This is an old version:  Linear mean sea level (MSL) trends and 95% confidence intervals in feet/century.  (New version is here.)
[Source of data: PSMSL and NOAA; Analysis: NOAA] [Notes, summary & conclusions are at bottom of page]
 hypothetical approx. doubled rate  hypothetical approx. tripled rate
Station Name First Year Last Year Year Range MSL Trend
(ft/century)
+/- 95%
Confidence
Interval
Total MSL
Change
(feet)†
Absolute
value of
MSL Trend
MSL Trend
+0.6mm/yr
(ft/century)
Absolute value
of MSL Trend
+0.6mm/yr
MSL Trend
+1.2mm/yr
(ft/century)
Absolute value
of MSL Trend
+1.2mm/yr
Reykjavik, Iceland 1956 2001 46 0.77 0.23 0.354 0.77 0.97 0.97 1.16 1.16
Barentsburg, Norway 1948 2006 59 -0.98 0.22 -0.578 0.98 -0.78 0.78 -0.59 0.59
Murmansk, Russia 1952 2006 55 1.29 0.33 0.707 1.29 1.48 1.48 1.68 1.68
Narvik, Norway 1928 2001 74 -1.01 0.19 -0.751 1.01 -0.82 0.82 -0.62 0.62
Heimsjo, Norway 1935 2006 72 -0.53 0.13 -0.381 0.53 -0.33 0.33 -0.14 0.14
Maloy, Norway 1945 2006 62 0.31 0.17 0.190 0.31 0.50 0.50 0.70 0.70
Bergen, Norway 1883 2001 119 -0.17 0.08 -0.204 0.17 0.03 0.03 0.22 0.22
Stavanger, Norway 1881 2006 126 0.14 0.07 0.174 0.14 0.33 0.33 0.53 0.53
Oslo, Norway 1885 2006 122 -1.49 0.11 -1.814 1.49 -1.29 1.29 -1.09 1.09
Smogen, Sweden 1911 2007 97 -0.63 0.09 -0.612 0.63 -0.43 0.43 -0.24 0.24
Goteborg, Sweden 1887 2003 117 -0.43 0.12 -0.500 0.43 -0.23 0.23 -0.03 0.03
Klagshamn, Sweden 1929 2007 79 0.18 0.16 0.139 0.18 0.37 0.37 0.57 0.57
Kungholmsfort, Sweden 1887 2007 121 0.00 0.09 -0.001 0.00 0.20 0.20 0.39 0.39
Landsort, Sweden 1887 2007 121 -0.94 0.11 -1.132 0.94 -0.74 0.74 -0.54 0.54
Stockholm, Sweden 1889 2003 115 -1.29 0.12 -1.485 1.29 -1.09 1.09 -0.90 0.90
Ratan, Sweden 1892 2007 116 -2.54 0.13 -2.949 2.54 -2.35 2.35 -2.15 2.15
Furuogrund, Sweden 1916 2007 92 -2.68 0.20 -2.467 2.68 -2.48 2.48 -2.29 2.29
Kemi, Finland 1920 2006 87 -2.30 0.22 -2.000 2.30 -2.10 2.10 -1.90 1.90
Oulu/Uleaborg, Finland 1889 2006 118 -2.09 0.14 -2.468 2.09 -1.89 1.89 -1.70 1.70
Raahe/Brahestad, Finland 1922 2006 85 -2.23 0.23 -1.899 2.23 -2.04 2.04 -1.84 1.84
Pietarsaari/Jakobstad, Finland 1914 2006 93 -2.40 0.20 -2.232 2.40 -2.20 2.20 -2.01 2.01
Vaasa/Vasa, Finland 1883 2006 124 -2.42 0.12 -2.996 2.42 -2.22 2.22 -2.02 2.02
Kaskinen/Kasko, Finland 1926 2006 81 -2.14 0.24 -1.737 2.14 -1.95 1.95 -1.75 1.75
Mantyluoto, Finland 1910 2006 97 -1.96 0.17 -1.898 1.96 -1.76 1.76 -1.56 1.56
Turku/Abo, Finland 1922 2006 85 -1.22 0.22 -1.035 1.22 -1.02 1.02 -0.82 0.82
