idea of the
best choice forPASSSIZE by creating and updating an experimental library
file for one of your largest source files (important: do this test withMUL-

TIPASS mode disabled, i.e., “MULTIPASS N”). TLIB will display the
percentage of the text and line buffers which was used, like this:

 Memory 38% used up. Line buffer 59% full.

We recommend that you choose aPASSSIZE value which results in the
line buffer being more nearly used up than the text (“memory”) buffer; the
38%-59% example, above, is fine. If you find that the “memory% used”
approaches or exceeds the “line buffer % used” with a default(4000 line)
buffer, then you should reduce thePASSSIZE parameter. You'll still be
able to handle large files if you enable MULTIPASS Y .

If TLIB runs out of text buffer before filling the line buffer, it will resort to
a “garbage collection” process to try to handle the library file. If that fails,
TLIB will display an “Out of memory” error message and abort the opera-
tion. So be very sure to select thePASSSIZE (or MAXLINES) parameter
conservatively!

337

Important: once you have created a library file, you cannot later reduce
TLIB's memory requirements for that library file by reducing the PASS-

SIZE (or MAXLINES) parameter, since thePASSSIZE value is stored in the
library file, and affects its structure. You can, however, use the DOS-ex-
tended version of TLIB,TLIBX.EXE , instead of TLIB.EXE . Or, you can
convert the library file to have a smallerPASSSIZE, with the
TLIBTLIB.EXE (or TLIBTLIB.AWK) conversion utility (see p. 296). Or, in a
pinch, you could split the library file with the NS command (see p. 239).

Example: Here we set MULTIPASS to enabled (Y), and set PASSSIZE (MAX-

LINES) to 4000 lines, which are the defaults for the real-mode DOS
version of TLIB, TLIBDOS.EXE:

 multipass Y
 passsize 4000

Cmpr and Tlmerge/Diff3 parameters

CMPR is the TLIB stand-alone “delta” generator (compare utility). The
output is a “differences” file.

DIFF3 is a 3-way compare utility which will combine two independent
sets of changes to the same source file. The output is a new source file
with both sets of changes. Note that DIFF3 isnot compatible with the
Unix™ utility by the same name.

For how to use these tools, see pages 225 and 233.

There are several configuration parameters for adjusting the behavior of
these two tools:

338

ADDCTRLZ <Y/N>

The addCtrlZ configuration parameter is used by CMPR and DIFF3, as
well as by TLIB (see p. 276).

CMPRENTAB <Y/N>
CMPRDETAB <Y/N>
DIFFLINES <100-16380>

These three configuration parameters are used only by CMPR and DIFF3.
The CmprEntab andCmprDetab parameters affect the treatment of tabs
and blanks. TheDiffLines parameter determines the internal line buffer
size for CMPR and DIFF3 (like MAXLINES does for TLIB).

CmprEntab determines whether multiple blanks will be converted to tabs
before the comparison is performed.CmprDetab determines whether tabs
will be expanded to blanks in the output file.

Both of these default toN (disabled). If you set them toY (enabled), tabs
are equivalent to blanks, and there will be no tab charactersin the output.
If you set CmprEntab Y , but leave CmprDetab N , then the output will be
smaller because blanks will be converted to tabs wherever possible.

If you leave both CmprEntab N and CmprDetab N , then CMPR will not
perform any blank/tab conversions, and lines containing tabs will not be
considered the same as lines which appear identical but contain only
blanks.

The fourth combination of parameters,CmprEntab N and CmprDetab Y ,
is legal but not very useful.

If each of the input files contain at mostDiffLines lines, then CMPR and
DIFF3 will handle them in one “pass.” Otherwise, the files will be handled
in several pieces (which is slightly slower and occasionally less “robust”).

Multi-pass operation works well with both DIFF3 and CMPR, unless there
are really massive differences between the files. The default is DiffLines

3000 .

Here we set all three parameters to the defaults:

339

 CmprEntab N
 CmprDetab N
 difflines 3000

D3COLLIDE <line-to-insert>
D3FLAG2 <0-253>," <string>"

D3FLAG3 <0-253>," <string>"

DIFF3 uses the same configuration parameters as CMPR, plus three of its
own: D3collide, D3flag2 and D3flag3.

D3collide changes the special line to be inserted in the output file wherev-
er DIFF3 detects conflicting changes in file2 and file3. It should be
something which is easy to search for with a text editor. The default will
be fine for most users (scan for the “### ”):

 D3collide /* ###Change collision detected! %n */

The “%n” in the flag line is replaced by the file name(s) for the changed
files when the flag is inserted in the output file.

Because changes to a program may well conflict even if no single line in
the base file is altered in both file2 and file3, you may wish to flag all
changes, rather than just those which happen to “collide.”D3flag2 and
D3flag3 are provided for this purpose. To flag all lines which were modi-
fied or inserted in file2 and in file3, respectively, you could define:

 D3flag2 68,"/*###file2*/"
 D3flag3 68,"/*###file3*/"

The string “/*###file x*/ ” will be appended to each changed or added
line, so that you can easily find the changes by searching with a text editor.
The “68” is a column number, which guarantees that the stringwill start at
column 68 or higher. That is, if the line is less than 67 characters long, it
will be padded with blanks before the string is appended.

If you set the D3FLAG2& D3FLAG3columns to 1, then the string will just
be appended to the end of the line, with no blank padding. If you prefer to
have the special string inserted at the beginning of the line, rather than the
end, then you can specify column 0 (zero).

340

PCOM & PCOMS parallel port file
transfer

PCOM is a simple MS-DOS utility for very high speed PC-to-PC file
transfer via back-to-back connected parallel printer ports, using a special
cable (not a “laplink cable”). PCOM is useful for transferring data between
computers which are equipped with incompatible disk drives(i.e., 5.25"
and 3.5").

PCOM transfers data with an effective baud rate of 79-2000 Kbaud, de-
pending upon the speed of the computers which use it. The speed is
roughly proportional to the CPU speed of the slower of the twocompters
(about 7900 bytes/sec on a 4.77 MHz PC).

Because the data transfer is fully handshaked, it is highly reliable and is
completely immune to “missed interrupt” (overrun) errors.Because
PCOM does not disable interrupts, it generally will not interfere with inter-
rupt-driven background tasks, such as communications programs, print
spoolers, local area networks, etc..

PCOM runs on any IBM-PC or compatible MS-DOS computer which has
a parallel printer port.

Abbreviated Operating Instructions

for more extensive instructions (on-line help):

 PCOM

to test the printer ports & reconfigure PCOM:

 PCOM TEST

341

to run as a “server” for the other computer:

 PCOM [port] SERVER

to see a directory list of files on the “server” computer:

 PCOM [port] X:<wild-card-spec>

to send file(s) to the “server” computer:

 PCOM [port] <fromfile> X:<tofile> [options]

to receive file(s) from the “server” computer:

 PCOM [port] X:<fromfile> <tofile> [options]

All names can contain wild-cards and/or drive/directory specifications.
Multiple and leading asterisks are handled properly, but you may not use
file lists. For example:

 PCOM X:a:*ame.* *.*

To exit PCOM at any time, press Ctrl-Break.

Options

The [port] option is needed only if you wish to override the default
choice of printer ports. You can specify it either as a printer device (-pLP-

T1, -pLPT2 or -pLPT3), or as a hexidecimal address (-p378 , -p278 or
-p3BC).

The other options are:

-C Calculate and check CRCs

-M Make subdirectories if necessary (often used in combination with -S)

-S Recurse through tree of Subdirectories

342

-N Transfer only Newer files

-T Just Test, don't really transfer files

If you specify -C , then after each file is transferred, PCOM will close the
file, reopen it, read it from the disk, and calculate a 16-bitCRC checksum.
If the checksum is incorrect, PCOM will display an error message. This
option offers an extra measure of safety to ensure that the file was correct-
ly transferred and that it can be read from the disk without error. Of
course, the file transfer will be a bit slower.

Normally, PCOM will replace already existing files withoutwarning, just
like the DOS copy command. However, if you specify the-N option,
PCOM will only replace a file which is “older” than its replacement. For
most files, the determination of which file is “older” is done in the obvious
way, by checking the file dates.

Special -N handling of TLIB libraries

PCOM has special handling which is used when you copy TLIB libraries
with PCOM's -N option. (PCOM detects whether a file is a TLIB library
by checking whether the first two bytes are “.V ”.) For TLIB libraries, the
“newness” depends, not upon the file dates, but upon the filesizes. Usual-
ly, the shorter of two identically named TLIB library files is “older.”
(Since TLIB always appends new deltas to the end of a library file, the li-
brary file can only grow.) But if both library files have beenupdated, this
is not true; neither of them can be considered “newer,” sincereplacing ei-
ther file with the other would cause a loss of data. So, in addition to
comparing the file sizes, PCOM compares a CRC checksum for the small-
er library file to a CRC calculated from the first part of the larger file, to
determine whether the shorter library file contains a subset of the versions
in the larger one. If not, then the shorter file may contain versions not
present in the longer (“newer”) file. If PCOM detects this situation, a
warning is issued and the file is not copied; the warning alerts you to the
fact that you need to compare and reconcile the new versions in the two li-
braries (DIFF3 can help with this chore).

This feature is helpful if you take work home on a lap-top computer. You
can copy the library files to your lap-top computer, take it home and do
your work, and then, when you return, you can safely update the “at-work”
versions of the library files even if you hadn't checked the modules out for
modification. (Warning: PCOM does not understand TLIB's check-in/out

343

locking mechanism, so it doesnot warn you if someone else has a file
checked-out for modification.)

PCOMS - a background PCOM server

The trouble with running PCOM SERVER as described above is that it
monopolizes the “server” computer. To avoid this problem, we have de-
veloped a memory resident (TSR) version of the PCOM server,
PCOMS.EXE. It runs in the background, using up about 31K of RAM memo-
ry, and allows you to continue to use your “server” computer for other
things, even as you access its disks via PCOM.

To run PCOMS as a background server for the other computer:

 PCOMS [port]

If you have purchased multiple copies of TLIB, or a multi-station license,
you can even run two or three copies of PCOMS on the “server” machine,
to simultaneously service two or three other computers connected to two
or three printer ports. (To configure PCOMS for such an environment, you
could run PCOM TESTto configure PCOMS for one port, then savePCOM-

S.EXE under another file name, then switch cables, runPCOM TESTagain,
etc..)

PCOM 5.00k changes

PCOM now supports additional options; run it without parameters for
help.

PCOM and PCOMS now have improved support for non-standard printer
ports, and an improved REMOTE (“remote control”) mode.

Also, PCOM 5.00k now supports the following extended wild-card syntax:

 PCOM x: wild-card-spec d:**.* or
 PCOM wild-card-spec x: d:**.*

where “d: ” is a drive specification. This syntax tells PCOM to copy files
to the same directory and file name, except onto a different drive letter. If

344

the “d: ” is left off, then the destination file will go to the same drive letter
as the source file:

 PCOM x: wild-card-spec **.* or
 PCOM wild-card-spec x:**.*

Note that PCOM is a DOS-only program (though it also runs in the DOS
boxes of OS/2 1.3 and later).

There are a few idiosyncrasies when running PCOM under OS/2 2.x:

a) If you use OS/2 2.x, you'll have to use the “-p ” option to tell PCOM
which printer port to use; the default is generally wrong. Alternately, you
can run “PCOM TEST” on both computers (simultaneously) to re-configure
PCOM.

b) Under OS/2 2.x, PCOMS (the TSR server) is slow. It may be that one of
OS/2's VDM (DOS box) settings could be adjusted to solve this. Or, just
run “PCOM SERVER”.

c) Under OS/2 2.x, PCOM may often pause before exiting. This is due to a
problem in the OS/2 printer port driver, which was fixed in later versions
of OS/2.

d) “PCOM SHELL” doesn't work under DOS 5 or 6 or an OS/2 “DOS box.”
However, remarkably enough, it seems to work fine under native MS-DOS
4.01 running in an OS/2 2.x VDM.

Examples

 PCOM -p3BC *.txt x:c:*.* -c (copy using port 3BCH, with CRCs)

 PCOM c:*.* -s (list all files on remote computer's C: drive)

 PCOM -pLPT1 *.txt x:c:\z*.* -m (copy via LPT1, & “mdir c:\z ”)

 PCOM x:*.* p*.* -m (copy from server using default, with “mdir p ”)

 PCOM c:*.* x:c:*.* -s -m (copy whole disk, except hidden files)

 PCOMS -pLPT1 (install background server on LPT1)

 PCOM -pLPT1 REMOTE (remote-control the server's screen & keyboard)

345

Configuration

Connect the special printer cable between the parallel printer adapters of
the two computers.

PCOM is initially set up to use your last printer port (probably address 378
hex if you have two of them). To use a different printer port, you can use
the -p command line option to select the port, or connect the cable and
run “PCOM TEST” on both computers.

If you run PCOM TEST, PCOM will offer to patch itself (and PCOMS), if
necessary, to use the correct default port. If you are using DOS 2.x,
PCOM.EXEand PCOMS.EXEmust be in the current directory when you do
this.

You can also patch the printer port address manually. The value to be
patched is near the end of thePCOM.EXEand PCOMS.EXEfiles, and is im-
mediately preceded in the file by the string “port= ”. Normal values are
378, 3BC or 278 hex.

Note that you can always override the default by specifying the “-p ” (port)
option on the PCOM command line.

Copyright/license

PCOM is not of much use when run on only one machine at a time! So
we're making an exception to the copyright/license terms for the single-us-
er version of TLIB, to allow you to use PCOM ontwo computers at a time.
This applies only to PCOM, not to the other programs in the TLIB pack-
age.

This product uses the TesSeRact™ Ram-Resident Library and supports the
TesSeRact Standard for Ram-Resident Program Communication. TesSeR-
act is a trademark of the TesSeRact Development Team. TesSeRact
information could formerly be obtained from The TesSeRact Development
Team, c/o Innovative Data Concepts (a Pennsylvania company), Chip Ra-
binowitz, President. Innovative Data Concepts sold an improved,
commercial version of TesSeRact, called the “TesSeRact RAMResident

346

Development System.” Unfortunately, the TesSeRact Development Team
has disbanded, IDC has gone out of business, and we are unableto locate
Chip.

Cable

PCOM needs a special cable to connect the printer ports of thetwo com-
puters. The cable requires eleven wires and two 25-pin male “D” shell
connectors. It should be wired like this:

 I/O

�

 name

�

 pin

�

 pin
 � � � � �

�
� � � � � � �

�
� � � � � � �

�
� � � � � �

 out

�

 DB3

�

 5

�

 15
 out

�

 DB4

�

 6
�

 13
 out

�

 DB5

�

 7
�

 12
 out

�

 DB6

�

 8

�

 10
 out

�

 DB7

�

 9

�

 11
 in

�

 -ACK
�

 10

�

 8
 in

�

 -BUSY
�

 11

�

 9
 in

�

 +PE
�

 12

�

 7
 in

�

 +SLCT

�

 13

�

 6
 in

�

 -ERR

�

 15

�

 5

�
 GND

�

 18-25

�

 18-25

Actually, you usually do not need to attach GND to all eight ground pins...
just pin 18 is enough for most computers. For minimum RFI radiation, you
should also attach the cable shield to GND at both ends.

We've seen PCOM work with cables up to 75 feet long, but we recom-
mend that you try to keep the length below 25 feet, especiallyin “high
noise” environments. If the cable is more than 10 feet long, we recom-
mend that you use “low capacitance” wire.

The cable is completely symmetrical. It does not matter which end is con-
nected to which computer.

For those who prefer not to make their own cables, we stock sixfoot
PCOM cables for $30.00 (plus shipping, 1 lb.).

347

Expandir

EXPANDIR is used to pre-allocate disk subdirectory space, for improved
performance.

The problem is that when a DOS subdirectory grows beyond a single disk
cluster in length, a second cluster will be allocated, normally far from the
first. Thus, multi-cluster subdirectories are generally severely fragmented.
This is why file access tends to be so slow in subdirectories which contain
many files: each time an operation is done which requires accessing the di-
rectory (e.g., an “open”), a lengthy “seek” operation must be done for each
directory cluster.

EXPANDIR forces DOS to add the needed directory clusters ahead of
time, which usually results in a contiguous or near-contiguous directory,
for much improved disk performance. A hard disk with 2K clusters can
hold 62 files in the first cluster of a subdirectory, and 64 files in each addi-
tional cluster. Thus, you may wish to use EXPANDIR on any subdirectory
in which you plan to store 63 or more files.

EXPANDIR is intended for use only on “normal” DOS subdirectories. It
will not work on “root” directories (which are of fixed length), and it is
unlikely to improve performance on WORM optical drives or Novell net-
work file servers.

For instructions on how to use EXPANDIR, run it with no parameters.

348

Testlock

TESTLOCK is our tool for testing network and OS network file-sharing,
locking and related functions.

TESTLOCK is mostly used in either of two automatic test modes:

 AUTO tests file sharing/locking on a single machine
 AUTO2 uses two machines for a more thorough test

We include five versions of the TESTLOCK executable:

 TESTLOKR.EXE - real-mode DOS
 TESTLOKP.EXE - 16-bit OS/2+NT+DOS ("bound" family-mode)
 TESTLOK2.EXE - 32-bit OS/2
 TESTLK95.EXE - real-mode Win-95 (uses Int 21H LFN functions)
 TESTLK32.EXE - Win-32 (for Windows-9x/Me/NT/2K/XP)

All five versions are functionally identical, except that they were compiled
and linked for different operating environments.

Most versions of TESTLOCK will run under more than one PC operating
system. For the most thorough test of your operating system and network
file I/O, we recommend that you test it with all versions of TESTLOCK
which will run on your operating system. Some network clientdrivers
have bugs which only affect certain subsystems. Thus, it is not safe to as-
sume that your network software is working correctly after testing with
just one version of TESTLOCK.

This table shows which versions of TESTLOCK can be run under each of
several common PC operating systems:

 TESTLOKR | TESTLOKP | TESTLOK2 | TES TLK95 | TESTLK32 |
 ------------+----------+----------+----------+---- ------+----------|
 MS-DOS | Yes/8.3 | Yes/8.3 | No | N o | No |
 Windows 3.1 | Yes/8.3 | Yes/8.3 | No | N o | No |
 Windows 95 | 8.3 | 8.3 | No | Y es | Yes |
 Windows NT | 8.3 | Yes | No | N o | Yes |
 OS/2 1.3 | 8.3 | Yes | No | N o | No |
 OS/2 2.x | 8.3 | Yes | Yes | N o | No |
 OS/2 Warp | 8.3 | Yes | Yes | N o | No |

349

 Where:
 Yes means that it runs
 8.3 means that it runs, but only using short file names
 No means that it won't run

The various versions of TESTLOCK test the I/O methods used byvarious
versions of the TLIB Version Control System:

 Program Does I/O similarly to...
 -- -----------------

 TESTLK32 Win-32 versions of TLIB
 TESTLK95 TLIBX.EXE and 16-bit TLIB for Windows
 TESTLOK2 (most 32-bit OS/2 programs – not any version of TLIB, though)
 TESTLOKP TLIB2.EXE
 TESTLOKR TLIBDOS.EXE

Common Usage:

 {PROGRAM} {PATH} {OPTION}

where:

{PROGRAM} is one of the 5 versions of TESTLOCK

{PATH} is not optional, and should generally be in one of these forms:

 d:\subdir\
 \\server\vol\subdir\

{OPTION} is not optional, and must one of the following:
AUTO tests file sharing/locking on a single machine
AUTO2 uses two machines for a more thorough test

Example:

 testlokr c:\ auto2

For more detailed instructions, see the file TESTLOCK.TXT.

350

Touch

Purpose: Set a file's date & time to “now”

Usage: TOUCH filename

where filename is the path of the file whose date/time you wish updated.
You can use wild-cards and file lists to specify multiple files.

TOUCH is a little program to change the “last modified” date and time for
a file to be the current date and time. It is sometimes handy when you are
using MAKE, since it provides a convenient way to force a subsequent
build (compile, link or whatever). Just “touch” any file in the dependency
list(s) (to the right of the colon) for the build step(s) which you want to
force.

TOUCH has a couple of advantages over simply editing a file and then im-
mediately saving it without any changes (which will also setthe date and
time to “now”). For one thing, TOUCH can be used on any file, not just
text files.

Also, TOUCH will not set the DOS “archive” attribute, which would
cause the touched file be needlessly saved again in your nextincremental
backup (most backup utilities, including DOS backup, use the archive at-
tribute to decide which files need to be saved). Youdo make regular
backups, right?

And, of course, TOUCH is very fast, since the file is not actually copied or
modified in any way.

351

Make

Another difficulty faced by developers using multiple source code files is
not really related to library maintenance. It is the problemof doing the
compiles, links, etc. needed to keep the.OBJ , .EXE , etc. files up to date
with the source files.

Suppose you have an “include file” which is used by many of your source
files, and you make a change to it. Which source files should you re-com-
pile, and which .EXE modules should you re-link?

The developers of UNIX™ hit upon an elegant solution: createa file
(called a “makefile”) describing the dependencies (e.g., whicch .OBJ files
depend upon which source files). Then a program can examine the depen-
dencies and the date/time each file was last modified to determine which
compile and link commands are needed.

The program was called MAKE, and today there are many companies sell-
ing MAKE utilities, most of them bundled with other programs.. Burton
Systems Software does not sell a MAKE utility. However, we cooperate
with another vendors who sell an excellent MAKE utility, andwe also
give our customers a copy of a primitive public domain MAKE program
written (mostly) by Mr. Landon Dyer.

Dyer MAKE is not copyrighted, so you may do anything you wish with it.
However, he does ask that you please donot sell it, either with or without
modification. Please respect his wishes.

Dyer MAKE is supplied with full source code (inMicrosoft™ C 6.0, port-
ed from Borland'sTurbo-C™ and (before that)Lattice™ C 2.13).
Incidentally, Landon tells us that it can also be compiled and run under
VAX/VMS.