Degerby, Finland 1923 2006 84 -1.24 0.21 -1.039 1.24 -1.04 1.04 -0.84 0.84
Hanko/Hango, Finland 1887 1997 111 -0.91 0.14 -1.006 0.91 -0.71 0.71 -0.51 0.51
Helsinki, Finland 1879 2001 123 -0.79 0.12 -0.974 0.79 -0.60 0.60 -0.40 0.40
Hamina, Finland 1928 2006 79 -0.34 0.28 -0.268 0.34 -0.14 0.14 0.05 0.05
Daugavgriva, Latvia 1872 1938 67 0.05 0.32 0.034 0.05 0.25 0.25 0.44 0.44
Liepaja, Latvia 1865 1936 72 0.29 0.24 0.207 0.29 0.48 0.48 0.68 0.68
Kaliningrad, Russia 1926 1986 61 0.60 0.29 0.369 0.60 0.80 0.80 1.00 1.00
Warnemunde, Germany 1855 2005 151 0.39 0.04 0.596 0.39 0.59 0.59 0.79 0.79
Wismar, Germany 1848 2003 156 0.45 0.03 0.706 0.45 0.65 0.65 0.85 0.85
Gedser, Denmark 1898 2006 109 0.31 0.06 0.335 0.31 0.50 0.50 0.70 0.70
Kobenhavn, Denmark 1889 2006 118 0.16 0.07 0.189 0.16 0.36 0.36 0.55 0.55
Hornbaek, Denmark 1898 2006 109 0.08 0.08 0.090 0.08 0.28 0.28 0.48 0.48
Korsor, Denmark 1897 2006 110 0.25 0.06 0.270 0.25 0.44 0.44 0.64 0.64
Slipshavn, Denmark 1896 2006 111 0.31 0.05 0.339 0.31 0.50 0.50 0.70 0.70
Fredericia, Denmark 1889 2006 118 0.34 0.04 0.398 0.34 0.53 0.53 0.73 0.73
Aarhus, Denmark 1888 2006 119 0.18 0.04 0.218 0.18 0.38 0.38 0.58 0.58
Frederikshavn, Denmark 1894 2006 113 0.05 0.05 0.058 0.05 0.25 0.25 0.44 0.44
Hirtshals, Denmark 1892 2006 115 -0.07 0.07 -0.075 0.07 0.13 0.13 0.33 0.33
Esbjerg, Denmark 1889 1997 109 0.34 0.10 0.376 0.34 0.54 0.54 0.74 0.74
Cuxhaven, Germany 1843 2002 160 0.80 0.05 1.279 0.80 1.00 1.00 1.19 1.19
Aberdeen, UK 1862 2003 142 0.22 0.03 0.307 0.22 0.41 0.41 0.61 0.61
North Shields, UK 1895 2003 109 0.62 0.05 0.673 0.62 0.81 0.81 1.01 1.01
Sheerness, UK 1832 2006 175 0.54 0.03 0.944 0.54 0.74 0.74 0.93 0.93
Newlyn, UK 1915 2003 89 0.56 0.06 0.499 0.56 0.76 0.76 0.95 0.95
Brest, France 1807 2000 194 0.33 0.03 0.633 0.33 0.52 0.52 0.72 0.72
La Coruna, Spain 1943 2006 64 0.43 0.15 0.274 0.43 0.63 0.63 0.82 0.82
Cascais, Portugal 1882 1993 112 0.42 0.05 0.466 0.42 0.61 0.61 0.81 0.81
Lagos, Portugal 1908 1999 92 0.49 0.08 0.453 0.49 0.69 0.69 0.89 0.89
Marseille, France 1885 2000 116 0.39 0.05 0.455 0.39 0.59 0.59 0.79 0.79
Genova, Italy 1884 1997 114 0.39 0.05 0.448 0.39 0.59 0.59 0.79 0.79
Trieste, Italy 1905 2001 97 0.38 0.07 0.366 0.38 0.57 0.57 0.77 0.77
Tuapse, Russia 1917 2002 86 0.73 0.21 0.632 0.73 0.93 0.93 1.13 1.13
Ponta Delgada, Portugal 1978 2005 28 0.84 0.36 0.234 0.84 1.03 1.03 1.23 1.23
Tenerife, Spain 1927 1999 73 0.50 0.10 0.366 0.50 0.70 0.70 0.89 0.89
Takoradi, Ghana 1929 1970 42 1.10 0.16 0.462 1.10 1.30 1.30 1.49 1.49
Walvis Bay, Namibia 1958 1998 41 0.11 0.47 0.044 0.11 0.30 0.30 0.50 0.50
Simons Bay, South Africa 1957 2007 51 0.52 0.09 0.266 0.52 0.72 0.72 0.91 0.91
Port Elizabeth, South Africa 1978 2007 30 1.03 0.46 0.308 1.03 1.22 1.22 1.42 1.42
Durban, South Africa 1971 2007 37 0.21 0.20 0.077 0.21 0.40 0.40 0.60 0.60
Aden, Yemen 1879 1969 91 0.41 0.06 0.369 0.41 0.60 0.60 0.80 0.80
Karachi, Pakistan 1916 1994 79 0.16 0.17 0.124 0.16 0.35 0.35 0.55 0.55
Mumbai/Bombay, India 1878 1994 117 0.24 0.04 0.284 0.24 0.44 0.44 0.64 0.64
Cochin, India 1939 2004 66 0.45 0.11 0.297 0.45 0.65 0.65 0.84 0.84
Chennai/Madras, India 1916 2003 88 0.10 0.14 0.090 0.10 0.30 0.30 0.50 0.50
Vishakhapatnam, India 1937 1996 60 0.18 0.17 0.107 0.18 0.38 0.38 0.57 0.57
Ko Taphao Noi, Thailand 1940 2006 67 0.16 0.35 0.107 0.16 0.36 0.36 0.55 0.55
Ko Lak, Thailand 1940 2002 63 -0.16 0.08 -0.098 0.16 0.04 0.04 0.24 0.24
Macau, China 1925 1985 61 0.08 0.16 0.051 0.08 0.28 0.28 0.48 0.48
Xiamen, China 1954 2002 49 0.33 0.20 0.164 0.33 0.53 0.53 0.73 0.73
Yuzhno Kurilsk, Russia 1948 1994 47 0.90 0.20 0.423 0.90 1.10 1.10 1.29 1.29
Mera, Japan 1931 2001 71 1.20 0.08 0.854 1.20 1.40 1.40 1.60 1.60
Aburatsubo, Japan 1930 1999 70 1.09 0.09 0.765 1.09 1.29 1.29 1.49 1.49
Kushimoto, Japan 1957 2007 51 1.01 0.20 0.518 1.01 1.21 1.21 1.41 1.41
Hosojima, Japan 1930 2007 78 -0.17 0.10 -0.135 0.17 0.02 0.02 0.22 0.22
Tonoura/Hamada, Japan 1894 2002 109 0.12 0.08 0.136 0.12 0.32 0.32 0.52 0.52
Wajima, Japan 1930 1999 70 -0.26 0.09 -0.185 0.26 -0.07 0.07 0.13 0.13
Manila, Philippines 1901 1969 69 0.58 0.12 0.402 0.58 0.78 0.78 0.98 0.98
Legaspi, Philippines 1947 2005 59 1.71 0.26 1.010 1.71 1.91 1.91 2.11 2.11
Davao, Philippines 1948 2005 58 1.74 0.43 1.011 1.74 1.94 1.94 2.14 2.14
Jolo, Philippines 1947 1996 50 0.06 0.37 0.031 0.06 0.26 0.26 0.46 0.46
Townsville, Australia 1959 2006 48 0.36 0.15 0.174 0.36 0.56 0.56 0.76 0.76
Newcastle, Australia 1925 1988 64 0.72 0.16 0.461 0.72 0.92 0.92 1.11 1.11
Sydney, Australia 1886 2003 118 0.19 0.04 0.227 0.19 0.39 0.39 0.59 0.59
Fremantle, Australia 1897 2003 107 0.49 0.09 0.519 0.49 0.68 0.68 0.88 0.88
Auckland, New Zealand 1903 2000 98 0.42 0.07 0.415 0.42 0.62 0.62 0.82 0.82
Wellington, New Zealand 1944 2005 62 0.79 0.11 0.491 0.79 0.99 0.99 1.19 1.19
Lyttelton, New Zealand 1924 2000 77 0.77 0.09 0.596 0.77 0.97 0.97 1.17 1.17
Guam, Marianas Islands 1948 1993 46 -0.35 0.57 -0.159 0.35 -0.15 0.15 0.05 0.05