Note #1:MAKE can be used to update your TLIB library files whenever
you change your source files. However, it is simpler and faster to use
TLIB's UF (fast update) command, which has the same effect.

352

Note #2:Landon Dyer MAKE is a very “vanilla” tool. It lacks some of the
features of Unix MAKE (we especially miss “inference rules”), and it
lacks the marvelous “automatic dependency generators” provided by the
better commercial MAKE utilities, such asOpus MAKE. We cooperate
with Opus Software to ensure that Opus Make and TLIB Version Control
work together well.

Opus Software (Opus™ MAKE and MKMF)
http://www.opussoftware.com/
1032 Irving St., Suite 439-B, San Francisco, CA 94122
Phone: (415) 485-9703 Fax: (415) 485-9704

Syntax

The format of the MAKE command for Dyer MAKE is:

 MAKE [-N] [-A] [-F file] [name ...]

 where:
 -F: use file instead of default makefile
 -A: assume all modules are obsolete (rebuild everything)
 -N: don't recompile, just list steps to recompile
 name: module name(s) to recompile

Files

Dyer MAKE consists of the following files:MAKE.BAT (or MAKE.CMDun-
der OS/2), MAKEEXE.EXE, andDELBAT.BAT (plus the source code).
When you use MAKE, these three files should be in either the current di-
rectory or in a directory mentioned in your PATH.

A temporary file calledMAKE$$$$.BAT is created by MAKE; this file will
be deleted when MAKE has finished (unless DELBAT.BAT is missing).

Description

MAKE is a utility inspired by the Unix™ command of the same name.
MAKE helps maintain programs that are constructed from manyfiles.

353

MAKE processes a “makefile”, which describes how to build a program
from its source files, then produces and runs a .BAT (“script”) file contain-
ing the commands necessary to re-compile the program. (Note: “script” is
Unix lingo for “.BAT ”)

Be careful: this MAKE is not compatible with Unix™ MAKE!

The “-N ” option causes MAKE to print out the steps it would follow in or-
der to rebuild the program. The “-A ” option tells MAKE to assume that all
files are obsolete, and that everything should be re-compiled. The “-F ” op-
tion, followed by a filename, can be used to specify a makefile other than
the default one.

If no names are specified on the command line, the first dependency in the
makefile is examined. Otherwise, the specified root names are brought up
to date (the root names are the things you want rebuilt; that is, the names
you specify on the DOS command line).

The default makefiles are:

 MAKEFILE
 ..\MAKEFILE

If the first makefile cannot be found, MAKE attempts to use the next one.
If no makefile is ever found, MAKE prints a diagnostic and aborts.

The Makefile

Comments begin with “#” and extend to the end of the line. A “#” (or al-
most any other character) may be escaped with the escape character, the
backquote (̀). An escape character may be typed by doubling it (``). The
standard C language escape codes are recognized:

`n ASCII 10, line feed
`r ASCII 13, carriage return
`t ASCII 9, tab
`b ASCII 8, backspace
`f ASCII 12, form feed

A makefile is a list of dependencies. A dependency consists of a root
name, a colon, and zero or more names of dependent files. (Thecolon
MUST be preceded by whitespace.) For instance, in:

354

 make.exe : make.obj parsedir.obj file.obj mk.h

the file “make.exe ” depends on four other files. A root name with an emp-
ty dependency, as in:

 print :

is assumed never up to date, and will always be re-compiled.

The dependency list may be continued on successive lines:

 bigfile.exe : one.obj two.obj three.obj
 four.obj five.obj six.obj gronk.obj
 freeple.obj scuzzy.lnk frog.txt greeble.out

Any number of “method” (DOS command) lines may follow a dependen-
cy. Method lines begin with whitespace (blank or tab). When afile is to be
re-compiled, MAKE copies these method lines (minus the leading blanks
or tab) to the script (.bat) file. For example, in:

 make.exe : make.obj parsedir.obj file.obj macro.ob j mk.h
 link make,parsedir,file,macro
 echo "Another version of MAKE..."

the two lines following the dependency make up the method forre-linking
the file “make.exe ”.

If the macro “~INIT ” is defined, its text will appear first in the script file.
If the macro “~DEINIT ” is defined, its text will appear last in the script file.
By defining these two macros, it is possible to set the directory or whatev-
er:

 ~INIT = echo on`ncd \workdir`nif not exist
 qwarkle.xyz goto exit (should be all 1 line)
 ~DEINIT = :exit`ncd \
 ~DEINIT = $(~DEINIT)`necho "Done."

this will expand (in the script file) to:

 echo on
 cd \workdir
 if not exist qwarkle.xyz goto exit
 . . .

355

 :exit
 cd \
 echo "Done."

When a root's method is defined, the value of the macro “~BEFORE” is pre-
fixed to the method, and the value of the macro “~AFTER” is appended to
it.

Frequently one wants to maintain more than one program with asingle
makefile. In this case, a “master dependency” can appear first in the file:

 allOfMyToolsAndHorribleHacks : cat peek poke.exe g runge
 cat : cat.exe
 cat.exe : (stuff for CAT.EXE)
 peek : peek.exe
 peek.exe : (stuff for PEEK.EXE)
 poke.exe : (stuff for POKE.EXE)
 grunge : grunge.com
 grunge.com : (stuff for grunge)

In other words, MAKE will bring everything up to date that is somehow
connected to the first dependency (the incredibly lengthy filename speci-
fied in this example can't actually exist).

Macros

A macro is defined by a line of the form:

 <macro-name> = <macro-body>

The =̀' MUST be surrounded by whitespace. A macro may be deleted by
assigning an empty value to it. Macros may be redefined, but old defini-
tions stay around. If a macro is redefined, and the redefinition is later
deleted, the first definition will take effect:

 MAC = first ! MAC = "first"
 MAC = second ! MAC = "second"
 MAC = $(MAC) third ! MAC = "second third"
 MAC = ! MAC = "second"
 MAC = ! MAC = "first"
 MAC = ! MAC has no definition

A macro may be referenced in two ways:

356

 $<char> or $(macro-name)

The first way only works if the macro's name is a single character. If the
macro's name is longer than one character, it must be enclosed in parenthe-
sis. [“$” may be escaped by doubling it (“$$”.)] For example, in:

 G = mk.h mk1.h
 OBJS = make.obj file.obj parsedir.obj macro.obj
 BOTH = $(OBJS) $G

 make.exe : $(OBJS) $G
 make.exe : $(BOTH)
 make.exe : mk.h mk1.h make.obj file.obj
 parsedir.obj macro.obj
 echo "This is a dollar sign --> $$"

after macro expansion, the three dependencies will appear identical and
the two “$”s in the last line will turn into one “$”.

DOS Environment variables

All MS-DOS environment variables are available within MAKEas pre-de-
fined macro names which begin and end with “% ”. For example, the DOS
command processor (usuallycommand.com) is selected by theCOMSPEC

environment variable, so you could specify it as$(%COMSPEC%)in your
makefile. For example, you could run a DOS.bat file called compile.-

bat like this:

 myfile.obj : myfile.c
 $(%COMSPEC%) /C compile myfile.c

Unix™ MAKE and this one

They arenot the same. Do not expect Unix makefiles to work with this
MAKE, even if you change the path names. There are some major differ-
ences between this version and the standard Unix™ MAKE:

1. Multiple root names are not allowed. Unix MAKE accepts lines of the
form:

 name1 name2 : depend1 depend2

357

but this one doesn't.

2. With Unix MAKE, method lines must be preceded by a tab character.
Since TLIB (and some MS-DOS editors) can convert tabs to blanks, this
version of MAKE allows method lines to be preceded by either blanks or
tabs.

3. There is no equivalent of double-colon (“:: ”).

4. There is no equivalent of.SUFFIXES , or the corresponding special
macros.

5. This MAKE has a unique feature: it is “integrated” with TLIB and
PKPAK (a/k/a: PKARC). That is, MAKE can check the dates of particular
versions or branches within a TLIB library file, and of fileswhich are
stored in a PKPAK-style archive file (but not a PKZIP-style.ZIP archive
- sorry).

To specify TLIB versions and branches in your MAKEFILE, simply put
the version you want in brackets after the file name, like this:

 myfile.c : myfile.c$$[4.*]
 tlib ebs myfile.c 4.*

You can also use a TLIB file list or snapshot version label to specify the
version. For example,

 myfile.c : myfile.c$$[@beta,myfile.c]
 tlib ebs myfile.c @beta

Note: Most users needn't use this feature of MAKE to ‘integrate’ itwith
TLIB. Instead, simply addEqualDate Y to your TLIB configuration file,
and you can set up your MAKE dependency to check the date of theli-
brary file, since the library file date will be the same as thedate of the
newest version within the library file. This is much faster,since MAKE
will not need to read all your TLIB library files. (For this towork, you
would not want to configure OldDate N). See pp. 267 and 275.

To get MAKE to test the date of a file which is stored in compressed form
within a .ARC archive file, just pretend that the archive file is a directory.
For example,

 fino.exe : d:\fino.arc\fino.c stdio.h

358

 pkunpak d:\fino fino.c
 cc fino
 link fino,fino,,lc
 del fino.c

PKware is obsolete. . Sorry, but we've not integrated Dyer MAKE with
PKWare's current product, PKZIP.

Sample Makefile

 # MS-DOS Make utility
 # (compile with Lattice C version 2.13)
 #
 # Adjust these for your system:
 CLIB = \lc\s\lc
 COBJ = \lc\s\c
 ~INIT = echo on
 ~DEINIT = :xit

 H = makedefs.h
 C = make.c macro.c token.c parsedir.c file.c
 FILES = $H $C osdate.asm
 DOCUMENTATION = readme make.man makefile

 make.obj : make.c`$ $H
 tlib e make.c
 if errorlevel 1 goto xit
 lc1 make
 lc2 make
 if errorlevel 1 pause Errors!
 erase make.c

 macro.obj : macro.c $H
 lc1 macro
 lc2 macro

 token.obj : token.c $H
 lc1 token
 lc2 token

 parsedir.obj : parsedir.c $H
 lc1 parsedir
 lc2 parsedir

 file.obj : file.c
 lc1 file
 lc2 file

 osdate.obj : osdate.asm
 masm osdate;

 # print the files associated with MAKE

359

 print :
 print make.man $(FILES) makefile

 # copy to distribution disk (on A:)
 distribution :
 copy readme a:
 copy make.man a:
 copy makefile a:
 copy make.bat a:
 copy make.c a:
 copy macro.c a:
 copy token.c a:
 copy parsedir.c a:
 copy file.c a:
 copy osdate.asm a:
 copy cmake.bat a:
 copy make.lis a:
 copy makeexe.exe a:
 copy makedefs.h a:

 # link the MAKE utility
 makeexe.exe : make.obj macro.obj token.obj
 parsedir.obj file.obj osdate.obj

 link $(COBJ) make macro token parsedir file osdate,m
akeexe,,$(CLIB) (should be all on 1 line)

How Make utilites work

If you are not used to working with MAKE utilities, you may be abit con-
fused at this point. So let's work through a sample edit and build session in
detail, using the following makefile:

 #makefile for "a.exe" project
 a.exe : a.obj b.obj
 rem Link .obj files together w/ DOS linker
 link a+b,a,,
 a.obj : a.c c.h
 rem Compile a.c w/ Lattice, producing a.obj
 lc a
 b.obj : b.c c.h d.h
 rem Compile b.c w/ Lattice, producing b.obj
 lc b
 x.exe : x.c
 lc x
 link x,x,,

360

 everything : a.exe x.exe
 REM Rebuild both a.exe and x.exe

The first four lines are, respectively: a comment line; a “dependency line”
which says thatA.EXE depends upon bothA.OBJ and B.OBJ ; and then
two lines of DOS commands (“build rules”) to createA.EXE from A.OBJ

and B.OBJ . On the dependency lines, the name to the left of the colon is
the file to be made, called the “target,” and the list of nameswhich follow
the colon is called the “prerequsite list.”

here are five source files mentioned in this makefile:A.C , B.C , C.H. D.H

and X.C . The five source files are used to build two programs,A.EXE and
X.EXE. The compiler command “lc ” is used to compile the C language
source files, and the standard DOS linker is used to createA.EXE and
X.EXE from the object files.