Chuuk, Caroline Islands 1947 1995 49 0.20 0.58 0.096 0.20 0.39 0.39 0.59 0.59
Kwajalein, Marshall Islands 1946 2006 61 0.47 0.27 0.286 0.47 0.67 0.67 0.86 0.86
Wake Island 1950 2006 57 0.63 0.19 0.357 0.63 0.82 0.82 1.02 1.02
Pago Pago, American Samoa 1948 2006 59 0.68 0.29 0.400 0.68 0.88 0.88 1.07 1.07
Midway Atoll 1947 2006 60 0.23 0.18 0.137 0.23 0.43 0.43 0.62 0.62
Johnston Atoll 1947 2003 57 0.25 0.18 0.141 0.25 0.44 0.44 0.64 0.64
Honolulu, USA 1905 2006 102 0.49 0.08 0.501 0.49 0.69 0.69 0.89 0.89
Hilo, USA 1927 2006 80 1.07 0.12 0.858 1.07 1.27 1.27 1.47 1.47
Adak Island, USA 1957 2006 50 -0.90 0.18 -0.452 0.90 -0.71 0.71 -0.51 0.51
Seward, USA 1964 2006 43 -0.57 0.30 -0.245 0.57 -0.37 0.37 -0.18 0.18
Sitka, USA 1924 2006 83 -0.67 0.10 -0.558 0.67 -0.48 0.48 -0.28 0.28
Ketchikan, USA 1919 2006 88 -0.06 0.09 -0.056 0.06 0.13 0.13 0.33 0.33
Prince Rupert, Canada 1909 2006 98 0.358 0.09 0.351 0.36 0.55 0.55 0.75 0.75
Vancouver, Canada 1910 1999 90 0.12 0.09 0.110 0.12 0.32 0.32 0.52 0.52
Victoria, Canada 1909 1999 91 0.26 0.08 0.238 0.26 0.46 0.46 0.66 0.66
Tofino, Canada 1909 2006 98 -0.52 0.10 -0.512 0.52 -0.33 0.33 -0.13 0.13
Neah Bay, USA 1934 2006 73 -0.53 0.12 -0.390 0.53 -0.34 0.34 -0.14 0.14
Friday Harbor, USA 1934 2006 73 0.37 0.11 0.270 0.37 0.57 0.57 0.76 0.76
Seattle, USA 1898 2006 109 0.68 0.06 0.738 0.68 0.87 0.87 1.07 1.07
Astoria, USA 1925 2006 82 -0.10 0.13 -0.084 0.10 0.09 0.09 0.29 0.29
Crescent City, USA 1933 2006 74 -0.21 0.12 -0.157 0.21 -0.02 0.02 0.18 0.18
San Francisco, USA 1897 2006 110 0.66 0.07 0.724 0.66 0.86 0.86 1.05 1.05
Los Angeles, USA 1923 2006 84 0.27 0.09 0.228 0.27 0.47 0.47 0.67 0.67
La Jolla, USA 1924 2006 83 0.68 0.09 0.563 0.68 0.88 0.88 1.07 1.07
San Diego, USA 1906 2006 101 0.68 0.07 0.684 0.68 0.87 0.87 1.07 1.07
Balboa, Panama 1908 1996 89 0.45 0.09 0.404 0.45 0.65 0.65 0.85 0.85
Buenaventura, Colombia 1941 1969 29 0.32 0.40 0.092 0.32 0.51 0.51 0.71 0.71
La Libertad, Ecuador 1948 2003 56 -0.40 0.32 -0.224 0.40 -0.20 0.20 -0.01 0.01
Antofagasta, Chile 1945 2006 62 -0.25 0.16 -0.153 0.25 -0.05 0.05 0.15 0.15
Puerto Deseado, Argentina 1970 2002 33 -0.02 0.63 -0.007 0.02 0.18 0.18 0.37 0.37
Puerto Madryn, Argentina 1944 2000 57 0.49 0.26 0.281 0.49 0.69 0.69 0.89 0.89
Quequen, Argentina 1918 1982 65 0.28 0.10 0.182 0.28 0.48 0.48 0.67 0.67
Buenos Aires, Argentina 1905 1987 83 0.51 0.10 0.426 0.51 0.71 0.71 0.91 0.91
Montevideo, Uruguay 1938 1995 58 0.40 0.23 0.230 0.40 0.59 0.59 0.79 0.79