Assume that initiallyA.EXE and X.EXE are both up to date and consistent
with the source files. Then you edit the fileD.H to fix a bug; none of the
other source files are modified. Then you type the command

 make a.exe

First, MAKE finds the dependency line with “A.EXE” on the left-hand
side.A.EXE depends uponA.OBJ and B.OBJ . The rule is that the associat-
ed command(s) must be done whenever the left hand file is either missing
or is older than one or more of the right hand files, and the rule is applied
recursively.

In this case,A.EXE is the target andA.OBJ & B.OBJ are the prerequsites.
If either A.OBJ or B.OBJ is newer thanA.EXE, then A.EXE must be re-
built (the link command must be done).

Initially, A.EXE exists and is not newer than either of the.OBJ files, but
since the rule is applied recursively, MAKE must first decide whether ei-
ther of the .OBJ files must be rebuilt before it can decide about A.EXE .

So MAKE looks for a dependency line withA.OBJ ast the target (on the
left); it finds one, and determines thatA.OBJ depends uponA.C and C.H.
It examines the file dates and finds thatA.OBJ is newer than eitherA.C or
C.H. Since neitherA.C nor C.H appears as the target (left-hand side) of a
dependency, MAKE concludes that A.OBJ does not need to be rebuilt.

361

Then MAKE looks for a dependency withB.OBJ as the target; it finds
one, and determines thatB.OBJ depends uponB.C and the include files
C.H and D.H. It examines the file dates and finds that whileB.OBJ is new-
er than eitherB.C or C.H, it is older than D.H. Thus, MAKE determines
that it will be necessary to rebuild (compile) B.OBJ .

Before it actually emits the compile command, MAKE must first check
whether any of the files whichB.OBJ depends upon must also be rebuilt;
if so, then they must be rebuilt beforeB.OBJ is rebuilt, since B.OBJ de-
pends upon them.

However, none of three files whichB.OBJ depends upon appears on the
left side of a dependency. So MAKE can now emit the commands associ-
ated with rebuilding B.OBJ :

 rem Compile b.c w/ Lattice, producing b.obj
 lc b

Since B.OBJ is being rebuilt, MAKE must also emit the commands to re-
build A.EXE , as well (because A.EXE depends upon B.OBJ):

 rem Link .obj files together w/ DOS linker
 link a+b,a,,

Many MAKE utilities actually execute the specified commands immedi-
ately when they are emitted. Landon Dyer's MAKE, however, just writes
them to a temporary batch file,MAKE$$$$.BAT, which is executed by
MAKE.BAT as soon as the MAKE program (MAKEEXE.EXE) completes. This
has the advantage of leaving more available RAM memory for the compil-
ers, linkers, etc. (since the MAKE program is not in memory when they
run), and it allows you to use DOS batch file commands like “if ” and
“goto ” in your makefile.

The complete MAKE$$$$.BAT batch file created by our example above
was:

 rem Compile b.c w/ Lattice, producing b.obj
 lc b
 rem Link .obj files together w/ DOS linker
 link a+b,a,,

Note that this is exactly the correct sequence of commands needed to re-
build A.EXE after E.H has been modified. Neat, eh?

362

If you typed “make a.exe ” again, MAKE would find that bothA.OBJ and
B.OBJ are already up to date (newer than the source files upon whichthey
depend), and thatA.EXE is newer than either of them (and is thus also up
do date). So MAKE will conclude that nothing needs to be done,and it
will display the message “No changes” and quit without even creating
MAKE$$$$.BAT.

Okay, you're probably thinking, but what about that strangedependency
line for “everything”? That isn't even a legal file name!

The answer is that MAKE doesn't care whether it is a legal nameor not; to
MAKE, an illegal file name is equivalent to a file which doesn't exist.

Let's see what would have happened if we had typed the command“make

everything ” instead of “make a.exe ”:

First, MAKE finds the dependency with “everything” on the left hand side.
“everything” depends uponA.EXE and X.EXE. The rule is that the associ-
ated build rules (commands) must be done whenever the left hand file is
either missing or is older than any of the right hand files, applied recur-
sively. Since there is no file called “everything”, MAKE knows that it will
need to emit the associated command(s). In this case, the only “build rule”
is a REM line, but MAKE doesn't care; MAKE never even looks at the
build rules; it just echoes them toMAKE$$$$.BAT. (Exception: MAKE can
do macro substitutions in both build rules and dependency lines.)

However, MAKE cannot emit the rebuild command for “everything” just
yet; first it must see if any of the right-hand names (prerequsites) need to
be rebuilt. It checks each of them in turn, and finds thatX.EXE is up to
date. However,A.EXE is older than one of the files which it (indirectly)
depends upon, D.H .

After determining thatD.H does not, itself, need to be rebuilt, MAKE
emits the commands to rebuild A.OBJ and then A.EXE :

 rem Compile b.c w/ Lattice, producing b.obj
 lc b
 rem Link .obj files together w/ DOS linker
 link a+b,a,,

Then, MAKE can emit the command (really just a REMark line) torebuild
“everything”, and the final MAKE$$$$.BAT file looks like this:

 rem Compile b.c w/ Lattice, producing b.obj

363

 lc b
 rem Link .obj files together w/ DOS linker
 link a+b,a,,
 REM Rebuild both a.exe and x.exe

Which is exactly what you wanted: the compile and link commands need-
ed to rebuild just whichever.EXE file(s) depend upon a changed source
file.

Note that if you do “make everything” again, MAKE will find that both .

EXE files are already up to date (newer than the source files uponwhich
they depend), so it will only try to rebuild “everything”. Thus,
MAKE$$$$.BAT will contain only a REMark line (which does nothing),
which is fine since nothing needs to be done.MAKE$$$$.BAT looks like
this:

 REM Rebuild both a.exe and x.exe

364

Easier Keyboard Input

The DOS version of TLIB's keyboard input routines were designed to be
compatible with RETRIEVE (part of Personally Developed Software's
UTILITIES I package, telephone 1-800-IBM-PCSW) and PCED/CED
(from The Cove Software Group, P.O. Box 1072, Columbia, MD 21044,
telephone 301-992-9371), as well as several similar publicdomain pro-
grams (DOSEDIT, NDOSEDIT, etc.). These programs provide PC-DOS
with vastly improved keyboard editing facilities, including a multi-level
“retrieve” key (so that you can recall previously typed commands, edit
them, and re-enter them). If you use one of these programs, you'll find it to
be very handy when you are updating several source files withsimilar or
identical version definition comment lines. To retrieve the previous file's
comment line, simply press the up-arrow key when TLIB's “comment
line?” prompt appears.

You can also use the DOS's DOSKEY program, but it doesn't workas well
because it does not separate DOS and application command histories.

Unfortunately, DOSKEY is apparently the only available command-re-
trieval tool for use in the “DOS box” of recent versions of Windows.

365

File Dates

When you use TLIB's U (update) or N (new library) command, TLIB will
add the source file's creation date to the new version definition comment
line. This is handy if you ever need to retrieve an old versionfrom the li-
brary, since it can help you decide which version you need.

If you do not set the DOS date before creating or modifying your source
file, TLIB will still run, but the date will be omitted from the version defi-
nition stored in the library file.

You can also configure TLIB to store just the date (not the time); see p.
266.

Note that, by default, when you extract a source file with TLIB, the source
file is created with the same date and time that it had when it was stored in
the library. However, you may prefer that the file be createdwith the cur-
rent date and time, rather than the original date. One reasonyou may want
this is to ensure that MAKE will properly reconstruct any.OBJ or .EXE

files which depend upon a newly extracted source file. If youprefer this,
you can change the OLDDATE configuration parameter; see p. 267.

366

Closing

We hope you find TLIB to be as useful to you as it has been to us. Al-
though this software is sold with only a 90 day limited warranty, we want
you, our customer, to be satisfied. If you have any comments,questions or
complaints, please do not hesitate to call or write, even if the warranty has
expired. We will do our best to help.

Our address is:

US mail: Burton Systems Software
P. O. Box 4157
Cary, NC 27519-4157 USA

UPS, etc.: Burton Systems Software
109 Black Bear Ct.
Cary, NC 27513

Our telephone and FAX numbers are:

voice: (919) 481-0149 FAX: (919) 481-3787

On the Internet you can contact us at:

email: support@burtonsys.com
URL: http://www.burtonsys.com/

367

Appendix A: Changes from TLIB 4

Command structure

If you upgrade to TLIB 5.5x from TLIB 4.12 or earlier, the first thing you
are likely to notice is that TLIB 5 no longer uses single-letter commands
(we ran out of letters).

TLIB 5.xx uses multi-character commands. This is much more flexible
than the old single-character commands used in TLIB 4.12.

Each command consists of a single command character plus zero or more
optional suffix characters, to modify its behavior or scope.

For example, whenUpdating libraries, you can choose betweenFast or
regular update, betweenM inor-version-number-incremented or regular
(major) number incremented, either checking-in (unlocking) or Keeping
checked-out, etc. Thus, “UFM” (or, equivalently, “UMF”) meansUpdate
with Fast mode, and increment theM inor version number instead of the
main integer version number.

With the old TLIB 4.12 single-character commands, there simply were not
enough different letters available for all reasonable combinations, so some
combinations were not supported.

Some DOS-only TLIB users have no need for the newly availablecom-
mands, or may prefer the old commands (perhaps because they have a
program or editor macro which “front-ends” TLIB and uses theold com-
mands). To accommodate them, we have provided a mechanism bywhich
you can configure TLIB 5.xx to look and feel more like earlierversions of
TLIB. When you run TLIBCONF to set up your TLIB configurationfile, it
will offer to configure TLIB with old-style commands.

For more information on the command structure, including how to make
TLIB 5.xx mimic TLIB 4.xx, see pp. , 59 and 330.