Cananeia, Brazil 1954 2006 53 1.38 0.21 0.731 1.38 1.58 1.58 1.77 1.77
Cartagena, Colombia 1949 1992 44 1.74 0.12 0.767 1.74 1.94 1.94 2.14 2.14
Cristobal, Panama 1909 1980 72 0.46 0.07 0.334 0.46 0.66 0.66 0.86 0.86
Galveston Pier 21, USA 1908 2006 99 2.10 0.09 2.075 2.10 2.29 2.29 2.49 2.49
Pensacola, USA 1923 2006 84 0.69 0.09 0.577 0.69 0.88 0.88 1.08 1.08
Key West, USA 1913 2006 94 0.74 0.05 0.691 0.74 0.93 0.93 1.13 1.13
Bermuda 1932 2006 75 0.67 0.15 0.503 0.67 0.87 0.87 1.06 1.06
Mayport, USA 1928 2006 79 0.79 0.10 0.622 0.79 0.98 0.98 1.18 1.18
Fernandina Beach, USA 1897 2006 110 0.66 0.07 0.729 0.66 0.86 0.86 1.06 1.06
Fort Pulaski, USA 1935 2006 72 0.98 0.11 0.704 0.98 1.17 1.17 1.37 1.37
Charleston, USA 1921 2006 86 1.03 0.08 0.889 1.03 1.23 1.23 1.43 1.43
Wilmington, USA 1935 2006 72 0.68 0.13 0.490 0.68 0.88 0.88 1.07 1.07
Sewells Point, USA 1927 2006 80 1.46 0.09 1.165 1.46 1.65 1.65 1.85 1.85
Washington, USA 1924 2006 83 1.04 0.11 0.862 1.04 1.24 1.24 1.43 1.43
Annapolis, USA 1928 2006 79 1.13 0.08 0.891 1.13 1.32 1.32 1.52 1.52
Baltimore, USA 1902 2006 105 1.01 0.05 1.060 1.01 1.21 1.21 1.40 1.40
Philadelphia, USA 1900 2006 107 0.92 0.07 0.981 0.92 1.11 1.11 1.31 1.31
Atlantic City, USA 1911 2006 96 1.31 0.06 1.257 1.31 1.51 1.51 1.70 1.70
Sandy Hook, USA 1932 2006 75 1.28 0.08 0.960 1.28 1.48 1.48 1.67 1.67
The Battery, USA 1856 2006 151 0.91 0.03 1.374 0.91 1.11 1.11 1.30 1.30
Kings Pt/Willets Pt, USA 1931 2006 76 0.77 0.08 0.586 0.77 0.97 0.97 1.16 1.16
Newport, USA 1930 2006 77 0.85 0.06 0.651 0.85 1.04 1.04 1.24 1.24
Woods Hole, USA 1932 2006 75 0.86 0.07 0.642 0.86 1.05 1.05 1.25 1.25
Boston, USA 1921 2006 86 0.86 0.06 0.742 0.86 1.06 1.06 1.26 1.26
Portland, USA 1912 2006 95 0.60 0.05 0.567 0.60 0.79 0.79 0.99 0.99
Eastport, USA 1929 2006 78 0.66 0.07 0.511 0.66 0.85 0.85 1.05 1.05
Saint John, Canada 1914 1999 86 0.90 0.11 0.776 0.90 1.10 1.10 1.30 1.30
Halifax, Canada 1895 2002 108 1.04 0.05 1.121 1.04 1.23 1.23 1.43 1.43
Pointe-Au-Pere, Canada 1900 1983 84 -0.12 0.13 -0.100 0.12 0.08 0.08 0.27 0.27
Quebec, Canada 1910 2006 97 -0.06 0.16 -0.055 0.06 0.14 0.14 0.34 0.34
Neuville, Canada 1914 2006 93 0.06 0.26 0.052 0.06 0.25 0.25 0.45 0.45
Argentine Islands, Antarctica 1958 2006 49 0.56 0.16 0.277 0.56 0.76 0.76 0.96 0.96
Averages: 1917.0 2001.2 85.22 0.200 0.145 0.1281 0.680 0.397 0.786 0.594 0.911
    Averages per year: 0.00200 0.00150 0.00680 0.00397 0.00786 0.00594 0.00911