368

New & Changed Configuration Parameters

A full list of TLIB's configuration parameters can be found in Appendix D
(p.). The following configuration parameters were new or changed in
TLIB 5.0. These are listed in approximate order of importance:

Critically important, be sure to read about these: page

 EXTENSION ext1, ext2,... 254
 PATH path(s) 257
 COMMANDS comma-delimited-list 330

Very important:

 IF/ENDIF 321
 LOCKING <Y/N/B/W> 265
 REPLACE <Y/N/Q/A> 268
 SET name=unquoted-string 270
 QUIET <Y/N> 279
 DETABE <Y/N/Maybe> 255
 TRACK <Y/N/Maybe> 297
 CREATETF <Y/N> 298
 PROJLEV name 299
 LEVEL n= name d= path p= name i= names a= <Y/N/Q>
 s= <Old/New/Q/Changed> r= <Y/N> b= n c= nn f= <Y/N> 300
 TREEDIRS <Y/N> 300
 DOTDOTOK <Y/N> 303
 FIXKEYWD <Y/N> 277
 READONLYB <Y/N/W> 280
 DELETESRC <Y/N> 278
 LOGUSER <Y/N> 266
 WORKDIR path 304

Less important:

 CMTFLAG <number,1-80>,quoted-string 289
 REFSUBDIR directory-name 305
 FORCEREFR <Y/N> 306
 AATTR <Set/Preserve/Reset> 287
 LIBEXT extension 262
 LOKEXT extension 262
 QUERIES <Y/N> 269
 SHEIGHT number 284
 SWIDTH number 284

369

 HELP <number,1-24>,quoted-string 329
 PROMPT <number,1-24>,quoted-string 329
 BANNER <number,1-24>,quoted-string 333
 CMTSUFFIX <number,1-253>,quoted-string 289
 CZTRUNC <Y/N> 291
 ELSEWHERE <Y/N> 308
 SLICKEPSI <Y/N/M> 292
 AUTOSET file-name 292
 TRACKEXT extension 308

These are the old TLIB 4.12 single-letter commands and the TLIB 5.5x
equivalents, provided here for the convenience of users whoare used to
earlier editions of TLIB:

 old

�

 new

�

 meaning
 � � � �

�
� � � � � �

�
� �

 A = US Update, Specifying version
 B = EB Extract, Browse mode
 C = C,C0 Configure
 E = E,E0 Extract and lock
 F = UFK Fast/freshen Update (& if locking=Y, Keep checked-out)
 I = UD check-in, Discarding changes (unlock)
 K = UK Update, Keep checked-out/locked
 L = L,L0 List versions
 M = UKS Update, Specifying version, Keep checked-out
 N = N,N0 create New library
 O = ER Reserve (lock without extract)
 P = CP Configure Path of libraries
 Q = Q,Q0 Quit
 R = EBS Extract Specified version, Browse mode
 S = NS New lib, starting with Specified trunk version
 T = T,T0 Test lock status
 U = U,U0 Update, check-in
 W = CW Configure Who your are (ID)
 X = ES Extract, Specify version, check-out/lock
 ? = ?,?0 Help

(note: D, G, H, J, V, Y and Z were not valid commands in
TLIB 4.12)

370

Appendix B: Library File Format

For text source files (filetype text), the library file is also a text file,
and the edit commands which are appended to it are very simple. (For bi-
nary format libraries, see p. 296.)

Since the library file is a text file, it is possible to look atit and see what
changed from one version to the next. Also, though it should never be nec-
essary, it is possible to use a text editor to change the library file itself
(dangerous, but possible; one use for this is to fix erroneous comments).

There are three kinds of “edit commands” (“dot-commands”) in a text-for-
mat TLIB library. They are as follows:

.I Insert new lines; the full edit command format is “.I nnn ”, where nnn
is the number of lines to insert. The new lines appear in the library file im-
mediately following the .I command line.

Note #1: if the number, nnn , is omitted, it is equivalent to “1”.

Note #2: lines longer than 254 characters are counted as multiple lines.

.C Copy lines from previous version; the full edit command is “.C xxx

yyy ”, where lines numberedxxx through yyy in the previous version of
the source file are appended to the buffer which represents the new ver-
sion.

Note #3: if yyy is omitted, it is equivalent to “.C xxx xxx ”.

Note #4: if yyy is less than xxx , it is equivalent to “.C xxx xxx+yyy ”.

.V Begin a version definition; a user-supplied comment appears beside the
“ .V ” on the line, along with the name of the source file and the date this
version was created.

Additional comment lines can follow the.V line, each with a “.N ” prefix.
Also, some additional information may be stored on the.V line, depend-
ing upon your choice of TLIB configuration parameters (see p. 266).

371

Let's look at a simplified example. Consider this file, called GOODBYE.X:

 Dear John,
 I'm sorry, but I don't love you
 anymore. I've found someone new. I'll
 always remember the special times we've
 had together.
 Love,
 Mary

After writing this with her trusty editor, SnazzyWrite, Mary creates a New
library file for it, with the N command. Her TLIB command is:

 TLIB N GOODBYE.X Dear John letter

The library file looks like this:

 .V GOODBYE.X 14-Feb-85 Dear John letter
 .I 7
 Dear John,
 I'm sorry, but I don't love you
 anymore. I've found someone new. I'll
 always remember the special times we've
 had together.
 Love,
 Mary

Every new text-format library file is in this same format: a “.V ” command
followed by a single insertion (in this case, only 7 lines).

As she is walking to the mailbox to mail her note to John, Mary spots her
new beau, Mark, driving by with a beautiful blonde. Mary decides to give
John a second chance. Her letter will not be wasted, however.She edits
the letter to change the first line. Then she runs TLIB to Update her library
file. The corrected letter looks like this:

 Dear Mark,
 I'm sorry, but I don't love you
 anymore. I've found someone new. I'll
 always remember the special times we've
 had together.
 Love,
 Mary

Mary's TLIB command looked like this:

372

 TLIB U GOODBYE.X Dear Mark letter

The library file gets the following delta (version definition) appended to it
to reflect the changes needed to make a Dear Mark letter out ofa Dear
John letter:

 .V GOODBYE.X 15-Feb-85 Dear Mark letter
 .I 1
 Dear Mark,
 .C 2 7

These two edits indicate that the new version consists of onenew line fol-
lowed by lines 2 through 7 of the old version.

The library file now contains two versions, and it looks like this:

 .V GOODBYE.X 14-Feb-85 Dear John letter
 .I 7
 Dear John,
 I'm sorry, but I don't love you
 anymore. I've found someone new. I'll
 always remember the special times we've
 had together.
 Love,
 Mary
 .V GOODBYE.X 15-Feb-85 Dear Mark letter
 .I 1
 Dear Mark,
 .C 2 7

Mary suspects that she will someday have use for the first version. When
that time comes, she can simply run TLIB with the ES command tore-
trieve version 1, and avoid having to type a new letter to John.

373

Appendix C: Messages

We've standardized the format of TLIB's error/warning/status messages, to
make it easier to spot the important ones. This change makes it more prac-
tical to start a large TLIB batch job, capture the output intoa file, and later
search for error messages and warnings which would indicatethat some-
thing had gone wrong.

TLIB's messages, in decreasing order of importance/severity are:

 ERR: ... TLIB internal error (you should never see this).

 ERROR: ... Some sort of error occurred.

 Warning: ... A mild error or other unusual event occurred.

 Note: ... Something mildly out of the ordinary occurred.

 anything else ... an informative message or interactive prompt.

CMPR, TLMERGE/DIFF3, COPYTRAK and POKETRAK also use these
message formats.

If you have a “grep” utility, or an editor which supports regular expression
searches, then you could find the important messages by searching for
“ (ERR(OR|)|Warning|Note): ”, or something similar.

Note #1: TLIB's messages are formatted “on the fly” according to your
configured SWIDTH(screen width). (If your computer has an IBM-compat-
ible BIOS, then you can configure “SWIDTH 0” and TLIB will interrogate
the system for the proper screen width.)

Note #2: To prevent you from overlooking error and warning messages,
TLIB for Windows displays them in pop-up message boxes, and com-
mand-line versions of TLIB can colorize them (if you useANSI.SYS or its
equivalent) and/or pause to prevent them messages from scrolling off the
screen. See the COLORIZE and ERRORPAUS parameters, pp. 313 And 312.

374

Note #3: DOS users can use Chris Dunford's nifty freeware CONCOPY
utility to capture a “console log,” which you can later scan for ERR:, ER-

ROR:, Warning: , and Note: .

You may have received CONCOPY in the “public domain and shareware”
collection that came with TLIB. Otherwise, you can downloadit from our
web site.

Note #4: OS/2 users can use a “tee” utility or the “Concurrentprocess
buffer” of some editors to capture the output of TLIB (and other
programs). We've included aTEE.EXE (and tee.c) utility with the OS/2
version of TLIB.

SlickEdit and Epsilon are the only two programmers' editorswhich we
know of that support concurrent process buffers. Do you knowof any oth-
ers? Please tell us, so that we can test 'em with TLIB. Also, besure to
configure “SlickEpsi Y ” in your TLIB configuration file if you use an-
other editor with a concurrent process buffer. (This is unnecessary for
Epsilon and for SlickEdit 2.2 or later, since TLIB can detectautomatically
that it is running in the concurrent process buffer of these editors, and ad-
just its behavior accordingly.)

Note #5: If you capture TLIB's output in a file, and process the file with a
program (e.g., to find the error messages), you may wish to configure
SWIDTH 32765 to disable TLIB's on-the-fly message formatting. This en-
sures that each message will be on one (perhaps rather long) line, so that
your program can tell where one message ends and the next begins.

Note #6: Several of TLIB's least useful but most frequently displayed sta-
tus messages can be suppressed via the-q command line option, to make
TLIB a little bit less verbose. The-q option (“q” for “quiet”) should be
specified as the first thing on the command line after the TLIB program
name. (ConfiguringQUIET Y does the same thing, except that it doesn't
suppress the copyright banner.) See also p. .

Note #7: By default, when output is redirected command-lineversions of
TLIB will send error and warning messages toboth “standard error” and
“standard output,” so that you can still see important messages on the con-

375

sole even when output has been redirected into a file. This feature can be
controlled via the -e command-line option, see p. .

Notes on a few specific messages:

awaiting access...

If you are using LAN-shared libraries, and another user has opened the
shared library file (or a lock file or the journal file) for “exclusive” access,
you may see this informative message. It can normally be ignored, since
TLIB will retry the failed I/O operation. This situation canoccur, for in-
stance, when you List or Extract at the exact moment that someone else is
doing an Update to the same library file. After a few seconds,you will
usually gain access to the library file and your TLIB commandwill com-
plete normally. Note that you will not see this message for a library file
unless someone is doing a U (update) or N (new library) command, since
the L (list) and E (extract) commands allow shared access to the TLIB li-
braries. Only TLIB commands which modify a file ever preventaccess by
other users, and then only for a brief moment.

It is, however, possible for programs other than TLIB to have“exclusive”
access to a LAN-shared library file, in which case TLIB may never gain
access. This could happen, for instance, if someone on a different comput-
er were using a text editor to inspect a library file. In such cases, TLIB will
eventually “time out” and display an error message. It is also possible, in a
networked environment, for the source file (rather than thelibrary file) to
be opened “exclusive” by another user. This should not occurin normal
operation, however, since only library files (not program source files) are
commonly shared by multiple users on a LAN.

ERR: ...

The error messages beginning with “ERR:” are internal errors which you
should never see. If you do get one of them, reboot your PC and try the op-
eration again. If the error persists, please note what you were doing, save a
copy of the file(s) you were using (both source file and library file), and
notify Burton.

376

ERR: Bad dot-command in library file: " line-from-library-file"

You should never see this message. It indicates that you havea corrupted
library file. The line shown in quotes was found where a “.V ”, “ .I ”, or
“ .C ” edit command was expected. Reboot your PC and try the operation
again. If the error persists, it indicates that your libraryfile is damaged.
You can try to repair it with a text editor, or you canextract the last good
version from the library file by using the ES commandfrom the DOS com-
mand line (not interactively). You can list the versions with the L
command to see what the last good version is (the bad version is the last
one displayed). Then do “TLIB ES file.ext number” to extract the last
good version. For assistance, you can call Burton tech support at (919)
481-0149.

ERROR: could not set file date, rc= xxxx

Some TLIB configuration choices require that TLIB be able tochange the
“last modified” date/time stamp for a file (e.g.,OLDDATE Yand EQUAL-

DATE Y). If this operation should fail, you will see this error message. The
message does not indicate that a file is damaged, only that the file's
date/time stamp is not what was intended.

The TOUCH program can also display this error message.

The most common cause for this problem is the use of TLIB by someone
who does not have the necessary local area network file access permis-
sions to change the date/time stamp of a file.

Incorrect DOS version

DOS versions of TLIB require DOS version 3.1 or higher to run.You will
see this error message if you attempt to run TLIB under a really ancient
version of PC-DOS or MS-DOS.

377

Appendix D:
Configuration File Syntax

 T - means TLIB uses this parameter
C - means CMPR uses it
D - means TLMERGE & DIFF3 use it

 parameter default page
T AATTR <set/preserve/reset> Set 287
T ABORT message 309
T C D ADDCTRLZ <Y/N> N 276
T ARCCMD <path-of-pkpak.exe> 328
T ARCEXT extension ARC 328
T ARCTEMP <temporary-directory> 328
T AUTOBRNCH <Y/N/Q> Query

T AUTOSET filename AUTOSET.BAT 292
T BANNER <1-42>," string" 333
C D CMPRDETAB <Y/N> N 339
C D CMPRENTAB <Y/N> N 339
T CMTEXT extension CMT 263
T CMTFLAG <1-80>,<quoted-string> 289
T CMTSUFFIX <1-253>,<quoted-string> 289
T COLORIZE <Y/N> N 313
T COLOROFF <string> 315
T COMMANDS <comma-delimited-list> 330
T CREATETF <Y/N> N 298
T CZTRUNC <Y/N> N 291
D D3COLLIDE <line-to-insert> /* ### ... 340
D D3FLAG2 <0-253>," string" 340
D D3FLAG3 <0-253>," string" 340
T DATAPATH <Y/N> N 278
T DEFEXT extension 263
T DELETESRC <Y/N> N 278
T DETABE <Y/N/Maybe> Maybe 255
C D DIFFLINES <100-16380> 3000 339
T DOTDOTOK <Y/N> N 303
T ELSE 323
T ELSEWHERE <Y/N> N 308
T ENDIF 321
T ENTABU <Y/N> N 256

378

 parameter default page
T EQUALDATE <Y/N> N 275
T ERRORPAUS <0-3> 2 312
T EXITPAUSE <Y/N> N 313
T EXTENSION ext1, ext2, ... 254
T FILETYPE <Auto/Binary/Text/Runlen/EOFtol>AUTO 294
T FIND1FILE <Y/N> N
T FIXKEYWD <Y/N> Y 277
T FNAMECASE <U/L/A> A 309
T FORCEREFR <Y/N> N 306
T FORCEU <Y/N> N 275
T HELP <1-49>," string" 329
T ID name 266
T IF <list-of-wildcard-specs> 321
T IFF expression 323
T C D INCLUDE path 264
T JFILE <name-of-journal-file> 190
T JOPTIONS <journal-options> UOCAP or UIOAP 190
T KEYFLAG <1-254>," string" 213
T LET name=expression 270
T LEVEL n= name d= path p= name etc. 300
T LIBDIRQ <1-54>," string"
T LIBEXT extension 262
T LOCKING <Y/N/B/W> N 265
T LOGFLAG <1-240>," string" 222
T LOGPREFIX <1-80>," string" 222
T LOGSUFFIX <20-253>," string" 222
T LOGTIME <Y/N> Y 266
T LOGUSER <Y/N> N 266
T LOGWIDTH <20-254> 79 267
T LOKEXT extension 262
T LONGNAMES <Y/N/M> M 77
T MAKEDIRS <Y/N> N 315
T MAXLINES <100-16380> 4000 or 16000
T MULTIPASS <Y/N> Y 335
T NEWLINE <CRLF/LF/CR> CRLF 311
T NT351BUG <Y/N> N 316
T NTFS35BUG <Y/N> N 317
T NUMBANNER <1-42> 0 329
T NUMLIBDIR <1-5> 1 329
T NUMHELP <1-49> 0 329
T NUMPROMPT <1-42> 1 329
T OLDDATE <Y/N> Y 267
T ONETHREAD <Y/N> N 292

379

 parameter default page
T PASSSIZE <100-16380>

 (this is a synonym of MAXLINES)
4000 or 16000

T PATH <path-of-libraries> = 257
T PROJLEV name 299
T PROMPT <1-42>," <string>" 329
T QUERIES <Y/N> Y 269
T QUIET <Y/N> N 279
T READONLY <Y/N> N 279
T READONLYB <Y/N/W> N 280
T READONLYT <Y/N/W> Y 320
T REFNEWLN <CRLF/LF/CR> NEWLINE

T REFSUBDIR <directory-name> 305
T RELAXVERS <Y/N> N 307

 REM or ! Anything 252
T REPLACE <Y/N/Q/A> Q 268
T REPLROBR <Y/N/Q/W> N 282
T ROLOCKS <Y/N> N 280
T SAY message 309
T SERIALNO vvv-sssss-nn-cccccccccccc
T SET name=<unquoted-string> 270
T SETFTIMEW <Y/N> N 274
T SHEIGHT <0 or 8-70> 25 284
T SHOWLNAME <Y/N> Y
T SLASHCONT <Y/N/M> Y 285
T SLICKEPSI <Y/N/Maybe> Maybe 292
T SWIDTH <0 or 40-32765> 80 284
T TOPRELATI <Y/N/Maybe> Maybe 301
T TOUCHSOUR <Y/N/Modified/Revhist> N
T TOUCHU <Y/N> Y 275
T TRACK <Y/N/Maybe> N 297
T TRACKEXT extension TRK 308
T TREEDIRS <Y/N> N 300
T UNARCCMD <path-of-pkunzip.exe> 326
T UPDATENEW <Y/N> N 276
T USEDUPHAN <Y/N/Maybe> Maybe 285
T USEUMBS <Y/N> Y 319
T VALIDATE <Y/N> Y 285
T WARN message 309
T WORKDEPTH nn 0 310
T WORKDIR <path> .\ (usually) 304

380

Appendix E:
TLIB Version Number Syntax

Simplified BNF Version Number Syntax

 version ::= major [: minor] [. branc h_spec]#

 branch_spec ::= [(branch_number)] branc h_version

 major ::= value

 minor ::= value

 branch_number ::= value

 branch_version ::= value

 value ::= digit [digit]#

 value ::= *

 value ::= *-1

Where:

::= reads “is made up of” or “reduces to”

[] braces indicate optional clause

[]# braces with “#” means clause can be repeated 0 or more times.

Other punctuation (colon, parenthesis, period, asterisk and minus) are part
of the version number syntax. However, whitespace (blanks and tabs) is
never part of a version number.

381

Version number examples

EXAMPLE (of an unreasonably complex “tree” of version numbers)

 1

�
� �

�

�

�

�

 2 1.1 1.(2)1 1.(3)1

�
� � � � � � � � �

�

�

�

�

�

�

 2:1 2.1 1.2 1.(3)2

�
� � � � � �

�
� � � � � � �

�
� �

�

�

�

�

�

�

�

 2:2 2:1.1 1.3 1.2.1 1.(3)3 1.(3)2.1 1.(3)2.(2)1

�

�

�

�

�

�

 3 2:1.2 1.4

Trees, Trunks and Branches:

In this version number “tree,” version 1 is an ancestor of allthe other ver-
sions. Versions 1, 2, 2:1, 2:2 and 3 are all “trunk versions,”so named for
their resemblance to the trunk of an upside-down tree. The first trunk ver-
sion (version 1) is sometimes called the “root” version. Thenon-trunk
versions are called “branch versions.” A branch version number can be
easily recognised because it contains one or more decimal points.

Major and Minor numbers:

Trunk versions are specified by either a major:minor numberpair or a sin-
gle integer. Specifying a single integer is equivalent to specifying a minor
number of zero, so “2:0” means the same thing as “2”.

You needn't use minor numbers at all. It makes no difference to the opera-
tion of TLIB whether or not you use minor numbers; all trunk versions are
handled the same way by TLIB. However, some of our customers asked
for a way to distinguish between “major” revisions and “minor” changes
via the version numbers, so in TLIB 5.0 we added support for minor trunk
versions.

Branches:

382

“Branches” represent development paths which are “parallel” to the main
“trunk” development sequence. Branches are typically usedfor bug fixes
to earlier releases, or for customized versions of the module. A branch is a
series of one or more branch versions descending from a particular trunk
version.

The versions within a branch are numbered by “branch versionnumbers,”
and the branches are numbered by “branch numbers.” The branch number
is customarily parenthesized, and the first branch is “(1)”. The branch ver-
sion number is preceded by a decimal point, and the first branch version is
“.1”. The combination of branch number and branch version number, with
associated punctuation, is called the branch specification. For example, “.
(1)2” is a branch specification with branch number of 1 and branch ver-
sion number of 2.

The complete version number for a branch version consists ofthe trunk
version number followed by a branch specification. For example, “3.(1)2”
specifies the second branch version of the first branch fromtrunk version
3.

In most development shops, it is rare for there to be more thanone branch
from a single trunk version (indeed, many shops have no need for branch-
es of any kind), so we allow a simplified branch syntax in which the
branch number is omitted and defaults to (1). Thus, “3.(1)2”could be writ-
ten more simply as “3.2”.

Deep Branching:

You can also have branches off of branches. These “deep” branches are
numbered in the obvious fashion, with another branch specification ap-
pended to the version number. Deep branching is very rarely needed, but,
just in case, TLIB allows branches up to nine levels deep (we have never
seen branches more than two levels deep in a real project). There are three
examples of two-level-deep branches in the example versionnumber tree,
above: “1.2.1”, “1.(3)2.1”, and “1.(3)2.(2)1”.

More examples:

 1 Trunk version number one, usually the first version in the library file.

383

 1:0 Trunk version number one (same as version “1”).

 1:2 A trunk version with major number 1 and minor number 2.
 Read aloud as “one colon two”.

 1:02 Same as “1:0”.

 1.1 A branch version. Its predecessor is version 1. Read aloud as
 “one point one” or “one dot one”.

 1.01 Same as “1.1”.

 1:0.1 Same as “1.1”.