 
 


Analysis of linear mean sea level (MSL) trends

For a newer (metric) version of this page, click here.

 
The Data:
 
The information in black on this page (above) is copied directly from NOAA's web site:
http://tidesandcurrents.noaa.gov/sltrends/MSL_global_trendtablefc.html.
(A copy of that web page is also available at http://www.webcitation.org/5lvz9LlBe.)
 
The numbers in red are values which I calculated from NOAA's data.
 
Note: The portion of this web page preceding the red line is in Microsoft Excel 2000 HTML spreadsheet format. So if you want to load the data into a spreadsheet you can just load the web page into Excel (version 2000 or later). Doing so will scramble the text after the red line, but the data and formulas above the red line will load correctly, and the numbers will be represented with greater precision than is shown on the web page.
 
The data on this web page is entirely copied and calculated from the referenced NOAA web page, but I've requested the raw data from which it is derived, and intend to revisit the topic if and when I obtain the raw data.
 
 
Summary:
 
159 stations are listed by NOAA. They had been in operation for an average of ~85 years. Mean Sea Level (MSL) rose at 117 locations, and fell at 41 locations.
 
The location with both the greatest total increase and fastest rate of increase was
Galveston, TX, USA, where mean sea level rose by 2.10 feet over a period of 99 years.
 
The location with the greatest total decrease was Vaasa, Finland, where mean sea level fell by 3.00 feet over 124 years, but the location with the fastest rate of decrease was Furuogrund, Sweden, where mean sea level fell at a rate of 2.68 feet/century over 92 years.
 
The location with the median rate of MSL change was Prince Rupert, Canada, where MSL rose at a rate of 0.358 ft/century.
 
 
Insight #1:
 
There are two obvious ways of averaging the numbers. I've done both. One way is to weight each measurement location equally. The other way is to weight each station-year equally; that is, to weight each measurement location according to how long it was in operation, so that a station which was in operation for 100 years would have twice the weight of a station which was only in operation for 50 years.
 
It turns out that it doesn't make much difference in the result.
 
The average MSL change is +0.00200 ft/year if each station is weighted equally.
The average MSL change is +0.00150 ft/year if station-years are weighted equally.
 
0.00358 ft/year = 1.090 mm/year = 4.29 inches/century (median)
0.00200 ft/year = 0.611 mm/year = 2.41 inches/century (average1)
0.00150 ft/year = 0.458 mm/year = 1.80 inches/century (average2)
0.00175 ft/year = 0.535 mm/year = 2.10 inches/century ((avg1+avg2)/2)
0.00236 ft/year = 0.720 mm/year = 2.83 inches/century ((med+avg1+avg2)/3)
 
 
Conclusion #1:
 
According to NOAA's data, global average mean sea levels have been creeping up at a rate of only about 2-3 inches per century (0.5-0.7 mm/year). That is about one-third of the 1.8 mm/year (7.1 inches/century) rate which AGW alarmists typically claim.
 
 
Insight #2:
 
Although the global average MSL rate of change is only about 0.6 mm/year, most sites have historically seen much larger changes than that, because the average includes both locations where the sea level is increasing and locations where the sea level is decreasing. The "Absolute value of MSL Trend" column shows how much sea level change (up or down) is experienced by each site, and the average is about 0.00680 ft/year = 2.07 mm/year.
 
That means that most of the MSL trend at most sites is due to local conditions, rather than the global MSL trend.
 
The significance of that fact is that it means that changes in the global average rate of MSL increase are of much less significance than you might expect. This is shown by the last four columns, in which the effect of hypothetical increases in rate of MSL rise are calculated.
 
In fact, for 37 locations which have been experiencing large decreases in sea level, a doubling in the global average rate of MSL rise would actually reduce the rate of MSL change experienced at those locations.
 
For locations which have already been experiencing increases in sea level, an increase in the global average rate of MSL rise would increase the amount of change experienced at those locations, but often by a relatively small amount compared to the change which they have already been experiencing.
 
In the columns labeled "MSL Trend +0.6mm/yr" and "Absolute value of MSL Trend +0.6mm/yr" we calculate the local effect at each station of an approximate doubling in rate of global average mean sea level increase, from ~0.6 mm/yr to ~1.2mm/yr. The average amount of change experienced by the 159 locations would increase from the 20th century rate of .00680 ft/year to about 0.00786 ft/year, which is just a 16% increase.
 
In the column labeled "MSL Trend +1.2mm/yr" we calculate the local effect at each station of an approximate tripling in rate of global average mean sea level increase, from ~0.6 mm/yr to ~1.8mm/yr. The average amount of change experienced by the 159 locations would increase from .00680 ft/year to about 0.00911 ft/year, which is still only a 34% increase.
 
 
Conclusion #2:
 
Because of the large variation in rate of sea level change between different seaside locations, changes in the global average rate of sea level increase have much less effect on seaside communities that one might guess. Even a tripling in the global average rate of Mean Sea Level increase would cause only a 34% average increase in the rate of sea level change experienced by seaside communities.
 
 
How & Why:
 
The obvious question is, "How did the IPCC's AGW alarmists get it so wildly wrong?"
 
Or, first off, is it possible that the IPCC is right? I.e., is it possible that NOAA's list of 159 locations is so unrepresentative of the world as a whole, that it understates 20th century global average MSL rise by two-thirds?"
 
That seems very unlikely. The 45 NOAA-maintained stations and 114 PSMSL-provided stations represent what appears to be a pretty good geographic distribution (though Africa is noticeably underrepresented). They are
the 159 stations designated in 1997 as GLOSS-LTT stations for monitoring long-term sea level trends. I'm aware of no evidence that the 159 locations were poorly chosen.
 
So how did the IPCC get it so wildly wrong? The answer apparently is that they've been adjusting the numbers with "correction factors," based on theoretical models rather than actual measurements, and their corrections drastically inflate the reported rate of sea level rise.
 
The best explanation I've found is by the late John L. Daly (whose untimely death the UEA CRU's Phil Jones infamously found "cheering"), here:
Testing the Waters: A Report on Sea Levels for the Greening Earth Society
 
Here's a key quote from Daly's paper:

"The impression has been conveyed to the world's public, media, and policymakers, that the sea level rise of 18 cm in the past century is an observed quantity and therefore not open to much dispute. What is not widely known is that this quantity is largely the product of modeling, not observation, and thus very much open to dispute, especially as sea level data in many parts of the world fails to live up to the IPCC claims."

This paper is long, but very readable, and well worth a careful reading.
 
 
Dave Burton
Cary, NC
my email address
Original version: 12/11/2009
Latest version: 12/30/2009
 

P.S. - For more climate info see:  http://www.burtonsys.com/climategate
 
Also, here's a short link to this page:  http://tinyurl.com/MSLavg,
and to the analysis section of this page:  http://tinyurl.com/MSLavg#notes
 

  The column entitled "Total MSL change (feet)" is simply the calculated product of the "MSL Trend" (divided by 100 to convert ft/century to ft/year) and "Year Range" columns. Since the MSL Trend is determined (by NOAA) by linear smoothing, and there are substantial year-to-year fluctuations in MSL at most locations, the "Total MSL change" is not precisely the difference between the First Year MSL and the Last Year MSL. Rather, it is an intermediate value used to calculate the "average2" MSL Trend (in which each station-year is weighted equally; that is, in which each measurement location is weighted according to how long it was in operation).