 1.(1)1 Same as “1.1”.

 1:0.(1)1 Same as “1.1”.

 5 Trunk version 5.

 6 Trunk version 6. Its predecessor is version 5 (or, perhaps,
 version 5:something).

 5.1 First version in the first branch from trunk version 5.
 Its predecessor is version 5.

 5.(2)1 First version in the second branch from trunk version 5.
 Its predecessor is also version 5.

 5.2 Second version in the first branch from trunk version 5.
 Its predecessor is version 5.1.

 5.0 Normally an illegal version number, but one which TLIB 5.50
 tolerates and considers equivalent to specifying trunk version
 5. However, see RELAXVERS, p. 307.

Zero and Skipped version numbers:

Normally, TLIB does not allow you to skip version numbers. Also, TLIB
normally does not allow the use of zero as a version number, neither as a
trunk version number or as a branch version number. However,both of
these restrictions can be circumvented with the RELAXVERS configura-
tion parameter, p. 307.

384

Asterisks and Floating Version Numbers:

There are also two special non-numeric values which can be specified. An
asterisk (*) means “latest”, and “*-1” means “second-to-latest.”

Thus, to select the latest trunk version, you could ask for “*:*” (this case is
so common that it is normally abbreviated as just “*”). To retrieve the lat-
est branch version from the first branch off of trunk version5, you could
select “5.*”.

Version numbers which contain asterisks are sometimes called “floating”
version numbers because their effective value “floats” to the latest (or sec-
ond-to-latest) version. Regular, non-floating version numbers are
sometimes called “fixed” version numbers, to distinguish them from ver-
sion numbers which contain asterisks.

Note that some syntactically reasonable version specifications are not actu-
ally supported by TLIB: the general rule is that the “*” or “*-1” must be
the last thing specified in the version number. So, “5.*” and“3:*” are OK,
but “*.5” and “*:3” are not allowed (it is unlikely that you would ever
want to specify a version number that way, anyhow).

Version Labels:

Version labels are text files containing “module name / version number”
pairs. A version label is extremely useful for identifying the set of modules
which make up a particular release of a software product. Without a ver-
sion label, if you wished to retrieve the source code for an earlier release
of your program, you would have to manually select the properversion of
each module, which would be a tedious and error-prone process if there
were several hundred source modules!

Note: TLIB supports several ways to easily create and maintain version la-
bels, notably the S (snapshot) command (which replaces the old
TLIBSNAP program). See the index under “version label,” “snapshot,”
and “version tracking file.”

Version labels which contain floating version numbers (with asterisks) are
called floating version labels. Version labels which contain only fixed ver-
sion numbers are called fixed version labels (or snapshots,or tracking
files, depending upon the file format). Of course, there is nothing to pre-

385

vent you from using hybrid version labels, which contain both fixed ver-
sion numbers (for some files) and floating version numbers (for others).

With few exceptions, you can specify a version label in lieu of a version
number by preceding the file name with an “at sign” (@).

For example, suppose that you have a version label file called “beta.lis ”
which contains the following:

 file1.c 12.*
 file2.c 5.(2)*

Then:

 tlib ebs file1.c @beta.lis means tlib ebs file1.c 12.*

 tlib us file2.c @beta.lis means tlib us file1.c 5.(2)*

Date and Time:

You can also specify trunk versions by date/time, instead ofby version
number or version label. In practice, however, you will probably find that
you seldom use this facility. See the p. 241 for details, if you are interest-
ed.

386

Index
-c command-line option (write configuration)...251
A
A - add branch (see US command)..69
A (add/alter project level) and AP (promote)..168
A option, of MAKE...354
aattr parameter...287
abort parameter..309
access to shared library...376
AD - delete from project level...169
Add Branch - see US and UB commands..69, 70
addctrlz parameter...276, 339
address, of Burton Systems Software..367
ADF - make project level sparse...172
admin (see N - New library)..24
administering multiple project levels...155
ADR Librarian...226, 230
Advanced version tracking & named project levels................................127
AF - populate project level..171
alternate path for libraries..42
ANSI.SYS device driver...333
ansify.awk...333
AP - promote...114, 144, 150, 151, 158, 168, 173
APIs (application program interfaces to TLIB)...57
appending to library...34
Applied Data Research, Inc...226, 230
approved configuration management plan...245
APX - promote-exclude...170
ARC..325
arccmd parameter..325
arcext parameter..325
archival copies...6
archival diskette...239
archive attribute...275
archived library files..325
arctemp parameter...325
asterisk (*)...44, 50, 258
attrib DOS command...280
audit trail of revisions..41
autobrnch parameter..108, 298
automatic branching..107

387

autoset parameter..292
autoset.bat...83, 130
awaiting access..376
AWK...191, 333
AX - eXclude source file...169
B
backing up libraries...34
backing up TLIB...6
backslash (\)..29, 34
Bailey Controls Batch90...203
banner parameter...329
basic version tracking..106
bat file..39, 42, 92, 255
Batch90...203
binary files...36, 46, 217, 294
blanks and tabs..36, 44, 255, 339
blanks, trailing...36
boolean expressions...270, 323
Borland C++ Builder...55
Borland Delphi..55, 58
Borland languages...203
branch locking...191
branching...68, 70
branching, automatic...107
branching, file lists and snapshots...209
Brief..58
bugs...367
Burton Systems Software, address & phone..367
C
C (.C edit command)..371
C - override Configuration parameter..252
C language...203
carriage-return...36
case sensitivity...214, 255, 330
CED...365
central project log - see journal...190
changes, no..33, 48
check-in/out...97, 101, 265
Checking your TLIB configuration...251
ci (see U - Update)..32
class (see snapshot)...92
Clipper...51, 295
CMPR..225, 276, 338
cmprdetab parameter...339

388

cmprentab parameter...339
cmtext parameter...263
cmtflag parameter..289
cmtsuffix parameter...289
co (see E command)..35
COBOL copy verb...203
COBOL sequence numbers...227
CodeWright...58
CodeWright ..55
colorize parameter...313
coloroff parameter...315
comma-delimited lists of files...53
command line parameters..39
command line parameters: -c...220
command line parameters: -d (debugmode)..302
command line parameters: -n and -t..189
command line parameters: -q (quiet)...96, 279, 302
command line parameters: -r...302
command structure..17, 368
command summary, TLIB...20
commands parameter...65, 330
comment files..244, 263
comment lines...33, 48
comments, about TLIB..367
comments, avoiding the prompt..29
comments, in configuration file...252
comments, in file lists..51
compar.bat...225
compare...225
comparing versions of a file..225
complaints...367
composite commands..37
compressed libraries..325
concurrent process buffer..292, 375
conditional configuration parameters..321
conditionals, load-time (IFF/ELSE/ENDIF)....................................161, 323
config.sys...251, 333
configuration...246, 378
configuration file name, referencing...85
configuration management plan..245
configuration parameters for version tracking...138
configuring project levels..141
configuring TLIB...15
conversion utilities..10, 296

389

CONVERT*.* (conversion utilities)...10
converting between formats..296
converting tabs to/from blanks..44
converting TLIB library formats..218, 220, 338
Converting to TLIB from other products...10
copy lines..371
copying TLIB..6
copyright..6, 346, 352
copyright, suppressing...196
copystex - copy structure extended...295
Copytrak..198
correction set (see delta)..14
corrupted library file..377
CP - library path command..42, 257
createtf parameter..131, 140, 298
creating a library..24
CrossRefC...51
CTMAP memory manager..319
Ctrl-Break..231
Ctrl-Z...47, 276, 291
curfile and cfgfile..85
customer support...367
customized software..120
CW - configure who you are...100
CW - set user id (``who'')...266
cztrunc parameter..291
D
d3collide parameter...235, 237, 340
d3flag2, d3flag3 parameters..237, 340
datapath parameter..278
date..266, 275, 351, 366
date-based retrieval...38
date, retrieving by..241
dBase...51, 295
DBC..203
dBFind...51
DDE to TLIB...57
Dear John letter...372
defext parameter..263
delbat.bat...353
delete a version..235
deletesrc parameter..278
deleting a revision - see DIFF3..233
Delphi..55, 58

390

delta...14, 295, 338
DELTA..225
Delta (MS Delta VCS)..10
delta command (see U - Update)...32
delta review...34, 295
dependencies...352
description...28
DETAB (see TABS)..44
detabE parameter...255
Developer Studio / C++ ..55
development environments for version tracking.....................................116
DIFF3..184, 233, 276
difflines parameter...339
directories (see subdirectories)..42
DLL API (application program interface)...57
DOS .bat file (see bat file)...39
DOS errorlevel..230, 237
DOS versions..9, 377
dosedit...365
dot command (see edit commands)...371
dotdotok parameter..303
DSAPP - Delta Script Application..226, 230
DSAPPADR..226, 230
DSAPPPAN..226, 230
Duff AWK...333
Duff, Rob..333
Dyer, Landon...352
E
E - Extract latest version..35, 100, 268
EB - extract for Browse...100
EBF - Fast-extract: extract only changed files...163
ED Editor..58
edit commands...371, 377
editor, to inspect libraries..376
elsewhere parameter..308
end-of-file..47
endif parameter..321
entab (see TABS)..44
entabU parameter..256
environment variable: tlibcfg...83, 250, 264
environment variable: tlibid..89, 266
environment variable: tlibini...91, 251
Environment variables, SET, and the Autoset file.....................................80
environment, DOS...251

391

EOF (end of file) markers..47
Epsilon..292
equaldate parameter...275, 358
ER - check-out/reserve..101
ERR:..376
error messages...374
error messages, stderr & stdout...196
errorlevel...19
errorlevel, DOS...52, 102, 230, 237
errorpaus parameter...312
ES - extract specified version..37, 373
example...372
exclusive access to a file...376
exitpause parameter...313
expression syntax, and LET parameter..270
extension parameter...61, 254
extension, file name...14, 258
extract latest version..35
extracting an old version...37
extracting to a temporary file.....................................37, 108, 138, 184, 189
F
F - Fast update; see UF..40, 278
F - Filter file names...64
F option, of MAKE...354
fancy, highlighted TLIB prompt..333
fast file transfer (see PCOM)...341
Fast-extract: extract changed files (EBF)..163
Fast-Update: freshen libraries (UF)...40
fastebft.bat...163
faster and smaller..239
Fax...7
Features of TLIB Version Control...11
file formats (filetype)...294
file lists and snapshots...209
file lists and wild-cards..50
file lists for dBase programs..51
file lists, nested..52
file names (see names)..14
file transfer, fast (see PCOM)..341
filetype parameter..311
filetype parameter (for binary files)...46, 217, 294
find1file parameter..306
fixkeywd parameter...277
fnamecase parameter...309

392

forcerefr parameter..306
forceU parameter...275
format of configuration file...251, 252
format of library..296, 371
format of text file...44
Fortran...203
FoxBase...295
freshen libraries (see UF)..40
freshen source files (see EBF)...163
G
garbage collection..337
get (see E command)...35
getting started..15
GNU RCS..10
GNU2TLIB.EXE and GNU2TLIB.AWK...307
GOODBYE.X...372
government contracts..245
GREP (see TLIBSCAN)..221
guarantee...7
H
help parameter...329
help screen...232, 237
highlighted TLIB prompt...333
how TLIB uses the tracking files...136
huge files...9, 334
I
I (.I edit command)...371
IBM 3363 WORM optical disk...259
IBM Update...226
id parameter...89, 100, 266
IDENT (see TLIBSCAN)..221
identifying a version..28
IF and ENDIF parameters..46, 253, 297, 321
IFF/ELSE/ENDIF configuration directives.....................................161, 323
include file...352
include parameter..253, 264
insdel mode...226
insert (.I edit command)..371
integrating MAKE and TLIB...358
integration with other products..55
Intel 8096 assembler..203
interactive mode..41
Intersolv...10
Introduction...10

393

Invisible DDE (to TLIB)...57
ISO 9001 compliance..149, 331
J
jfile parameter...190
joptions parameter...190
journal file...190
journal.awk..191
K
K - keep locked (see UK)..101
Kennamer, Walter J...295
keyboard input, easier...365
keyflag parameter..213, 277
keywords...212, 253, 295
L
L - list versions..41
Lahey Fortran..203
LAN (see Network)...6
large files...334
length, of lines...36, 267, 284
let parameter, and expressions...270
level parameter..130, 138, 143, 300, 304
libext parameter...262
Librarian..226
library file..14
library format...296, 371
license (see copyright)...6, 346
license for PKZIP..326
license, site..6
limited warranty..7
line length..36, 267, 284
line wrap, in messages...284
line-feed..36
list versions..41
LISTBLD..203
load-time conditionals (IFF/ELSE/ENDIF).....................................161, 323
local area (see Network)..6
lock file...259
lock file path, specifying...260
locking branches..191
locking parameter..97, 265
logflag parameter...222, 267
logical (boolean) expressions..270, 323
logprefix parameter...222
logsuffix parameter..222

394

logtime parameter..241, 266
loguser parameter..266
logwidth parameter..267, 284
lokext parameter..262
long file names and longnames parameter...77
long files..334
long lines...36
lower-case vs. upper-case..214, 255
M
M - make branch (see US command)..69
M command - Migrate Changes..178
main menu (see menu)..27
mainframe upload..226
MAKE...40, 275, 352, 366
make.bat..353
make$$$$.bat..353
makedirs parameter...315
makeexe.bat...353
makefile...352, 354
MASM...203
maxlines parameter (same as passsize parameter)...................................334
Megan, Michael...295
memory requirement...9
memory, % used..334
memory, using less..240, 334
menu..27
merging revisions - see DIFF3...233
messages..374
Microfocus COBOL Workbench...58
Microsoft Developer Studio / C++ ...55
Microsoft languages..203
Microsoft Visual Basic and VC++..57
Microsoft Word documents...46
MKS RCS..10
modes, for CMPR..225
modifying a library..34
modifying shared libraries...376
MS Delta...10
MultiEdit...55
MultiEdit text editor..45, 58
multipass parameter...334
multiple source files..48
N
N - create new library..24

395

N - create New library...276, 372
N option, of MAKE...354
name, of file..14
ndosedit...365
nested file lists...52
Netware (see also ``Novell'')......................................53, 104, 201, 244, 278
network bug workarounds...201
Network user ID look-up...89
network, local area..6, 376
New & Changed Configuration Parameters..369
newline parameter...311
NF - Fast new library create..31
NK command..101
no changes...33, 48, 275, 278
non-text files..46, 217, 294
Novell..53
Novell Netware...104, 201, 244, 278
NS - split a library...239
NT user name..89
nt351bug parameter...316
ntfs35bug parameter..317
numbanner parameter..329
numhelp parameter..329
numprompt parameter...329
O
O - check-out (see ER command)..101
olddate parameter..266, 267, 276, 358, 366
oldname parameter..292
onepass mode..225
onethread parameter..292
OPENetwork...225
operators and expressions..270
optical (WORM) disks..259
Opus Make..262, 353
Out of environment space..251
P
Pansophic Systems, Inc...226, 230
Panvalet...226, 230
parallel port file transfer (see PCOM)...341
Pascal..28, 203
passsize parameter (same as maxlines parameter)...................................334
path for library...42, 257, 262
path parameter...257
pause...41

396

PCED..365
PCOM...341
phone...7, 367
PKware, Inc. (address)..326
PKZIP, PKPAK, PKARC..325
Poketrak...131, 198
printer port file transfer (see PCOM)..341
printing a list of versions...41
problems..367
productivity...8
programmers..8
project log file - see journal...190
project-oriented mode...331
projlev parameter.............................107, 108, 130, 136, 139, 140, 143, 299
promote (AP command)..................................114, 144, 150, 158, 168, 173
prompt parameter..329
pronunciation, of ``TLIB''..8
pseudo-environment variables...85
put (see U - Update)..32
PVCS...10
PVCS, conversion from...307
PVCSTLIB.EXE and PVCSTLIB.AWK...307
Q
queries parameter..269, 305
query before replacing...268
question mark, as wildcard..258
QuickBASIC...203
quiet parameter, and -q option...96, 196, 279, 302
R
R - regress; see ES command..37, 373
RCS...10
RCS, conversion from...307
RCS2TLIB.EXE and RCS2TLIB.AWK..307
read-only browse-mode files...280, 282
read-only library files..279
read-only network directories..244
READ.ME file...10
readonly parameter..279
readonlyb parameter..280, 282
readonlyt parameter...320
reconstructing a version...92
redirecting output..196
reference directories.......111, 117, 118, 119, 129, 132, 140, 143, 144, 146,
164, 289, 301, 304, 305, 306

397

reference directory refresh...144, 163
refsubdir parameter...165, 301, 305
regress; see ES command..37, 373
relativepaths option, to listbld...205
relaxvers parameter...307
release of a program..92
reliability...327
rem or ! (configuration file comments)...252
replace parameter..101, 268
replrobr parameter...282
report generation, by module...41
report generation, from journal file...191
report generation, locks...103
requirements..9
reserving files - see ``check-in/out''...97, 101, 265
retrieve..365
retrieving by date/time...241
revision history logging...217, 222, 253, 295
rolocks parameter..280
root names, in a makefile..354
S
S - snapshot command...51, 92
saving disk space...199
say parameter...309
SCAN (see TLIBSCAN)...221
scopy.exe...191
SCOPY.EXE...183
screen size...284
script..354
SDF/SIR$ format...226
search modes (wild-cards)...59, 306
security..105, 244, 260
Semi-Custom Software..120
serial numbers...318
serialno parameter...318
set parameter...83, 140, 270
set tlibcfg...83, 250, 264
set tlibid...89, 266
set tlibini..91, 251
setftimew parameter..274
setting up your project level tracking files...129
shared file copier, SCOPY.EXE..183, 191
shared libraries..376
sheight parameter..284

398

shell...251
showlname parameter..318
Sigma Six..51
site license...6
size limit..9, 334
size of files..334
size of library...14, 239
skipping version numbers..74, 307
slashcont parameter...285
SlickEdit..58, 292
SlickEdit ...55
slickepsi parameter..292
smaller and faster..239
SNAP, by Walter Kennamer...295
snapshot file..92
snapshot files...38
snapshot version labels..92
snapshots and file lists...209
sneakernet..219
Sorcerer's Apprentice..10
source file..14
spaces (see blanks)..36, 44, 255, 339
speed of TLIB..239
Sperry Unisys SDF/SIR$...226
split a library (NS command)..239
split lines...36
split messages..284
status column in WinTLIB..52
stderr vs. stdout...196
subdirectories..42
support...367
swidth parameter...284
synchronize (see EBF command)..163
syntax, of configuration parameters..253, 255
syntax, of version numbers..381
system librarian...244, 260
T
T - Test check-in/out status...102
tabs and blanks..36, 44, 255, 339
tabs, other than 8-space...256
tee..197
telephone...7, 367
temporary files...95, 108, 138, 184, 189, 200
TESTLOCK - test network OS file sharing/locking............................9, 349

399

text file formats...44
text vs. binary files..294
The Software Development Factory..51
time..266
TLIB command summary..20
TLIB.INI file...91, 251
tlibcfg..83, 250, 264
tlibcfg:«USIT»name«USNM»...85
TLIBCONF -- configuration set-up program...15
TLIBDLL API (application program interface)...57
tlibid..89, 266
tlibini...91, 251
TLIBMODE pseudo-environment variable...86
TLIBNAME pseudo-environment variable...86
TLIBOS pseudo-environment variable..86
TLIBPROG pseudo-environment variable..86
TLIBSCAN...221
TLIBSNAP - see ``S - snapshot''...49, 92, 276
tlibsuffix macro for Opus Make..262
TLIBTLIB.EXE and TLIBTLIB.AWK...........................218, 220, 296, 338
TLIBX.EXE (DOS-extended TLIB)..335, 338
TLMERGE/DIFF3...338
toprelative parameter...301
TOUCH...351
touchsour parameter..243, 288
touchu parameter...275
track parameter..138, 142, 297
trackext parameter...308
tracking file format..122
tracking file terminology...111
trailing blanks..36
transfer, of files by modem..225
transfer, of TLIB ownership..6
tree structured libraries..68
Tree-structured directories..66
treedirs parameter..61, 130, 139, 300, 303, 304
truncated lines...36
trunk version..37
trunk versions..37
TSE - The Semware Editor..58
U
U - Update library..................................32, 40, 48, 100, 275, 276, 278, 372
U (update) with a file list...194
UB command - make new branch...70

400

UD - check-in, discarding changes..101
UF - fast update (freshen libraries)..278
UF - Fast update (freshen libraries)...40
UK - update and keep locked..101, 278
unarccmd parameter..325
uncmpr.bat...225
undo a revision..235
Unix MAKE..354
Unix RCS..10
Update, on IBM mainframes...226
updatenew parameter...29, 33, 276
upper-case vs. lower-case..214, 255
US - Add Specified Version..69
user id..89
user ID...100, 266
useumbs parameter..319
V
V (.V edit command)..371
validate parameter...285
VAX..352
version definition...14, 373
version definition line..371
version label (see snapshot)...92
version label files..38
version number syntax...307
version number zero..74, 307
version numbers..73
version trees..68
versions of a source file...8
versions of DOS..9
Visual Basic and VC++...57
VMS..352
W
W - see ``CW - set user id''..266
warn parameter..309
warning messages..374
warranty...7, 367
Watcom C/C++...58
weak locking and branch/level locking...98
web sites, using index.html as a native project file...................................55
WHAT (see TLIBSCAN)..221
what is TLIB?..8
where the files and directories belong...119
Whereis - file finder..195

401

wild-cards..44, 50, 59, 258, 306
wild-cards within file lists...52
Windows...9
Windows-NT user ID..89
WINE Windows Emulator on Linux...9
word processor document files..46
Word-For-Windows documents..46
WordPerfect documents..46
workdepth parameter...310
workdir parameter...138, 304
WORM optical disks...259
wrapped message lines..284
write-once (WORM) optical disks...259
X
XyWrite...46
Z
zero version numbers..307

402

